Advertisement

Identification of target genes in cancer diseases using protein–protein interaction networks

  • Arumugam Amala
  • Isaac Arnold EmersonEmail author
Original Article
  • 50 Downloads

Abstract

Cancer is a disease that is characterized by uncontrolled cell growth with the ability to penetrate or develop to the other parts of the body. Various studies have shown the significance of identifying drug targets for cancer, although this process continues challenging in the field of anti-cancer drug designing. The primary purpose of this study is to design a novel approach to identify target genes for cancer. The sub-network of colorectal, pancreatic, and prostate cancers were constructed from human protein–protein interaction network. The potential genes were analyzed using hubs and centrality measures. For the identification of target genes, we retrieve those genes that had the highest score in both mutation rates and graph centrality. Moreover, gene deletion analysis revealed that MYC, TP53, and EGFR genes remained potential targets in colorectal, pancreatic, and prostate cancer respectively. Results suggest that combining network measures with mutation frequencies in cancer genes might assist in recognizing several potential drug targets. Future enhancement of this current approach is to combine these network properties with the biological insights from gene expression data, and their functions will provide a reliable method for rational drug designing.

Keywords

Network topology Centrality Hubs Cancer 

Notes

Acknowledgements

The authors would like to thank the Vellore Institute of Technology for providing necessary computational facilities.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.

Supplementary material

13721_2018_181_MOESM1_ESM.pdf (175 kb)
Supplementary material 1 (PDF 175 KB)
13721_2018_181_MOESM2_ESM.pdf (175 kb)
Supplementary material 2 (PDF 175 KB)
13721_2018_181_MOESM3_ESM.pdf (180 kb)
Supplementary material 3 (PDF 180 KB)
13721_2018_181_MOESM4_ESM.pdf (210 kb)
Supplementary material 4 (PDF 210 KB)
13721_2018_181_MOESM5_ESM.pdf (209 kb)
Supplementary material 5 (PDF 208 KB)
13721_2018_181_MOESM6_ESM.pdf (219 kb)
Supplementary material 6 (PDF 218 KB)

