Advertisement

Current Obesity Reports

, Volume 6, Issue 4, pp 405–413 | Cite as

Dietary Patterns and Cardiovascular Disease Risk in People with Type 2 Diabetes

  • M. Carolina Archundia Herrera
  • Fatheema B. Subhan
  • Catherine B. ChanEmail author
Metabolism (CJ Billington, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Metabolism

Abstract

Purpose of Review

The primary objective of this review is to identify dietary patterns with beneficial effects on cardiovascular health of adults with type 2 diabetes.

Recent Findings

The prevalence of diabetes is increasing globally. People with diabetes have a greater risk for cardiovascular disease. Mediterranean diet, dietary approaches to stop hypertension diet, vegetarian diet, traditional Korean diet, Japanese diet, and low-glycemic-index diet can reduce cardiovascular disease risk in people with diabetes.

Summary

Dietary intake is a key modifiable factor in the management of diabetes and plays a significant role in limiting the incidence of cardiovascular diseases.

Keywords

Type 2 diabetes Cardiovascular disease Dietary pattern Cardiovascular risk factors Mediterranean diet Low GI diet Traditional Korean diet Vegetarian diet Japanese diet DASH diet 

Notes

Compliance with Ethics Guidelines

Conflict of Interest

M. Carolina Archundia Herrera, Fatheema B. Subhan, and Catherine B. Chan declare they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• O major importance

