Advertisement

Current Obesity Reports

, Volume 5, Issue 4, pp 389–396 | Cite as

Practical Considerations for Body Composition Assessment of Adults with Class II/III Obesity Using Bioelectrical Impedance Analysis or Dual-Energy X-Ray Absorptiometry

  • Carlene A. Johnson StoklossaEmail author
  • Mary Forhan
  • Raj S. Padwal
  • Maria Cristina Gonzalez
  • Carla M. PradoEmail author
Metabolism (J Proietto, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Metabolism

Abstract

Purpose of Review

The purpose of this review is to explore the practical considerations for body composition assessment of adults with class II/III obesity. Studies assessing adults (18–64 years) with a body mass index (BMI) ≥35 kg/m2 with bioelectrical impedance analysis (BIA) and/or dual-energy X-ray absorptiometry (DXA) were included.

Recent Findings

Twelve studies met inclusion criteria. Five considerations were identified: variances in equipment and technology, equipment weight capacity, subject positioning, tissue penetration, and total body hydration. In subjects with BMI ≥35 kg/m2, BIA overestimated fat-free mass with scaling errors as BMI increased. DXA provided accurate and reliable body composition measures, but equipment-related barriers prevented assessment of some taller, wider, and heavier subjects.

Summary

BIA is an unreliable method to assess body composition in class II/III obesity. Advancements in DXA technology (e.g., iDXA), methodology (e.g., subject positioning, longer scan times), and more inclusive testing criteria (e.g., use equipment limits not just BMI) may improve access and understanding of body composition in this cohort.

Notes

Acknowledgments

The authors appreciate the support of Drs. Catherine Field and Sarah Elliott for their review of an earlier draft of the manuscript.