References

  1. Albert-László B, Zoltán NO (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–113.  https://doi.org/10.1038/nrg1272 CrossRefGoogle Scholar
  2. Ali S, Ahmad A, Aboukameel A et al (2014) Deregulation of miR-146a expression in a mouse model of pancreatic cancer affecting EGFR signaling. Cancer Lett 351:134–142.  https://doi.org/10.1016/j.canlet.2014.05.013 CrossRefGoogle Scholar
  3. Alzoubi S, Brody L, Rahman S et al (2016) Synergy between histone deacetylase inhibitors and DNA-damaging agents is mediated by histone deacetylase 2 in colorectal cancer. Oncotarget 7:44505–44521.  https://doi.org/10.18632/oncotarget.9887 CrossRefGoogle Scholar
  4. Assenov Y, Ramírez F, Schelhorn SESE et al (2008) Computing topological parameters of biological networks. Bioinformatics.  https://doi.org/10.1093/bioinformatics/btm554 CrossRefGoogle Scholar
  5. Baade PD, Youlden DR, Krnjacki LJ (2009) International epidemiology of prostate cancer: geographical distribution and secular trends. Mol Nutr Food Res 53:171–184CrossRefGoogle Scholar
  6. Baba T, Ara T, Hasegawa M et al (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol.  https://doi.org/10.1038/msb4100050 CrossRefGoogle Scholar
  7. Barabasi A-L, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512MathSciNetCrossRefGoogle Scholar
  8. Bostwick DG (2005) American Cancer Society’s complete guide to prostate cancer. American Cancer Society, AtlantaGoogle Scholar
  9. Boudjadi S, Carrier JC, Groulx JF, Beaulieu JF (2016) Integrin α1β1 expression is controlled by c-MYC in colorectal cancer cells. Oncogene 35:1671–1678.  https://doi.org/10.1038/onc.2015.231 CrossRefGoogle Scholar
  10. Breitkreutz B-J, Stark C, Tyers M (2003) The GRID: the general repository for interaction datasets. Genome Biol 4:R23CrossRefGoogle Scholar
  11. Bu Y, Li X, He Y et al (2016) A phosphomimetic mutant of RelA/p65 at Ser536 induces apoptosis and senescence: an implication for tumor-suppressive role of Ser536 phosphorylation. Int J Cancer 138:1186–1198.  https://doi.org/10.1002/ijc.29852 CrossRefGoogle Scholar
  12. Calvano SE, Xiao W, Richards DR et al (2005) A network-based analysis of systemic inflammation in humans. Nature 437:1032–1037.  https://doi.org/10.1038/nature03985 CrossRefGoogle Scholar
  13. Carper MB, Denvir J, Boskovic G et al (2014) RGS16, a novel p53 and pRb cross-talk candidate inhibits migration and invasion of pancreatic cancer cells. Genes Cancer 5:420–435.  https://doi.org/10.18632/genesandcancer.43 CrossRefGoogle Scholar
  14. Cooks T, Pateras IS, Tarcic O et al (2013) Mutant p53 prolongs NF-κB activation and promotes chronic inflammation and inflammation-associated colorectal cancer. Cancer Cell 23:634–646.  https://doi.org/10.1016/j.ccr.2013.03.022 CrossRefGoogle Scholar
  15. Doncheva NT, Assenov Y, Domingues FS, Albrecht M (2012) Topological analysis and interactive visualization of biological networks and protein structures. Nat Protoc 7:670CrossRefGoogle Scholar
  16. Dy GW, Gore JL, Forouzanfar MH et al (2017) Global burden of urologic cancers, 1990–2013. Eur Urol 71:437–446CrossRefGoogle Scholar
  17. Dyson NJ (2016) RB1: a prototype tumor suppressor and an enigma. Genes Dev 30:1492–1502.  https://doi.org/10.1101/gad.282145.116 CrossRefGoogle Scholar
  18. Faber AC, Coffee EM, Costa C et al (2014) mTOR inhibition specifically sensitizes colorectal cancers with KRAS or BRAF mutations to BCL-2/BCL-XL inhibition by suppressing MCL-1. Cancer Discov 4:42–52.  https://doi.org/10.1158/2159-8290.cd-13-0315 CrossRefGoogle Scholar
  19. Feldman I, Rzhetsky A, Vitkup D (2008) Network properties of genes harboring inherited disease mutations. Proc Natl Acad Sci 105:4323–4328.  https://doi.org/10.1073/pnas.0701722105 CrossRefGoogle Scholar