  1. 1.
    World Health Organization. World health statistics 2017: monitoring health for the SDGs, sustainable development goals. In: Geneva; 2017.Google Scholar
  2. 2.
    Bloom DE, Cafiero ET, Jané-Llopis E, et al. The global economic burden of non-communicable diseases. Geneva: World Economic Forum 2011.Google Scholar
  3. 3.
    World Health Organization. Global report on diabetes. Geneva, 2016.Google Scholar
  4. 4.
    Canadian Diabetes Association Clinical Practice Guidelines Committee. Clinical practice guidelines for the prevention and management of diabetes in Canada. Can J Diabetes. 2013;37(suppl 1):S1–S212.Google Scholar
  5. 5.
    Diabetes Canada. Diabetes: Canada at the tipping point—charting a new path. Toronto, 2011. http://www.diabetes.ca/CDA/media/documents/publications-and-newsletters/advocacy-reports/canada-at-the-tipping-point-english.pdf. Accessed September 18, 2017.
  6. 6.
    Fox CS, Coady S, Sorlie PD, et al. Increasing cardiovascular disease burden due to diabetes mellitus: the Framingham Heart Study. Circulation. 2007;115(12):1544–50.CrossRefPubMedGoogle Scholar
  7. 7.
    Emerging Risk Factors Collaboration, Sarwar N, Gao P, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375(9733):2215–22.CrossRefGoogle Scholar
  8. 8.
    Dokken BB. The pathophysiology of cardiovascular disease and diabetes: beyond blood pressure and lipids. Diabetes Spectrum. 2008;21(3):160–5.CrossRefGoogle Scholar
  9. 9.
    Lloyd-Jones DM, Hong Y, Labarthe D, et al. Defining and setting national goals for cardiovascular health promotion and disease reduction. Circulation. 2010;121(4):586–613.CrossRefPubMedGoogle Scholar
  10. 10.
    • Dietary Guidelines Advisory Committee. Scientific report of the 2015 dietary guidelines advisory committee. Washington (DC): US Department of Agriculture and US Department of Health and Human Services. 2015. Describes the common characteristics of the overall healthy diet patterns. Google Scholar
  11. 11.
    Lind J. Treatise on the scurvy. London: Millar A; 1753.Google Scholar
  12. 12.
    Nutrition and your health : Dietary guidelines for Americans. Home and garden bulletin No. 232. US Department of Agriculture and US Department of Health and Human Services, Washington DC, 1980.Google Scholar
  13. 13.
    Mokdad AH, Serdula MK, Dietz WH, Bowman BA, Marks JS, Koplan JP. The spread of the obesity epidemic in the United States, 1991-1998. J Am Med Assoc. 1999;282(16):1519–22.CrossRefGoogle Scholar
  14. 14.
    Mozaffarian D, Appel LJ, Van Horn L. Components of a cardioprotective diet. Circulation. 2011;123(24):2870–91.CrossRefPubMedGoogle Scholar
  15. 15.
    FB H, Manson JE, Willett WC. Types of dietary fat and risk of coronary heart disease: a critical review. J Am Coll Nutr. 2001;20(1):5–19.CrossRefGoogle Scholar
  16. 16.
    • Widmer RJ, Flammer AJ, Lerman LO, Lerman A. The Mediterranean diet, its components, and cardiovascular disease. Am J Med. 2015;128(3):–38. A review that presents the different aspects of the Mediterranean diet that are particularly beneficial in cardiovascular disease prevention. Google Scholar
  17. 17.
    • Diaz-Lopez A, Babio N, Martinez-Gonzalez MA, et al. Mediterranean diet, retinopathy, nephropathy, and microvascular diabetes complications: a post hoc analysis of a randomized trial. Diabetes Care. 2015;38(11):2134–41. Risk reduction for retinopathy in those supplemented with EVOO and high adherence to the TMD. CrossRefPubMedGoogle Scholar
  18. 18.
    Fito M, Estruch R, Salas-Salvado J, et al. Effect of the Mediterranean diet on heart failure biomarkers: a randomized sample from the PREDIMED trial. Eur J Heart Fail. 2014;16(5):543–50.CrossRefPubMedGoogle Scholar
  19. 19.
    Sofi F, Macchi C, Abbate R, Gensini GF, Casini A. Mediterranean diet and health status: an updated meta-analysis and a proposal for a literature-based adherence score. Publ Health Nutr. 2014;17(12):2769–82.CrossRefGoogle Scholar
  20. 20.
    Guasch-Ferre M, Hu FB, Martinez-Gonzalez MA, et al. Olive oil intake and risk of cardiovascular disease and mortality in the PREDIMED study. BMC Med. 2014;12:78.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Azadbakht L, Fard NRP, Karimi M, et al. Effects of the dietary approaches to stop hypertension (DASH) eating plan on cardiovascular risks among type 2 diabetic patients: a randomized crossover clinical trial. Diabetes Care. 2011;34(1):55–7.CrossRefPubMedGoogle Scholar
