Current Obesity Reports

, Volume 4, Issue 4, pp 389–400 | Cite as

Gut Microbiota Dysbiosis in Obesity-Linked Metabolic Diseases and Prebiotic Potential of Polyphenol-Rich Extracts

  • Fernando F. Anhê
  • Thibault V. Varin
  • Mélanie Le Barz
  • Yves Desjardins
  • Emile Levy
  • Denis Roy
  • André Marette
Metabolism (P Trayhurn, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Metabolism

Abstract

Trillions of microorganisms inhabit the human body, strongly colonizing the gastro-intestinal tract and outnumbering our own cells. High-throughput sequencing techniques and new bioinformatic tools have enabled scientists to extend our knowledge on the relationship between the gut microbiota and host’s physiology. Disruption of the ecological equilibrium in the gut (i.e., dysbiosis) has been associated with several pathological processes, including obesity and its related comorbidities, with diet being a strong determinant of gut microbial balance. In this review, we discuss the potential prebiotic effect of polyphenol-rich foods and extracts and how they can reshape the gut microbiota, emphasizing the novel role of the mucin-degrading bacterium Akkermansia muciniphila in their metabolic benefits.

Keywords

Prebiotics Polyphenols Obesity Insulin resistance Akkermansia 

Notes

Compliance with Ethics Guidelines

Conflict of Interest

Fernando F. Anhê, Thibault V. Varin, Mélanie Le Barz, Yves Desjardins, Emile Levy, Denis Roy, and André Marette declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Sonnenburg ED, Sonnenburg JL. Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metab. 2014;20(5):779–86.CrossRefPubMedGoogle Scholar
  2. 2.
    Le Chatelier E, Nielsen T, Qin J, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500(7464):541–6.CrossRefPubMedGoogle Scholar
  3. 3.
    Cotillard A, Kennedy SP, Kong LC, et al. Dietary intervention impact on gut microbial gene richness. Nature. 2013;500(7464):585–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480–4.PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Huang YJ, Boushey HA. The microbiome in asthma. J Allergy Clin Immunol. 2015;135(1):25–30.CrossRefPubMedGoogle Scholar
  6. 6.
    Toh MC, Allen-Vercoe E. The human gut microbiota with reference to autism spectrum disorder: considering the whole as more than a sum of its parts. Microb Ecol Health Dis. 2015;26:26309.PubMedGoogle Scholar
  7. 7.
    Qin N, Yang F, Li A, et al. Alterations of the human gut microbiome in liver cirrhosis. Nature. 2014;513(7516):59–64.CrossRefPubMedGoogle Scholar
  8. 8.
    Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55–60.CrossRefPubMedGoogle Scholar
  9. 9.
    Chassaing B, Gewirtz AT. Gut microbiota, low-grade inflammation, and metabolic syndrome. Toxicol Pathol. 2014;42(1):49–53.CrossRefPubMedGoogle Scholar
  10. 10.
    Lepage P, Leclerc MC, Joossens M, et al. A metagenomic insight into our gut’s microbiome. Gut. 2013;62(1):146–58.CrossRefPubMedGoogle Scholar
  11. 11.
    Langille MGI, Zaneveld J, Caporaso JG, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol. 2013;31(9):814–21.CrossRefPubMedGoogle Scholar
  12. 12.
    Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–31.CrossRefPubMedGoogle Scholar
  13. 13.
    Ravussin Y, Koren O, Spor A, et al. Responses of gut microbiota to diet composition and weight loss in lean and obese mice. Obesity (Silver Spring). 2012;20(4):738–47.CrossRefGoogle Scholar
  14. 14.•
    Ridaura VK, Faith JJ, Rey FE, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341(6150):1241214. Provides a very convincing demonstration of obesity as a transmissible trait.CrossRefPubMedGoogle Scholar