  20. Fitzgerald TL, Lertpiriyapong K, Cocco L et al (2015) Roles of EGFR and KRAS and their downstream signaling pathways in pancreatic cancer and pancreatic cancer stem cells. Adv Biol Regul 59:65–81.  https://doi.org/10.1016/j.jbior.2015.06.003 CrossRefGoogle Scholar
  21. Futreal PA, Coin L, Marshall M et al (2004) A census of human cancer genes. Nat Rev Cancer 4:177–183.  https://doi.org/10.1038/nrc1299 CrossRefGoogle Scholar
  22. Gang X, Yang Y, Zhong J et al (2016) P300 acetyltransferase regulates fatty acid synthase expression, lipid metabolism and prostate cancer growth. Oncotarget 7:15135–15149.  https://doi.org/10.18632/oncotarget.7715 CrossRefGoogle Scholar
  23. Giaever G, Chu AM, Ni L et al (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387CrossRefGoogle Scholar
  24. Goh K-I, Cusick ME, Valle D et al (2007) The human disease network. Proc Natl Acad Sci USA 104:8685–8690.  https://doi.org/10.1073/pnas.0701361104 CrossRefGoogle Scholar
  25. Goodman RH, Smolik S, Goodman RH, Smolik S (2000) CBP/p300 in cell growth, transformation, and development. Genes Dev.  https://doi.org/10.1101/gad.14.13.1553 CrossRefGoogle Scholar
  26. Guo AY, Sun J, Riley BP et al (2009) The dystrobrevin-binding protein 1 gene: features and networks. Mol Psychiatry 14:18–29CrossRefGoogle Scholar
  27. Hudson SV, Huang JS, Yin W et al (2014) Targeted noninvasive imaging of EGFR-expressing orthotopic pancreatic cancer using multispectral optoacoustic tomography. Cancer Res 74:6271–6279.  https://doi.org/10.1158/0008-5472.CAN-14-1656 CrossRefGoogle Scholar
  28. Ideker T, Sharan R (2008) Protein networks in disease. Genome Res 18:644–652CrossRefGoogle Scholar
  29. Jeong H, Mason SP, Barabási AL, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411:41–42.  https://doi.org/10.1038/35075138 CrossRefGoogle Scholar
  30. Jesse Gore A, Deitz SL, Palam LR et al (2014) Pancreatic cancer-associated retinoblastoma 1 dysfunction enables TGF-β to promote proliferation. J Clin Invest 124:338–352.  https://doi.org/10.1172/JCI71526 CrossRefGoogle Scholar
  31. Jiang M, Milner J (2003) Bcl-2 constitutively suppresses p53-dependent apoptosis in colorectal cancer cells. Genes Dev 17:832–837.  https://doi.org/10.1101/gad.252603 CrossRefGoogle Scholar
  32. Jin L, Garcia J, Chan E et al (2017) Therapeutic targeting of the CBP/p300 bromodomain blocks the growth of castration-resistant prostate cancer. Cancer Res 77:5564–5575.  https://doi.org/10.1158/0008-5472.CAN-17-0314 CrossRefGoogle Scholar
  33. Jonsson PF, Bates PA (2006) Global topological features of cancer proteins in the human interactome. Bioinformatics 22:2291–2297.  https://doi.org/10.1093/bioinformatics/btl390 CrossRefGoogle Scholar
  34. Kanehisa M, Araki M, Goto S et al (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res.  https://doi.org/10.1093/nar/gkm882 CrossRefGoogle Scholar
  35. Khodapasand E, Jafarzadeh N, Farrokhi F et al (2015) Is Bax/Bcl-2 ratio considered as a prognostic marker with age and tumor location in colorectal cancer? Iran Biomed J 19:69–75.  https://doi.org/10.6091/ibj.1366.2015 CrossRefGoogle Scholar
  36. Knudson AG (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci.  https://doi.org/10.1073/pnas.68.4.820 CrossRefGoogle Scholar
  37. Koehler BC, Scherr AL, Lorenz S et al (2013) beyond cell death—antiapoptotic bcl-2 proteins regulate migration and invasion of colorectal cancer cells in vitro. PLoS One.  https://doi.org/10.1371/journal.pone.0076446 CrossRefGoogle Scholar
  38. Lee KS, Kwak Y, Nam KH et al (2016) Favorable prognosis in colorectal cancer patients with co-expression of c-MYC and ß-catenin. BMC Cancer.  https://doi.org/10.1186/s12885-016-2770-7 CrossRefGoogle Scholar
