Advertisement

Computational study of diarylcyclopentene derivatives as selective prostaglandin EP1 receptor antagonist: QSAR approach

  • Mukesh C. Sharma
  • Smita SharmaEmail author
  • Shivangi Sharma
Original Article

Abstract

2D quantitative structure–activity relationships (2D QSAR) studies were performed on a series of diarylcyclopentene derivatives as prostaglandin EP1 receptor antagonist. To establish the relationship between Prostaglandin EP1 receptor and diarylcyclopentene derivatives, a 2D-QSAR model based on individual, estate numbers, structural, electro topological and baumann alignment descriptors parameters was developed. The best model-1 correlation coefficient with r 2 = 0.8101, significant cross validated correlation coefficient (q 2 = 0.7491) and for external test set pred_r 2 = 0.7812 developed by Partial Least Squares method. The QSAR model reveals that hydroxyl and methoxy group at R position on the diarylcyclopentene moiety is responsible for improving the prostaglandin EP1 receptor activity. The results of 2D QSAR studies were used to design new molecules and to predict their prostaglandin EP1 receptor activity using the developed models.

Keywords

2D-QSAR Diarylcyclopentene Prostaglandin EP1 receptor Partial Least Squares 

Notes

Acknowledgments

The author would like to thank VLife Sciences Technologies Pvt. Ltd. Pune for providing software facility and Journal referees for their valuable suggestions to improve the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. Baumann K (2002) an alignment-independent versatile structure descriptor for QSAR and QSPR based on the distribution of molecular features. J Chem Inf Comput Sci 42:26–35MathSciNetCrossRefGoogle Scholar
  2. Bhattacharya M, Peri KG, Almazan G, Ribeiro-da-Silva A, Shichi H, Durocher Y, Abramovitz M, Hou X, Varma DR, Chemtob S (1998) Nuclear localization of prostaglandin E2 receptors. Proc Natl Acad Sci USA 95:15792–15797CrossRefGoogle Scholar
  3. Bianchi M, Broggini MA (2003) randomised, double-blind, clinical trial comparing the efficacy of nimesulide, celecoxib and rofecoxib in osteoarthritis of the knee. Drugs 63(1):37–46CrossRefGoogle Scholar
  4. Boie Y, Stocco R, Sawyer N, Slipetz DM, Ungrin MD, Neuschafer-Rube F, Puschel G, Metters KM, Abramovitz M (1997) Molecular cloning and characterization of the four rat prostaglandin E2 prostanoid receptor subtypes. Eur J Pharmacol 340:227–247CrossRefGoogle Scholar
  5. Breyer MD, Breyer RM (2000) Prostaglandin E receptors and the kidney. Am J Physiol Renal Physiol 279:F12–F23Google Scholar
  6. Camu F, Shi L, Vanlersberghe C (2003) The role of COX-2 inhibitors in pain modulation. Drugs 63(Suppl 1):1–7CrossRefGoogle Scholar
  7. Coleman RA, Kennedy I, Humphrey PPA, Bunce K, Lumley P (1990) In comprehensive medicinal chemistry; Pergamon: Oxford, UK, vol 3, pp 643–714Google Scholar
  8. Cramer RD, Patterson DE, Bunce JD (1988) Comparative molecular field analysis (CoMFA) 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110:5959–5967CrossRefGoogle Scholar
  9. Funk CD (2001) Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294:1871–1875CrossRefGoogle Scholar
  10. Giblin GMP, Bit RA, Brown SH, Chaignot HM, Chowdhury A, Chessell Iain P, Clayton Nicholas M, Coleman T, Hall A, Hammond B, Hurst David N, Michel Anton D, Naylor A, Novelli R, Scoccitti T, Spalding D, Tang Sac P, Wilson Alex W, Wilson R (2007) The discovery of 6-[2-(5-chloro-2-{[(2,4-difluorophenyl)- methyl]oxy}phenyl)-1-cyclopenten-1-yl]-2-pyridinecarboxylic acid, GW848687X, a potent and selective prostaglandin EP1 receptor antagonist for the treatment of inflammatory pain. Bioorg Med Chem Lett 17:385–389CrossRefGoogle Scholar