  22. 22.
    • Saneei P, Salehi-Abargouei A, Esmaillzadeh A, Azadbakht L. Influence of dietary approaches to stop hypertension (DASH) diet on blood pressure: a systematic review and meta-analysis on randomized controlled trials. Nutr Metab Cardiovasc Dis. 2014;24(12):1253–61. Beneficial effects of DASH diet on cardiometabolic health. CrossRefPubMedGoogle Scholar
  23. 23.
    Siervo M, Lara J, Chowdhury S, Ashor A, Oggioni C, Mathers JC. Effects of the dietary approach to stop hypertension (DASH) diet on cardiovascular risk factors: a systematic review and meta-analysis. Br J Nutr. 2015;113(1):1–15.CrossRefPubMedGoogle Scholar
  24. 24.
    Azadbakht L, Surkan PJ, Esmaillzadeh A, Willett WC. The dietary approaches to stop hypertension eating plan affects C-reactive protein, coagulation abnormalities, and hepatic function tests among type 2 diabetic patients. J Nutr. 2011;141(6):1083–8.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Asemi Z, Samimi M, Tabassi Z, Sabihi SS, Esmaillzadeh AA. Randomized controlled clinical trial investigating the effect of DASH diet on insulin resistance, inflammation, and oxidative stress in gestational diabetes. Nutrition. 2013;29(4):619–24.CrossRefPubMedGoogle Scholar
  26. 26.
    de Paula TP, Steemburgo T, de Almeida JC, Dall'Alba V, Gross JL, de Azevedo MJ. The role of dietary approaches to stop hypertension (DASH) diet food groups in blood pressure in type 2 diabetes. Br J Nutr. 2012;108(1):155–62.CrossRefPubMedGoogle Scholar
  27. 27.
    Fujii H, Iwase M, Ohkuma T, et al. Impact of dietary fiber intake on glycemic control, cardiovascular risk factors and chronic kidney disease in Japanese patients with type 2 diabetes mellitus: the Fukuoka Diabetes Registry. Nutr J. 2013;12:159.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Radulian G, Rusu E, Dragomir A, Posea M. Metabolic effects of low glycaemic index diets. Nutr J. 2009;8:5.  https://doi.org/10.1186/1475-2891-8-5.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    • Jung S-J, Park S-H, Choi E-K, et al. Beneficial effects of Korean traditional diets in hypertensive and type 2 diabetic patients. J Med Food. 2014;17(1):161–71. Consumption of a KTD improved cardiovascular disease risk factors. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Wang F, Zheng J, Yang B, Jiang J, Fu Y, Li D. Effects of vegetarian diets on blood lipids: a systematic review and meta-analysis of randomized controlled trials. J Am Heart Assoc. 2015;4(10):e002408.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Le LT, Sabate J. Beyond meatless, the health effects of vegan diets: findings from the Adventist cohorts. Nutrients. 2014;6(6):2131–47.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    • Dinu M, Abbate R, Gensini GF, Casini A, Sofi F. Vegetarian, vegan diets and multiple health outcomes: a systematic review with meta-analysis of observational studies. Crit Rev Food Sci Nutr. 2017;57(17):3640–9. Systematic review and meta-analysis of cross-sectional and prospective studies reported that vegetarian diets offered protection against incidence and/or mortality from ischemic heart disease. CrossRefPubMedGoogle Scholar
  33. 33.
    Craig WJ, Mangels AR. Position of the American Dietetic Association: vegetarian diets. J Am Diet Assoc. 2009;109(7):1266–82.CrossRefPubMedGoogle Scholar
  34. 34.
    Rajaram S. The effect of vegetarian diet, plant foods, and phytochemicals on hemostasis and thrombosis. Am J Clin Nutr. 2003;78(3 Suppl):552s–8s.PubMedGoogle Scholar
  35. 35.
    • Rodríguez-Monforte M, Flores-Mateo G, Sánchez E. Dietary patterns and CVD: a systematic review and meta-analysis of observational studies. Br J Nutr. 2015;114(9):1341–59. Presents evidence that the prudent/healthy patterns are protective factor against CVD. CrossRefPubMedGoogle Scholar
  36. 36.
    Carmena R, Duriez P, Fruchart J-C. Atherogenic lipoprotein particles in atherosclerosis. Circulation. 2004;109(23 suppl 1):III-2-III-7.Google Scholar
  37. 37.
    Duell PB, Oram JF, Bierman EL. Nonenzymatic glycosylation of HDL and impaired HDL-receptor-mediated cholesterol efflux. Diabetes. 1991;40(3):377–84.CrossRefPubMedGoogle Scholar
  38. 38.