Compliance with Ethical Standards

Conflict of Interest

Carlene A. Johnson Stoklossa, Mary Forhan, Raj S. Padwal, Maria Cristina Gonzalez, and Carla M. Prado declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of childhood and adult obesity in the United States, 2011–2012. JAMA. 2014;311(8):806–14. doi: 10.1001/jama.2014.732.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Statistics Canada. Table 105-0501—health indicator profile, annual estimates, by age group and sex, Canada, provinces, territories, health regions (2013 boundaries) and peer groups, occasional, CANSIM (database). 2013. Available from http://www5.statcan.gc.ca/cansim/a26?lang=eng&id=1050501. Accessed 12 Jan 2016.
  3. 3.
    World Health Organization. Obesity: preventing and managing the global epidemic. Report of a WHO Consultation presented at the World Health Organization, Geneva, Switzerland, 3-5 June 1997.Google Scholar
  4. 4.
    Mechanick JI, Youdim A, Jones DB, Garvey WT, Hurley DL, Mcmahon MM, et al. Clinical practice guidelines for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient—2013 update: co-sponsored by American Association of Clinical Endocrinologists, the Obesity Society, and American Society for Metabolic & Bariatric Surgery. Endocr Pract. 2013;19(2):337–72. doi: 10.4158/EP12437.GL.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on sarcopenia in older people. Age Ageing. 2010;39(4):412–23. doi: 10.1093/ageing/afq034.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.•
    Prado CM, Siervo M, Mire E, Heymsfield SB, Stephan BC, Broyles S, et al. A population-based approach to define body-composition phenotypes. Am J Clin Nutr. 2014;99(6):1369–77. doi: 10.3945/ajcn.113.078576. This study explored body composition of a large population-representative North American sample, showing the prevalence of abnormal body composition at any age and BMI strata. It highlights how people with obesity may present with different levels of muscle mass. CrossRefPubMedGoogle Scholar
  7. 7.
    Cherin P, Voronska E, Fraoucene N, de Jaeger C. Prevalence of sarcopenia among healthy ambulatory subjects: the sarcopenia begins from 45 years. Aging Clin Exp Res. 2014;26(2):137–46. doi: 10.1007/s40520-013-0132-8.CrossRefPubMedGoogle Scholar
  8. 8.
    Prado CM, Wells JC, Smith SR, Stephan BC, Siervo M. Sarcopenic obesity: a critical appraisal of the current evidence. Clin Nutr. 2012;31(5):583–601. doi: 10.1016/j.clnu.2012.06.010.CrossRefPubMedGoogle Scholar
  9. 9.
    Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gomez JM, et al. Bioelectrical impedance analysis—part I: review of principles and methods. Clin Nutr. 2004;23(5):1226–43. doi: 10.1016/j.clnu.2004.06.004.CrossRefPubMedGoogle Scholar
  10. 10.
    Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Manuel Gomez J, et al. Bioelectrical impedance analysis—part II: utilization in clinical practice. Clin Nutr. 2004;23(6):1430–53. doi: 10.1016/j.clnu.2004.09.012.CrossRefPubMedGoogle Scholar
  11. 11.
    Prado CM, Heymsfield SB. Lean tissue imaging: a new era for nutritional assessment and intervention. J Parenter Enteral Nutr. 2014;38(8):940–53. doi: 10.1177/0148607114550189.CrossRefGoogle Scholar
  12. 12.•
    Earthman CP. Body composition tools for assessment of adult malnutrition at the bedside: a tutorial on research considerations and clinical applications. JPEN J Parenter Enteral Nutr. 2015;39(7):787–822. doi: 10.1177/0148607115595227. This tutorial provides an overview of tools to measure body composition at the bedside as part of a comprehensive nutritional assessment. CrossRefPubMedGoogle Scholar
  13. 13.
    Forbes GB. Human body composition: growth, aging, nutrition, and activity. New York: Springer-Verlag; 1987.CrossRefGoogle Scholar
  14. 14.
    Das SK. Body composition measurement in severe obesity. Curr Opin Clin Nutr Metab Care. 2005;8(6):602–6.CrossRefPubMedGoogle Scholar
  15. 15.
    Das SK, Roberts SB, Kehayias JJ, Wang J, Hsu LK, Shikora SA, et al. Body composition assessment in extreme obesity and after massive weight loss induced by gastric bypass surgery. Am J Physiol Endocrinol Metab. 2003;284(6):E1080–8. doi: 10.1152/ajpendo.00185.2002.CrossRefPubMedGoogle Scholar
  16. 16.•
    Lukaski HC. Evolution of bioimpedance: a circuitous journey from estimation of physiological function to assessment of body composition and a return to clinical research. Eur J Clin Nutr. 2013;67 Suppl 1:S2–9. doi: 10.1038/ejcn.2012.149. This paper provides the reader with a comprehensive overview of BIA, from the historical development to modern day applications. CrossRefPubMedGoogle Scholar
  17. 17.
    Deurenberg P. Limitations of the bioelectrical impedance method for the assessment of body fat in severe obesity. Am J Clin Nutr. 1996;64(3 Suppl):449S–52.PubMedGoogle Scholar
  18. 18.
    Petak S, Barbu CG, Yu EW, Fielding R, Mulligan K, Sabowitz B, et al. The official positions of the international society for clinical densitometry: body composition analysis reporting. J Clin Densitom. 2013;16(4):508–19. doi: 10.1016/j.jocd.2013.08.018.CrossRefPubMedGoogle Scholar
  19. 19.
    Ormsbee MJ, Prado CM, Ilich JZ, Purcell S, Siervo M, Folsom A, et al. Osteosarcopenic obesity: the role of bone, muscle, and fat on health. J Cachexia Sarcopenia Muscle. 2014;5(3):183–92. doi: 10.1007/s13539-014-0146-x.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    de Freitas Junior WR, Ilias EJ, Kassab P, Cordts R, Porto PG, Martins Rodrigues FC, et al. Assessment of the body composition and the loss of fat-free mass through bioelectric impedance analysis in patients who underwent open gastric bypass. Scientific World Journal. 2014;2014:843253. doi: 10.1155/2014/843253.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Frankenfield DC, Rowe WA, Cooney RN, Smith JS, Becker D. Limits of body mass index to detect obesity and predict body composition. Nutrition. 2011;17(1):26–30.CrossRefGoogle Scholar