  15. 15.
    Alang N, Kelly CR. Weight gain after fecal microbiota transplantation. Open Forum Infect Dis. 2015;2(1).Google Scholar
  16. 16.
    Turnbaugh PJ, Gordon JI. The core gut microbiome, energy balance and obesity. J Physiol. 2009;587(Pt 17):4153–8.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Cox LM, Blaser MJ. Pathways in microbe-induced obesity. Cell Metab. 2013;17(6):883–94.PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Cani PD, Bibiloni R, Knauf C, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 2008;57(6):1470–81.CrossRefPubMedGoogle Scholar
  19. 19.
    Khan MT, Nieuwdorp M, Backhed F. Microbial modulation of insulin sensitivity. Cell Metab. 2014;20(5):753–60.CrossRefPubMedGoogle Scholar
  20. 20.
    Teixeira TF, Collado MC, Ferreira CL, et al. Potential mechanisms for the emerging link between obesity and increased intestinal permeability. Nutr Res. 2012;32(9):637–47.CrossRefPubMedGoogle Scholar
  21. 21.
    Wickremesekera K, Miller G, Naotunne TD, et al. Loss of insulin resistance after Roux-en-Y gastric bypass surgery: a time course study. Obes Surg. 2005;15(4):474–81.CrossRefPubMedGoogle Scholar
  22. 22.
    Rubino F, Forgione A, Cummings DE, et al. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes. Ann Surg. 2006;244(5):741–9.PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Hester CM, Jala VR, Langille MG, et al. Fecal microbes, short chain fatty acids, and colorectal cancer across racial/ethnic groups. World J Gastroenterol WJG. 2015;21(9):2759–69.CrossRefPubMedGoogle Scholar
  24. 24.
    David LA, Materna AC, Friedman J, et al. Host lifestyle affects human microbiota on daily timescales. Genome Biol. 2014;15(7):R89.PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–63.PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Dore J, Blottiere H. The influence of diet on the gut microbiota and its consequences for health. Curr Opin Biotechnol. 2015;32:195–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Suez J, Korem T, Zeevi D, et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature. 2014;514(7521):181–6.PubMedGoogle Scholar
  28. 28.
    Amar J, Chabo C, Waget A, et al. Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol Med. 2011;3(9):559–72.PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Macfarlane S, Macfarlane GT. Regulation of short-chain fatty acid production. Proc Nutr Soc. 2003;62(1):67–72.CrossRefPubMedGoogle Scholar
  30. 30.
    Cummings JH, Macfarlane GT. The control and consequences of bacterial fermentation in the human colon. J Appl Bacteriol. 1991;70(6):443–59.CrossRefPubMedGoogle Scholar
  31. 31.
    Cummings JH, Pomare EW, Branch WJ, et al. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut. 1987;28(10):1221–7.PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Fernandes J, Su W, Rahat-Rozenbloom S, et al. Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans. Nutr Diabetes. 2014;4:e121.PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    den Besten G, van Eunen K, Groen AK, et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54(9):2325–40.CrossRefGoogle Scholar
  34. 34.
    Lin HV, Frassetto A, Kowalik Jr EJ, et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One. 2012;7(4):e35240.PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Tolhurst G, Heffron H, Lam YS, et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes. 2012;61(2):364–71.PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    den Besten G, Bleeker A, Gerding A, et al. Short-chain fatty acids protect against high-fat diet-induced obesity via a PPARgamma-dependent switch from lipogenesis to fat oxidation. Diabetes. 2015.Google Scholar