    Rader DJ, Alexander ET, Weibel GL, Billheimer J, Rothblat GH. The role of reverse cholesterol transport in animals and humans and relationship to atherosclerosis. J Lipid Res. 2009;50(Supplement):S189–S94.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Rosenson RS, Brewer HB, Davidson WS, et al. Cholesterol efflux and atheroprotection. Advancing the concept of reverse cholesterol transport. Circulation. 2012;125(15):1905–19.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Kondo K, Morino K, Nishio Y, et al. Fiber-rich diet with brown rice improves endothelial function in type 2 diabetes mellitus: a randomized controlled trial. PLoS One. 2017;12(6):e0179869.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Liu S, Stampfer MJ, Hu FB, et al. Whole-grain consumption and risk of coronary heart disease: results from the Nurses’ Health Study. Am J Clin Nutr. 1999;70(3):412–9.PubMedGoogle Scholar
  42. 42.
    Yao B, Fang H, Xu W, et al. Dietary fiber intake and risk of type 2 diabetes: a dose–response analysis of prospective studies. Euro J Epidemiol. 2014;29(2):79–88.CrossRefGoogle Scholar
  43. 43.
    • Sawicki CM, Livingston KA, Obin M, Roberts SB, Chung M, McKeown NM. Dietary fiber and the human gut microbiota: application of evidence mapping methodology. Nutrients. 2017;9(2):125. Beneficial effects on CVD risk as a result of fiber modulation of the gut microbiota. CrossRefPubMedCentralGoogle Scholar
  44. 44.
    Díez-Espino J, Buil-Cosiales P, Serrano-Martínez M, Toledo E, Salas-Salvadó J, Martínez-González MÁ. Adherence to the Mediterranean diet in patients with type 2 diabetes mellitus and HbA1c level. Ann Nutr Metabo. 2011;58(1):74–8.CrossRefGoogle Scholar
  45. 45.
    Ae Park S, Choi M-S, Cho S-Y, et al. Genistein and daidzein modulate hepatic glucose and lipid regulating enzyme activities in C57BL/KsJ-db/db mice. Life Sci. 2006;79(12):1207–13.CrossRefPubMedGoogle Scholar
  46. 46.
    • Cha YS, Kim SR, Yang JA, et al. Kochujang, fermented soybean-based red pepper paste, decreases visceral fat and improves blood lipid profiles in overweight adults. Nutr. Metab. 2013;10(1):24. Beneficial effects of fermented food on metabolic health. Google Scholar
  47. 47.
    Martinez-Gonzalez MA, Corella D, Salas-Salvado J, et al. Cohort profile: design and methods of the PREDIMED study. Int J Epidemiol. 2012;41(2):377–85.CrossRefPubMedGoogle Scholar
  48. 48.
    •• Hernáez Á, Castañer O, Elosua R, et al. Mediterranean diet improves high-density lipoprotein function in high-cardiovascular-risk individuals. Circulation. 2017;135(7):633–43. TMD does not only increase HDL-C concentrations but also improves several HDL-C functions including cholesterol efflux capacity. CrossRefPubMedGoogle Scholar
  49. 49.
    Rohatgi A, Khera A, Berry JD, et al. HDL cholesterol efflux capacity and incident cardiovascular events. New Engl J Med. 2014;371(25):2383–93.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Appel LJ, Champagne CM, Harsha DW, et al. Effects of comprehensive lifestyle modification on blood pressure control: main results of the PREMIER clinical trial. J Am Med Assoc. 2003;289(16):2083–93.Google Scholar
  51. 51.
    Ledikwe JH, Rolls BJ, Smiciklas-Wright H, et al. Reductions in dietary energy density are associated with weight loss in overweight and obese participants in the PREMIER trial. Am J Clin Nutr. 2007;85(5):1212–21.PubMedGoogle Scholar
  52. 52.
    Maruthur NM, Wang NY, Appel LJ. Lifestyle interventions reduce coronary heart disease risk: results from the PREMIER trial. Circulation. 2009;119(15):2026–31.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Ajala O, English P, Pinkney J. Systematic review and meta-analysis of different dietary approaches to the management of type 2 diabetes. Am J Clin Nutr. 2013;97(3):505–16.CrossRefPubMedGoogle Scholar
  54. 54.
    Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813–20.CrossRefPubMedGoogle Scholar
  55. 55.
    Hayden MR, Sowers JR, Tyagi SC. The central role of vascular extracellular matrix and basement membrane remodeling in metabolic syndrome and type 2 diabetes: the matrix preloaded. Cardiovasc Diabetol. 2005;4(1):9.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Besic H, Jeraj L, Spirkoska A, Jezovnik M, Poredoš P. Deterioration of endothelial function of micro-and macrocirculation in patients with diabetes type 1 and 2. Int Angiol. 2017;36(4):354–61.PubMedGoogle Scholar
  57. 57.
    Rigacci S, Stefani M. Nutraceutical properties of olive oil polyphenols. An itinerary from cultured cells through animal models to humans. Int J Mol Sci. 2016;17(6):843.CrossRefPubMedCentralGoogle Scholar