  22. 22.
    Nicoletti CF, Camelo Jr JS, dos Santos JE, Marchini JS, Salgado Jr W, Nonino CB. Bioelectrical impedance vector analysis in obese women before and after bariatric surgery: changes in body composition. Nutrition. 2014;30(5):569–74. doi: 10.1016/j.nut.2013.10.013.CrossRefPubMedGoogle Scholar
  23. 23.
    Strain GW, Gagner M, Pomp A, Dakin G, Inabnet WB, Saif T. Comparison of fat-free mass in super obesity (BMI ≥50 kg/m2) and morbid obesity (BMI <50 kg/m2) in response to different weight loss surgeries. Surg Obes Relat Dis. 2012;8(3):255–9. doi: 10.1016/j.soard.2011.09.028.CrossRefPubMedGoogle Scholar
  24. 24.
    Iannelli A, Martini F, Rodolphe A, Schneck AS, Gual P, Tran A, et al. Body composition, anthropometrics, energy expenditure, systemic inflammation, in premenopausal women 1 year after laparoscopic Roux-en-Y gastric bypass. Surg Endosc. 2014;28(2):500–7. doi: 10.1007/s00464-013-3191-1.CrossRefPubMedGoogle Scholar
  25. 25.
    Carver TE, Christou NV, Andersen RE. In vivo precision of the GE iDXA for the assessment of total body composition and fat distribution in severely obese patients. Obesity (Silver Spring). 2013;21(7):1367–9. doi: 10.1002/oby.20323.CrossRefGoogle Scholar
  26. 26.
    Ciangura C, Bouillot JL, Lloret-Linares C, Poitou C, Veyrie N, Basdevant A, et al. Dynamics of change in total and regional body composition after gastric bypass in obese patients. Obesity (Silver Spring). 2010;18(4):760–5. doi: 10.1038/oby.2009.348.CrossRefGoogle Scholar
  27. 27.
    Rothney MP, Brychta RJ, Schaefer EV, Chen KY, Skarulis MC. Body composition measured by dual-energy X-ray absorptiometry half-body scans in obese adults. Obesity (Silver Spring). 2009;17(6):1281–6. doi: 10.1038/oby.2009.14.Google Scholar
  28. 28.
    Coupaye M, Bouillot JL, Poitou C, Schutz Y, Basdevant A, Oppert JM. Is lean body mass decreased after obesity treatment by adjustable gastric banding? Obes Surg. 2007;17(4):427–33. doi: 10.1007/s11695-007-9072-8.CrossRefPubMedGoogle Scholar
  29. 29.
    Bedogni G, Agosti F, De Col A, Marazzi N, Tagliaferri A, Sartorio A. Comparison of dual-energy X-ray absorptiometry, air displacement plethysmography and bioelectrical impedance analysis for the assessment of body composition in morbidly obese women. Eur J Clin Nutr. 2013;67(11):1129–32. doi: 10.1038/ejcn.2013.159.CrossRefPubMedGoogle Scholar
  30. 30.•
    Faria SL, Faria OP, Cardeal MD, Ito MK. Validation study of multi-frequency bioelectrical impedance with dual-energy X-ray absorptiometry among obese patients. Obes Surg. 2014;24(9):1476–80. doi: 10.1007/s11695-014-1190-5. This cross-sectional validation study demonstrated that although BIA can be conducted safely in women with class II/III obesity, body composition measurements vary from DXA measurements. CrossRefPubMedGoogle Scholar
  31. 31.
    Shafer KJ, Siders WA, Johnson LK, Lukaski HC. Validity of segmental multiple-frequency bioelectrical impedance analysis to estimate body composition of adults across a range of body mass indexes. Nutrition. 2009;25(1):25–32. doi: 10.1016/j.nut.2008.07.004.CrossRefPubMedGoogle Scholar
  32. 32.
    Gallagher D, Heymsfield SB, Heo M, Jebb SA, Murgatroyd PR, Sakamoto Y. Healthy percentage body fat ranges: an approach for developing guidelines based on body mass index. Am J Clin Nutr. 2000;72(3):694–701.PubMedGoogle Scholar
  33. 33.
    Gonzalez-Correa CH, Caicedo-Eraso JC. Bioelectrical impedance analysis (BIA): a proposal for standardization of classical method in adults. J Phys. 2012;407.  10.1088/1742-6596/407/1/012018.
  34. 34.
    US Department of Health and Human Services. Anthropometric reference data for children and adults: United States, 2007–2010. Vital and Health Statistics. 2012; Series 11(252).Google Scholar
  35. 35.
    Nana A, Slater GJ, Hopkins WG, Burke LM. Techniques for undertaking dual-energy X-ray absorptiometry whole-body scans to estimate body composition in tall and/or broad subjects. Int J Sport Nutr Exerc Metab. 2012;22(5):313–22.CrossRefPubMedGoogle Scholar
  36. 36.
    Center for Disease Control. National Health and Nutrition Examination Survey (NHANES) body composition procedures manual. 2011–2012.Google Scholar
  37. 37.
    Tataranni PA, Ravussin E. Use of dual-energy X-ray absorptiometry in obese individuals. Am J Clin Nutr. 1995;62(4):730–4.PubMedGoogle Scholar
  38. 38.
    Chaston TB, Dixon JB, O’Brien PE. Changes in fat-free mass during significant weight loss: a systematic review. Int J Obes (Lond). 2007;31(5):743–50. doi: 10.1038/sj.ijo.0803483.Google Scholar
  39. 39.
    Hologic, Inc. Weight limits of Hologic full body dual energy X-ray absorptiometers. Personal Communication, dxasupport@hologic.com 16 May 2016.Google Scholar
  40. 40.
    Hologic, Inc. Horizon DXA system product specifications DS-00382. Hologic Inc: Bedford MA; 2013.Google Scholar
  41. 41.
    Hologic, Inc. QDR Series technical specifications manual MAN-00216-006-01. Hologic Inc: Bedford MA; 2007.Google Scholar
  42. 42.
    GE Healthcare. DXA for metabolic health. Madison WI. 2016. http://www3.gehealthcare.com/en/products/categories/metabolic_health/dxa_for_metabolic_health. Accessed 01 Feb 2016

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Carlene A. Johnson Stoklossa
    • 1
    Email author
  • Mary Forhan
    • 2
  • Raj S. Padwal
    • 3
  • Maria Cristina Gonzalez
    • 4
  • Carla M. Prado
    • 1
    Email author
  1. 1.Department of Agricultural, Food and Nutritional ScienceUniversity of AlbertaEdmontonCanada
  2. 2.Department of Occupational TherapyUniversity of AlbertaEdmontonCanada
  3. 3.Department of MedicineUniversity of Alberta; Alberta Diabetes InstituteEdmontonCanada
  4. 4.Postgraduate Program on Health and BehaviorCatholic University of PelotasPelotasBrazil

Personalised recommendations