  37. 37.
    De Vadder F, Kovatcheva-Datchary P, Goncalves D, et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell. 2014;156(1–2):84–96.CrossRefPubMedGoogle Scholar
  38. 38.
    Kimura I, Ozawa K, Inoue D, et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun. 2013;4:1829.PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Gao Z, Yin J, Zhang J, et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes. 2009;58(7):1509–17.PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Demigne C, Morand C, Levrat MA, et al. Effect of propionate on fatty acid and cholesterol synthesis and on acetate metabolism in isolated rat hepatocytes. Br J Nutr. 1995;74(2):209–19.CrossRefPubMedGoogle Scholar
  41. 41.
    Sakakibara S, Yamauchi T, Oshima Y, et al. Acetic acid activates hepatic AMPK and reduces hyperglycemia in diabetic KK-A(y) mice. Biochem Biophys Res Commun. 2006;344(2):597–604.CrossRefPubMedGoogle Scholar
  42. 42.
    Smith PM, Howitt MR, Panikov N, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341(6145):569–73.CrossRefPubMedGoogle Scholar
  43. 43.
    Arpaia N, Campbell C, Fan X, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504(7480):451–5.CrossRefPubMedGoogle Scholar
  44. 44.
    Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504(7480):446–50.CrossRefPubMedGoogle Scholar
  45. 45.
    Atarashi K, Tanoue T, Shima T, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science. 2011;331(6015):337–41.PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Bosi E, Molteni L, Radaelli MG, et al. Increased intestinal permeability precedes clinical onset of type 1 diabetes. Diabetologia. 2006;49(12):2824–7.CrossRefPubMedGoogle Scholar
  47. 47.
    Secondulfo M, Iafusco D, Carratu R, et al. Ultrastructural mucosal alterations and increased intestinal permeability in non-celiac, type I diabetic patients. Dig Liver Dis Off J Ital Soc Gastroenterol Ital Assoc Study Liver. 2004;36(1):35–45.Google Scholar
  48. 48.
    Chang PV, Hao L, Offermanns S, et al. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci U S A. 2014;111(6):2247–52.PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    Liou AP, Paziuk M, Luevano Jr JM, et al. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med. 2013;5(178):178ra41.PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    Schnorr SL, Candela M, Rampelli S, et al. Gut microbiome of the Hadza hunter-gatherers. Nat Commun. 2014;5:3654.PubMedCentralCrossRefPubMedGoogle Scholar
  51. 51.
    Newgard CB, An J, Bain JR, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009;9(4):311–26.PubMedCentralCrossRefPubMedGoogle Scholar
  52. 52.
    Shah SH, Crosslin DR, Haynes CS, et al. Branched-chain amino acid levels are associated with improvement in insulin resistance with weight loss. Diabetologia. 2012;55(2):321–30.PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    Lips MA, Van Klinken JB, van Harmelen V, et al. Roux-en-Y gastric bypass surgery, but not calorie restriction, reduces plasma branched-chain amino acids in obese women independent of weight loss or the presence of type 2 diabetes. Diabetes Care. 2014;37(12):3150–6.CrossRefPubMedGoogle Scholar
  54. 54.
    Strober W, Asano N, Fuss I, et al. Cellular and molecular mechanisms underlying NOD2 risk-associated polymorphisms in Crohn’s disease. Immunol Rev. 2014;260(1):249–60.CrossRefPubMedGoogle Scholar
  55. 55.
    Vijay-Kumar M, Aitken JD, Carvalho FA, et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science. 2010;328(5975):228–31.CrossRefPubMedGoogle Scholar