  58. 58.
    Tiwari BK, Pandey KB, Abidi A, Rizvi SI. Markers of oxidative stress during diabetes mellitus. J Biomark. 2013;2013:378790.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Brownlee M. The pathobiology of diabetic complications. Diabetes. 2005;54(6):1615–25.CrossRefPubMedGoogle Scholar
  60. 60.
    Faria A, Persaud SJ. Cardiac oxidative stress in diabetes: mechanisms and therapeutic potential. Pharmacol Ther. 2017;172:50–62.CrossRefPubMedGoogle Scholar
  61. 61.
    Lau WB, Ohashi K, Wang Y, et al. Role of adipokines in cardiovascular disease. Circ J. 2017;81(7):920–8.CrossRefPubMedGoogle Scholar
  62. 62.
    • Koloverou E, Panagiotakos DB, Pitsavos C, et al. Adherence to Mediterranean diet and 10-year incidence (2002–2012) of diabetes: correlations with inflammatory and oxidative stress biomarkers in the ATTICA cohort study. Diabetes/metab Res Rev. 2016;32(1):73–81. Effects of the TMD on inflammation and oxidative stress; high adherence to the TMD decreased oxidative stress and subclinical inflammation with resultant decrease in diabetes risk. CrossRefGoogle Scholar
  63. 63.
    Daniels JA, Mulligan C, McCance D, et al. A randomised controlled trial of increasing fruit and vegetable intake and how this influences the carotenoid concentration and activities of PON-1 and LCAT in HDL from subjects with type 2 diabetes. Cardiovasc Diabetol. 2014;13:16.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Vazzana N, Ranalli P, Cuccurullo C, Davì G. Diabetes mellitus and thrombosis. Thromb Res. 2012;129(3):371–7.CrossRefPubMedGoogle Scholar
  65. 65.
    Gosavi S, Mukherjee D. Review of newer anticoagulants and anti-platelet agents in acute coronary syndrome and cardiovascular diseases. Cardiovasc Hematol Agents Med Chem. 2013;11(3):194–202.CrossRefPubMedGoogle Scholar
  66. 66.
    • Ijiri Y, Ishii H, Yamamoto J. Diet of fruits and vegetables with experimental antithrombotic effect may be beneficial to humans in the prevention of arterial thrombotic diseases. Int J Drug Dev Res. 2016;(8):012–6. Presents a pilot study for the prevention of arterial thrombotic disorders with specific fruit and vegetables varieties that have anti-thrombotic activity. Google Scholar
  67. 67.
    Violi F, Pignatelli P, Basili S. Nutrition, supplements, and vitamins in platelet function and bleeding. Circulation. 2010;121(8):1033–44.CrossRefPubMedGoogle Scholar
  68. 68.
    Salau BA, Adeyanju MM, Odufuwa KT, Osilesi O. Fruits and vegetables diet improves some selected haemorheological parameters predisposing to cardiovascular disease in non insulin dependent diabetes mellitus NIDDM subjects. Pak J Biol Sci. 2012;15(14):694–7.CrossRefPubMedGoogle Scholar
  69. 69.
    Mehrabian M, Peter JB, Barnard RJ, Lusis AJ. Dietary regulation of fibrinolytic factors. Atherosclerosis. 1990;84(1):25–32.CrossRefPubMedGoogle Scholar
  70. 70.
    Tanaka S, Yoshimura Y, Kamada CT, et al. Intakes of dietary fiber, vegetables, and fruits and incidence of cardiovascular disease in Japanese patients with type 2 diabetes. Diabetes Care. 2013;36(12):3916–22.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Tsujimoto T, Kajio H, Sugiyama T. Favourable changes in mortality in people with diabetes: US NHANES 1999–2010. Diabetes Obes Metab. 2017;Jun 22:epub ahead of print.Google Scholar
  72. 72.
    Ford ES, Ajani UA, Croft JB, et al. Explaining the decrease in US deaths from coronary disease, 1980–2000. New Engl J Med. 2007;356(23):2388–98.CrossRefPubMedGoogle Scholar
  73. 73.
    Tricco AC, Ivers NM, Grimshaw JM, et al. Effectiveness of quality improvement strategies on the management of diabetes: a systematic review and meta-analysis. Lancet. 2012;379(9833):2252–61.CrossRefPubMedGoogle Scholar
  74. 74.
    Bauters C, Lamblin N, Mc Fadden EP, Van Belle E, Millaire A, de Groote P. Influence of diabetes mellitus on heart failure risk and outcome. Cardiovasc Diabetol. 2003;2:1.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Jansson SP, Svardsudd K, Andersson DK. Effects of fasting blood glucose levels and blood pressure and treatment of diabetes and hypertension on the incidence of cardiovascular disease: a study of 740 patients with incident type 2 diabetes with up to 30 years’ follow-up. Diabetic Med. 2014;31(9):1055–63.CrossRefPubMedGoogle Scholar
  76. 76.