  39. Liao J, Hwang SH, Li H et al (2016) Inhibition of chronic pancreatitis and murine pancreatic intraepithelial neoplasia by a dual inhibitor of c-RAF and soluble epoxide hydrolase in LSL-KrasG12D/Pdx-1-Cre mice. Anticancer Res 36:27–37Google Scholar
  40. Liptay S, Weber CK, Ludwig L et al (2003) Mitogenic and antiapoptotic role of constitutive NF-κB/Rel activity in pancreatic cancer. Int J Cancer 105:735–746.  https://doi.org/10.1002/ijc.11081 CrossRefGoogle Scholar
  41. Makrariya A, Adlakha N (2017) Quantitative study of thermal disturbances due to nonuniformly perfused tumors in peripheral regions of women’s breast. Cancer Inform 16:1176935117700894CrossRefGoogle Scholar
  42. Moore M, Cook N, Frese K (2014) Assessing the role of the EGF receptor in the development and progression of pancreatic cancer. Gastrointest Cancer Targets Ther 4:23.  https://doi.org/10.2147/GICTT.S58925 CrossRefGoogle Scholar
  43. Naccarati A, Polakova V, Pardini B et al (2012) Mutations and polymorphisms in TP53 gene—an overview on the role in colorectal cancer. Mutagenesis 27:211–218.  https://doi.org/10.1093/mutage/ger067 CrossRefGoogle Scholar
  44. Naik P, Pardasani KR (2013) Finite element model to study effect of buffers in presence of voltage gated 2 Ca + channels on calcium distribution in oocytes for one dimensional unsteady state case. Int J Mod Biol Med 4:190–203Google Scholar
  45. Naik PA, Pardasani KR (2016) Finite element model to study calcium distribution in oocytes involving voltage gated Ca2 + channel, ryanodine receptor and buffers. Alexandria J Med 52:43–49CrossRefGoogle Scholar
  46. Naik PA, Pardasani KR (2018) 2D finite-element analysis of calcium distribution in oocytes. Netw Model Anal Heal Inform Bioinf 7:10CrossRefGoogle Scholar
  47. Oliva B, Aragues R, Sander C (2008) Predicting cancer involvement of genes from heterogeneous data. BMC Bioinform.  https://doi.org/10.1186/1471-2105-9-172 CrossRefGoogle Scholar
  48. Oti M, Snel B, Huynen MA, Brunner HG (2006) Predicting disease genes using protein–protein interactions. J Med Genet 43:691–698.  https://doi.org/10.1136/jmg.2006.041376 CrossRefGoogle Scholar
  49. Pawson T, Linding R (2008) Network medicine. FEBS Lett 582:1266–1270CrossRefGoogle Scholar
  50. Platzer A, Perco P, Lukas A, Mayer B (2007) Characterization of protein-interaction networks in tumors. BMC Bioinform.  https://doi.org/10.1186/1471-2105-8-224 CrossRefGoogle Scholar
  51. Prabhu L, Mundade R, Korc M et al (2014) Critical role of NF-kB in pancreatic cancer. Oncotarget.  https://doi.org/10.18632/oncotarget.2624 CrossRefGoogle Scholar
  52. Quinn DI, Henshall SM, Head DR et al (2000) Prognostic significance of p53 nuclear accumulation in localized prostate cancer treated with radical prostatectomy. Cancer Res 60:1585–1594Google Scholar
  53. Raman K (2010) Construction and analysis of protein–protein interaction networks. Autom Exp 2:2CrossRefGoogle Scholar
  54. Rennoll S (2015) Regulation of MYC gene expression by aberrant Wnt/β-catenin signaling in colorectal cancer. World J Biol Chem 6:290.  https://doi.org/10.4331/wjbc.v6.i4.290 CrossRefGoogle Scholar
  55. Russo A, Bazan V, Iacopetta B et al (2005) The TP53 colorectal cancer international collaborative study on the prognostic and predictive significance of p53 mutation: influence of tumor site, type of mutation, and adjuvant treatment. J Clin Oncol 23:7518–7528.  https://doi.org/10.1200/JCO.2005.00.471 CrossRefGoogle Scholar
  56. Scott N, Sagar P, Stewart J et al (1991) p53 in colorectal cancer: clinicopathological correlation and prognostic significance. Br J Cancer 63:317–319.  https://doi.org/10.1038/bjc.1991.74 CrossRefGoogle Scholar
  57. Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504CrossRefGoogle Scholar