  56. 56.
    Chassaing B, Koren O, Goodrich JK, et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature. 2015;519(7541):92–6.CrossRefPubMedGoogle Scholar
  57. 57.
    Ghoshal S, Witta J, Zhong J, et al. Chylomicrons promote intestinal absorption of lipopolysaccharides. J Lipid Res. 2009;50(1):90–7.CrossRefPubMedGoogle Scholar
  58. 58.
    Luck H, Tsai S, Chung J, et al. Regulation of obesity-related insulin resistance with gut anti-inflammatory agents. Cell Metab. 2015;21(4):527–42.CrossRefPubMedGoogle Scholar
  59. 59.
    Morimoto A, Ohno Y, Tatsumi Y, et al. Effects of healthy dietary pattern and other lifestyle factors on incidence of diabetes in a rural Japanese population. Asia Pac J Clin Nutr. 2012;21(4):601–8.PubMedGoogle Scholar
  60. 60.
    Bauer F, Beulens JW, van der AD, et al. Dietary patterns and the risk of type 2 diabetes in overweight and obese individuals. Eur J Nutr. 2013;52(3):1127–34.CrossRefPubMedGoogle Scholar
  61. 61.
    Eshak ES, Iso H, Mizoue T, et al. Soft drink, 100% fruit juice, and vegetable juice intakes and risk of diabetes mellitus. Clin Nutr. 2013;32(2):300–8.CrossRefPubMedGoogle Scholar
  62. 62.
    Cushnie TP, Lamb AJ. Recent advances in understanding the antibacterial properties of flavonoids. Int J Antimicrob Agents. 2011;38(2):99–107.CrossRefPubMedGoogle Scholar
  63. 63.
    Anhê FF, Desjardins Y, Pilon G, et al. Polyphenols and type 2 diabetes: a prospective review. Pharm Nutr. 2013;1(4):105–14.Google Scholar
  64. 64.
    Choy YY, Jaggers GK, Oteiza PI, et al. Bioavailability of intact proanthocyanidins in the rat colon after ingestion of grape seed extract. J Agric Food Chem. 2013;61(1):121–7.CrossRefPubMedGoogle Scholar
  65. 65.
    Felgines C, Krisa S, Mauray A, et al. Radiolabelled cyanidin 3-O-glucoside is poorly absorbed in the mouse. Br J Nutr. 2010;103(12):1738–45.CrossRefPubMedGoogle Scholar
  66. 66.
    Manach C, Williamson G, Morand C, et al. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr. 2005;81(1 Suppl):230S–42.PubMedGoogle Scholar
  67. 67.••
    Anhê FF, Roy D, Pilon G, et al. A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut. 2014:gutjnl-2014-307142. Provides the first demonstration that the beneficial metabolic effects of a cranberry extract in obese mice are associated with an increased presence of Akkermansia in the gut microbiota . Google Scholar
  68. 68.•
    Roopchand DE, Carmody RN, Kuhn P, et al. Dietary polyphenols promote growth of the gut bacterium Akkermansia muciniphila and attenuate high fat diet-induced metabolic syndrome. Diabetes. 2015. Confirms the evidence for the prebiotic effect of polyphenol-rich extracts on Akkermansia.Google Scholar
  69. 69.
    Duda-Chodak A, Tarko T, Satora P, et al. Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: a review. Eur J Nutr. 2015;54(3):325–41.PubMedCentralCrossRefPubMedGoogle Scholar
  70. 70.
    Kemperman RA, Gross G, Mondot S, et al. Impact of polyphenols from black tea and red wine/grape juice on a gut model microbiome. Food Res Int. 2013;53(2):659–69.CrossRefGoogle Scholar
  71. 71.
    Guglielmetti S, Fracassetti D, Taverniti V, et al. Differential modulation of human intestinal bifidobacterium populations after consumption of a wild blueberry (Vaccinium angustifolium) drink. J Agric Food Chem. 2013;61(34):8134–40.CrossRefPubMedGoogle Scholar
  72. 72.
    Lacombe A, Tadepalli S, Hwang CA, et al. Phytochemicals in lowbush wild blueberry inactivate Escherichia coli O157:H7 by damaging its cell membrane. Foodborne Pathog Dis. 2013;10(11):944–50.CrossRefPubMedGoogle Scholar
  73. 73.