    Hackam DG, Khan NA, Hemmelgarn BR, et al. The 2010 Canadian Hypertension Education Program recommendations for the management of hypertension: part 2—therapy. Can J Cardiol. 2010;26(5):249–58.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Paula TP, Viana LV, Neto AT, Leitao CB, Gross JL, Azevedo MJ. Effects of the DASH diet and walking on blood pressure in patients with type 2 diabetes and uncontrolled hypertension: a randomized controlled trial. J Clinical Hypertens (Greenwich). 2015;17(11):895–901.CrossRefGoogle Scholar
  78. 78.
    Tsugawa N. Cardiovascular diseases and fat soluble vitamins: vitamin D and vitamin K. J Nutr Sci Vitaminol. 2015;61(Suppl):S170–2.CrossRefPubMedGoogle Scholar
  79. 79.
    World Health Organization. Benefits of a balanced diet. http://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/benefits-of-a-balanced-diet. Accessed September 18, 2017.
  80. 80.
    Mente A, de Koning L, Shannon HS, Anand SSA. Systematic review of the evidence supporting a causal link between dietary factors and coronary heart disease. Arch Int Med. 2009;169(7):659–69.CrossRefGoogle Scholar
  81. 81.
    Miller V, Mente A, Dehghan M, et al. Fruit, vegetable, and legume intake, and cardiovascular disease and deaths in 18 countries (PURE): a prospective cohort study. Lancet. 2017;Aug 29:epub ahead of print.Google Scholar
  82. 82.
    World Health Organization. World health statistics 2015. Geneva, 2015.Google Scholar
  83. 83.
    Kurotani K, Akter S, Kashino I, et al. Quality of diet and mortality among Japanese men and women: Japan Public Health Center based prospective study. Br Med J. 2016;i1209.Google Scholar
  84. 84.
    Raber M, Chandra J, Upadhyaya M, et al. An evidence-based conceptual framework of healthy cooking. Prev Med Rep. 2016;4:23–8.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Estruch R, Ros E, Salas-Salvado J, et al. Primary prevention of cardiovascular disease with a Mediterranean diet. New Engl J Med. 2013;368(14):1279–90.CrossRefPubMedGoogle Scholar
  86. 86.
    Hoffman R, Gerber M. Evaluating and adapting the Mediterranean diet for non-Mediterranean populations: a critical appraisal. Nutr Rev. 2013;71(9):573–84.CrossRefPubMedGoogle Scholar
  87. 87.
    • Liu AG, Ford NA, Hu FB, Zelman KM, Mozaffarian D, Kris-Etherton PM. A healthy approach to dietary fats: understanding the science and taking action to reduce consumer confusion. Nutr J. 2017;16(1):53. Provides evidence of the potential benefit when shifting dietary recommendations from single nutrients to dietary patterns on reducing confusion and misperceptions of what a healthy dietary pattern should include. CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Diekman C, Malcolm K. Consumer perception and insights on fats and fatty acids: knowledge on the quality of diet fat. Ann Nutr Metab. 2009;54(Suppl 1):25–32.CrossRefPubMedGoogle Scholar
  89. 89.
    •• Sotos-Prieto M, Bhupathiraju SN, Mattei J, et al. Association of changes in diet quality with total and cause-specific mortality. New Engl J Med. 2017;377(2):143–53. Changes in a long-term high-quality diet reduce the risk of death regardless of the healthy eating approach taken. CrossRefPubMedGoogle Scholar
  90. 90.
    Hu T, Yao L, Reynolds K, et al. The effects of a low-carbohydrate diet vs. a low-fat diet on novel cardiovascular risk factors: a randomized controlled trial. Nutrients. 2015;7(9):7978–94.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Zobel EH, Hansen TW, Rossing P, von Scholten BJ. Global changes in food supply and the obesity epidemic. Curr Obes Rep. 2016;5(4):449–55.CrossRefPubMedGoogle Scholar
  92. 92.
    Herman CP, Polivy J, Vartanian LR, Pliner P. Are large portions responsible for the obesity epidemic? Physiol Behav. 2016;156:177–81.CrossRefPubMedGoogle Scholar
  93. 93.
    Hardman CA, Ferriday D, Kyle L, Rogers PJ, Brunstrom JM. So many brands and varieties to choose from: does this compromise the control of food intake in humans? PLoS One. 2015;10(4):e0125869.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • M. Carolina Archundia Herrera
    • 1
  • Fatheema B. Subhan
    • 1
  • Catherine B. Chan
    • 1
    • 2
    Email author
  1. 1.Department of Agriculture, Food and Nutritional Science, Alberta Diabetes InstituteUniversity of AlbertaEdmontonCanada
  2. 2.Department of Physiology, Alberta Diabetes InstituteUniversity of AlbertaEdmontonCanada

Personalised recommendations