  11. Golbraikh A, Tropsha A (2002) Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection. J Comput Aided Mol Des 16:357–369CrossRefGoogle Scholar
  12. Gupta SP, Mathur AN, Naggapa AN, Kumar D, Kumaran S (2003) A quantitative structure-activity relationship study on a novel class of calcium entry blockers:1-[{4-(aminoalkoxy)phenylsulfonyl] indolizines. Eur J Med Chem 38:867–873CrossRefGoogle Scholar
  13. Kiriyama M, Ushikubi F, Kobayashi T, Hirata M, Sugimoto Y, Narumiya S (1997) Ligand binding specificities of the eight types and subtypes of the mouse prostanoid receptors expressed in Chinese hamster ovary cells. Br J Pharmacol 122(2):217–224CrossRefGoogle Scholar
  14. Maggi CA, Giuliani S, Patacchini R, Conte B, Furio M, Santicioli P, Meli P, Gragnani L, Meli A (1988) The effect of SC-19220, a prostaglandin antagonist, on the micturition reflex in rats. Eur J Pharmacol 152(3):273–279CrossRefGoogle Scholar
  15. Minami T, Nishihara I, Uda R, Ito S, Hyodo M, Hayaishi O (1994) Characterization of EP-receptor subtypes involved in allodynia and hyperalgesia induced by intrathecal administration of prostaglandin E2 to mice. Br J Pharmacol 112(3):735–740CrossRefGoogle Scholar
  16. Minami T, Nakano H, Kobayashi T, Sugimoto Y, Ushikubi F, Ichikawa A, Narumiya S, Ito S (2001) Characterization of EP receptor subtypes responsible for prostaglandin E2-induced pain responses by use of EP1 and EP3 receptor knockout mice. Br J Pharmacol 133(3):438–444CrossRefGoogle Scholar
  17. Namba T, Sugimoto Y, Negishi M, Namba T, Sugimoto Y, Negishi M, Irie A, Ushikubi F, Kakizuka A, Ito S, Ichikawa A, Narumiya S et al (1993) Alternative splicing of C-terminal tail of prostaglandin E receptor subtype EP3 determines G-protein specificity. Nature 365:166–170CrossRefGoogle Scholar
  18. Narumiya S, Sugimoto Y, Ushikubi F (1999) Prostanoid receptors: structures, properties, and functions. Physiol Rev 79(4):1193–1226Google Scholar
  19. Sharma BK, Pilania P, Prithvi Singh P (2010) QSAR rationales for the 1,2-diarylcyclopentenes as prostaglandin EP1 receptor antagonists: potentially useful in the treatment of inflammatory pain. Euro J Chem 1(4):325–334CrossRefGoogle Scholar
  20. Sheen CL, MacDonald TM (2002) Gastrointestinal side effects of NSAIDs—pharmacoeconomic implications. Exp Opin Pharmacother 3:265–269CrossRefGoogle Scholar
  21. Takeda H, Sonoshita M, Oshima H, Sugihara K, Chulada PC, Langenbach R, Oshima M, Taketo MM (2003) Cooperation of cyclooxygenase 1 and cyclooxygenase 2 in intestinal polyposis. Cancer Res 63:4872–4877Google Scholar
  22. VLife MDS 3.5 (2010) Molecular design suite. Vlife Sciences Technologies Pvt. Ltd., Pune. https://www.vlifesciences.com
  23. Wibberley A (2005) Overactive bladder: targeting prostaglandins in sensory pathways. Drug Discov Today: Therap Strateg 2:7–13CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Mukesh C. Sharma
    • 1
  • Smita Sharma
    • 2
    Email author
  • Shivangi Sharma
    • 3
  1. 1.School of PharmacyDevi Ahilya UniversityIndoreIndia
  2. 2.Chodhary Dilip Singh Kanya MahavidyalyaBhindIndia
  3. 3.School of Computing Science and EngineeringVIT University Chennai CampusChennaiIndia

Personalised recommendations