    Choy YY, Quifer-Rada P, Holstege DM, et al. Phenolic metabolites and substantial microbiome changes in pig feces by ingesting grape seed proanthocyanidins. Food Funct. 2014;5(9):2298–308.CrossRefPubMedGoogle Scholar
  74. 74.
    Noratto GD, Garcia-Mazcorro JF, Markel M, et al. Carbohydrate-free peach (Prunus persica) and plum (Prunus domestica) juice affects fecal microbial ecology in an obese animal model. PLoS One. 2014;9(7):e101723.PubMedCentralCrossRefPubMedGoogle Scholar
  75. 75.
    Etxeberria U, Arias N, Boque N, et al. Reshaping faecal gut microbiota composition by the intake of trans-resveratrol and quercetin in high-fat sucrose diet-fed rats. J Nutr Biochem. 2015.Google Scholar
  76. 76.
    Derrien M, Collado MC, Ben-Amor K, et al. The mucin degrader Akkermansia muciniphila is an abundant resident of the human intestinal tract. Appl Environ Microbiol. 2008;74(5):1646–8.PubMedCentralCrossRefPubMedGoogle Scholar
  77. 77.
    Zhang X, Shen D, Fang Z, et al. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS One. 2013;8(8):e71108.PubMedCentralCrossRefPubMedGoogle Scholar
  78. 78.
    Karlsson FH, Tremaroli V, Nookaew I, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013;498(7452):99–103.CrossRefPubMedGoogle Scholar
  79. 79.••
    Everard A, Belzer C, Geurts L, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A. 2013;110(22):9066–71. The authors demonstrated the causal role of Akkermansia in ameliorating gut homeostasis, metabolic endotoxemia and insulin sensitivity in diet-induced obese mice.PubMedCentralCrossRefPubMedGoogle Scholar
  80. 80.
    Pierre JF, Heneghan AF, Feliciano RP, et al. Cranberry proanthocyanidins improve the gut mucous layer morphology and function in mice receiving elemental enteral nutrition. JPEN J Parenter Enteral Nutr. 2013;37(3):401–9.PubMedCentralCrossRefPubMedGoogle Scholar
  81. 81.
    Georgiades P, Pudney PD, Rogers S, et al. Tea derived galloylated polyphenols cross-link purified gastrointestinal mucins. PLoS One. 2014;9(8):e105302.PubMedCentralCrossRefPubMedGoogle Scholar
  82. 82.
    Derrien M, Van Baarlen P, Hooiveld G, et al. Modulation of mucosal immune response, tolerance, and proliferation in mice colonized by the mucin-degrader Akkermansia muciniphila. Front Microbiol. 2011;2:166.PubMedCentralCrossRefPubMedGoogle Scholar
  83. 83.•
    Lukovac S, Belzer C, Pellis L, et al. Differential modulation by Akkermansia muciniphila and Faecalibacterium prausnitzii of host peripheral lipid metabolism and histone acetylation in mouse gut organoids. mBio. 2014;5(4). By using gut organoids, the authors provide valuable clues of potential mechanisms of action of Akkermansia to modulate host’s physiology.Google Scholar
  84. 84.
    Lipson S, Gordon R, Ozen F, et al. Cranberry and grape juices affect tight junction function and structural integrity of rotavirus-infected monkey kidney epithelial cell monolayers. Food Environ Virol. 2011;3(1):46–54.Google Scholar
  85. 85.
    Goodrich KM, Fundaro G, Griffin LE, et al. Chronic administration of dietary grape seed extract increases colonic expression of gut tight junction protein occludin and reduces fecal calprotectin: a secondary analysis of healthy Wistar Furth rats. Nutr Res. 2012;32(10):787–94.CrossRefPubMedGoogle Scholar
  86. 86.
    Suzuki T, Hara H. Quercetin enhances intestinal barrier function through the assembly of zonula [corrected] occludens-2, occludin, and claudin-1 and the expression of claudin-4 in Caco-2 cells. J Nutr. 2009;139(5):965–74.CrossRefPubMedGoogle Scholar
  87. 87.
    Shin NR, Lee JC, Lee HY, et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut. 2014;63(5):727–35.CrossRefPubMedGoogle Scholar