  58. Sherry ST, Ward M-H, Kholodov M et al (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29:308–311CrossRefGoogle Scholar
  59. Shoemaker AR, Mitten MJ, Adickes J et al (2008) Activity of the Bcl-2 family inhibitor ABT-263 in a panel of small cell lung cancer xenograft models. Clin Cancer Res 14:3268–3277.  https://doi.org/10.1158/1078-0432.CCR-07-4622 CrossRefGoogle Scholar
  60. Siegel R, Ward E, Brawley O, Jemal A (2011) The impact of eliminating socioeconomic and racial disparities on premature cancer deaths. Ca-a Cancer J Clin 61:212–236CrossRefGoogle Scholar
  61. Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. CA Cancer J Clin 65:5–29CrossRefGoogle Scholar
  62. Singh D, Upadhyay G, Srivastava RK, Shankar S (2015) Recent advances in pancreatic cancer: biology, treatment, and prevention. Biochim Biophys Acta Rev Cancer 1856:13–27.  https://doi.org/10.1016/j.bbcan.2015.04.003 CrossRefGoogle Scholar
  63. Smith DR, Goh H-S (1996) That tumor. Clin Cancer Res 2:1049–1053Google Scholar
  64. Stark C, Breitkreutz B-J, Reguly T et al (2006) BioGRID: a general repository for interaction datasets. Nucleic Acids Res 34:D535–D539CrossRefGoogle Scholar
  65. Stewart B, Wild CP (eds) International Agency for Research on Cancer, WHO (2014) World cancer report 2014 [Online]. Available from http://www.thehealthwell.info/node/725845. Accessed 4 Jan 2019
  66. Sun J, Jia P, Fanous AH et al (2009) A multi-dimensional evidence-based candidate gene prioritization approach for complex diseases—schizophrenia as a case. Bioinformatics 25:2595–2602.  https://doi.org/10.1093/bioinformatics/btp428 CrossRefGoogle Scholar
  67. Taylor IW, Linding R, Warde-Farley D et al (2009) Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nat Biotechnol 27:199–204.  https://doi.org/10.1038/nbt.1522 CrossRefGoogle Scholar
  68. Vazquez A, Flammini A, Maritan A, Vespignani A (2003) Global protein function prediction from protein–protein interaction networks. Nat Biotechnol 21:697–700CrossRefGoogle Scholar
  69. Wang F, Marshall CB, Ikura M (2013) Transcriptional/epigenetic regulator CBP/p300 in tumorigenesis: structural and functional versatility in target recognition. Cell Mol Life Sci 70:3989–4008.  https://doi.org/10.1007/s00018-012-1254-4 CrossRefGoogle Scholar
  70. Weichert W, Boehm M, Gekeler V et al (2007) High expression of RelA/p65 is associated with activation of nuclear factor-κB-dependent signaling in pancreatic cancer and marks a patient population with poor prognosis. Br J Cancer 97:523–530.  https://doi.org/10.1038/sj.bjc.6603878 CrossRefGoogle Scholar
  71. Weissmueller S, Manchado E, Saborowski M et al (2014) Mutant p53 drives pancreatic cancer metastasis through cell-autonomous PDGF receptor β signaling. Cell 157:382–394.  https://doi.org/10.1016/j.cell.2014.01.066 CrossRefGoogle Scholar
  72. Wiegering A, Uthe FW, Jamieson T et al (2015) Targeting translation initiation bypasses signaling crosstalk mechanisms that maintain high MYC levels in colorectal cancer. Cancer Discov 5:768–881.  https://doi.org/10.1158/2159-8290.CD-14-1040 CrossRefGoogle Scholar
  73. Wilkinson L (2010) Venn and Euler data diagrams. Science 2 (Citeseer) Google Scholar
  74. Winzeler EA, Shoemaker DD, Astromoff A et al (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285:901–906CrossRefGoogle Scholar
  75. Wolfgang CL, Herman JM, Laheru DA et al (2013) Recent progress in pancreatic cancer. CA Cancer J Clin 63:318–348.  https://doi.org/10.3322/caac.21190 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Bioinformatics Programming Laboratory, Department of Biotechnology, School of Bio Sciences and TechnologyVellore Institute of TechnologyVelloreIndia

Personalised recommendations