  88. 88.
    Liu L, Li Y, Li S, et al. Comparison of next-generation sequencing systems. J Biomed Biotechnol. 2012;2012:11.Google Scholar
  89. 89.
    Wagner Mackenzie B, Waite DW, Taylor MW. Evaluating variation in human gut microbiota profiles due to DNA extraction method and inter-subject differences. Front Microbiol. 2015;6.Google Scholar
  90. 90.
    Kuczynski J, Lauber CL, Walters WA, et al. Experimental and analytical tools for studying the human microbiome. Nat Rev Genet. 2012;13(1):47–58.CrossRefGoogle Scholar
  91. 91.
    Mande SS, Mohammed MH, Ghosh TS. Classification of metagenomic sequences: methods and challenges. Brief Bioinform. 2012;13(6):669–81.CrossRefPubMedGoogle Scholar
  92. 92.
    Thomas T, Gilbert J, Meyer F. Metagenomics—a guide from sampling to data analysis. Microb Inform Exp. 2012;2(1):3.PubMedCentralCrossRefPubMedGoogle Scholar
  93. 93.
    Franzosa EA, Hsu T, Sirota-Madi A, et al. Sequencing and beyond: integrating molecular ‘omics’ for microbial community profiling. Nat Rev Microbiol. 2015;13(6):360–72.CrossRefPubMedGoogle Scholar
  94. 94.
    Cardona F, Andrés-Lacueva C, Tulipani S, et al. Benefits of polyphenols on gut microbiota and implications in human health. J Nutr Biochem. 2013;24(8):1415–22.CrossRefPubMedGoogle Scholar
  95. 95.
    Dudonné S, Varin TV, Anhê FF, et al. Modulatory effects of a cranberry extract co-supplementation with Bacillus subtilis CU1 probiotic on phenolic compounds bioavailability and gut microbiota composition in high-fat diet-fed mice. Pharm Nutr. (0).Google Scholar
  96. 96.
    Consortium THMP. A framework for human microbiome research. Nature. 2012;486(7402):215–21.CrossRefGoogle Scholar
  97. 97.
    Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65.PubMedCentralCrossRefPubMedGoogle Scholar
  98. 98.
    Bäckhed F, Fraser Claire M, Ringel Y, et al. Defining a healthy human Gut microbiome: current concepts, future directions, and clinical applications. Cell Host Microbe. 2012;12(5):611–22.CrossRefPubMedGoogle Scholar
  99. 99.
    Goodman AL, Kallstrom G, Faith JJ, et al. Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice. Proc Natl Acad Sci. 2011;108(15):6252–7.PubMedCentralCrossRefPubMedGoogle Scholar
  100. 100.
    Strauss J, Kaplan GG, Beck PL, et al. Invasive potential of gut mucosa-derived Fusobacterium nucleatum positively correlates with IBD status of the host. Inflamm Bowel Dis. 2011;17(9):1971–8.CrossRefPubMedGoogle Scholar
  101. 101.
    Huggett J, Laver T, Tamisak S, et al. Considerations for the development and application of control materials to improve metagenomic microbial community profiling. Accred Qual Assur. 2013;18(2):77–83.CrossRefGoogle Scholar
  102. 102.
    Huttenhower C, Knight R, Brown CT, et al. Advancing the microbiome research community. Cell. 2014;159(2):227–30.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Fernando F. Anhê
    • 1
    • 2
    • 5
  • Thibault V. Varin
    • 2
  • Mélanie Le Barz
    • 1
    • 2
    • 5
  • Yves Desjardins
    • 2
  • Emile Levy
    • 2
    • 3
    • 4
  • Denis Roy
    • 2
  • André Marette
    • 1
    • 2
    • 5
  1. 1.Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung InstituteLaval UniversityQuebecCanada
  2. 2.Institute of Nutrition and Functional Foods (INAF)Laval UniversityQuébecCanada
  3. 3.Research Centre, CHU-Sainte-Justine and Department of NutritionUniversité de MontréalMontrealCanada
  4. 4.Department of Nutrition, Faculty of MedicineUniversity of MontrealMontrealCanada
  5. 5.Hôpital Laval, Pavillon Marguerite d’YouvilleQuebecCanada

Personalised recommendations