Advertisement

Current Obesity Reports

, Volume 4, Issue 2, pp 207–216 | Cite as

Does Breastfeeding Protect Against Childhood Obesity? Moving Beyond Observational Evidence

  • Jessica G. WooEmail author
  • Lisa J. Martin
Obesity Prevention (A Must, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Obesity Prevention

Abstract

Human milk is the optimal feeding choice for infants, as it dynamically provides the nutrients, immunity support, and other bioactive factors needed for infants at specific stages during development. Observational studies and several meta-analyses have suggested that breastfeeding is protective against development of obesity in childhood and beyond. However, these findings are not without significant controversy. This review includes an overview of observational findings to date, then focuses on three specific pathways that connect human milk and infant physiology: maternal obesity, microbiome development in the infant, and the development of taste preference and diet quality. Each of these pathways involves complex interactions between mother and infant, includes both biologic and non-biologic factors, and may have both direct and indirect effects on obesity risk in the offspring. This type of integrated approach to examining breastfeeding and childhood obesity is necessary to advance research in this area beyond observational findings.

Keywords

Childhood obesity Human milk Confounding Bioactive Epidemiology 

Notes

Compliance with Ethics Guidelines

Conflict of Interest

Jessica G. Woo reports grants from Mead Johnson Pediatric Research Institute, Inc.

Lisa J. Martin has a patent issued on Adiponectin for Treatment of Various Disorders, Patent # 8,314,061.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Ogden CL, Carroll MD, Curtin LR, et al. Prevalence of overweight and obesity in the United States, 1999–2004. JAMA. 2006;295(13):1549–55.PubMedGoogle Scholar
  2. 2.
    Ogden CL, Carroll MD, Kit BK, et al. Prevalence of obesity and trends in body mass index among US children and adolescents, 1999–2010. JAMA. 2012;307(5):483–90. doi: 10.1001/jama.2012.40.PubMedGoogle Scholar
  3. 3.
    Hornell A, Lagstrom H, Lande B, et al. Breastfeeding, introduction of other foods and effects on health: a systematic literature review for the 5th Nordic Nutrition Recommendations. Food & nutrition research. 2013;57. doi: 10.3402/fnr.v57i0.20823.
  4. 4.••
    Horta BL, Victora CG. Long-term effects of breastfeeding: a systematic review. Geneva, Switzerland: World Health Organization. 2013. This meta-analysis is the latest and most complete to date of observational studies on this topic, including 71 studies.Google Scholar
  5. 5.
    Weng SF, Redsell SA, Swift JA, et al. Systematic review and meta-analyses of risk factors for childhood overweight identifiable during infancy. Arch Dis Child. 2012;97(12):1019–26. doi: 10.1136/archdischild-2012-302263.PubMedCentralPubMedGoogle Scholar
  6. 6.
    Horta BL, Bahl R, Martines J, et al. Evidence of the long-term effects of breastfeeding: systematic reviews and meta-analysis. Geneva: World Health Organization; 2007.Google Scholar
  7. 7.
    Owen CG, Martin RM, Whincup PH, et al. Effect of infant feeding on the risk of obesity across the life course: a quantitative review of published evidence. Pediatrics. 2005;115(5):1367–77.PubMedGoogle Scholar
  8. 8.
    Harder T, Bergmann R, Kallischnigg G, et al. Duration of breastfeeding and risk of overweight: a meta-analysis. Am J Epidemiol. 2005;162(5):397–403. doi: 10.1093/aje/kwi222.PubMedGoogle Scholar
  9. 9.
    Arenz S, Ruckerl R, Koletzko B, et al. Breast-feeding and childhood obesity—a systematic review. Int J Obes Relat Metab Disord. 2004;28(10):1247–56.PubMedGoogle Scholar
  10. 10.
    Cope MB, Allison DB. Critical review of the World Health Organization’s (WHO) 2007 report on ‘evidence of the long-term effects of breastfeeding: systematic reviews and meta-analysis’ with respect to obesity. Obes Rev. 2008;9(6):594–605. doi: 10.1111/j.1467-789X.2008.00504.x.PubMedGoogle Scholar
  11. 11.
    Beyerlein A, von Kries R. Breastfeeding and body composition in children: will there ever be conclusive empirical evidence for a protective effect against overweight? Am J Clin Nutr. 2011;94(6 Suppl):1772S–5. doi: 10.3945/ajcn.110.000547.PubMedGoogle Scholar
  12. 12.
    Kramer MS, Chalmers B, Hodnett ED, et al. Promotion of Breastfeeding Intervention Trial (PROBIT): a randomized trial in the Republic of Belarus. JAMA. 2001;285(4):413–20.PubMedGoogle Scholar
  13. 13.
    Kramer MS, Matush L, Vanilovich I, et al. Effects of prolonged and exclusive breastfeeding on child height, weight, adiposity, and blood pressure at age 6.5 y: evidence from a large randomized trial. Am J Clin Nutr. 2007;86(6):1717–21.PubMedGoogle Scholar
  14. 14.
    Martin RM, Patel R, Kramer MS, et al. Effects of promoting longer-term and exclusive breastfeeding on adiposity and insulin-like growth factor-I at age 11.5 years: a randomized trial. JAMA. 2013;309(10):1005–13. doi: 10.1001/jama.2013.167.PubMedCentralPubMedGoogle Scholar
  15. 15.
    Colen CG, Ramey DM. Is breast truly best? Estimating the effects of breastfeeding on long-term child health and wellbeing in the United States using sibling comparisons. Soc Sci Med. 2014;109:55–65. doi: 10.1016/j.socscimed.2014.01.027.PubMedCentralPubMedGoogle Scholar
  16. 16.
    Gillman MW, Rifas-Shiman SL, Berkey CS, et al. Breast-feeding and overweight in adolescence: within-family analysis [corrected]. Epidemiology. 2006;17(1):112–4.PubMedCentralPubMedGoogle Scholar
  17. 17.
    O’Tierney PF, Barker DJ, Osmond C, et al. Duration of breast-feeding and adiposity in adult life. J Nutr. 2009;139(2):422S–5. doi: 10.3945/jn.108.097089.PubMedGoogle Scholar
  18. 18.
    Metzger MW, McDade TW. Breastfeeding as obesity prevention in the United States: a sibling difference model. Am J Hum Biol. 2010;22(3):291–6. doi: 10.1002/ajhb.20982.PubMedGoogle Scholar
  19. 19.
    Nelson MC, Gordon-Larsen P, Adair LS. Are adolescents who were breast-fed less likely to be overweight? Analyses of sibling pairs to reduce confounding. Epidemiology. 2005;16(2):247–53.PubMedGoogle Scholar
  20. 20.
    Evenhouse E, Reilly S. Improved estimates of the benefits of breastfeeding using sibling comparisons to reduce selection bias. Health Serv Res. 2005;40(6 Pt 1):1781–802. doi: 10.1111/j.1475-6773.2005.00453.x.PubMedCentralPubMedGoogle Scholar
  21. 21.
    Ramachandrappa S, Farooqi IS. Genetic approaches to understanding human obesity. J Clin Invest. 2011;121(6):2080–6. doi: 10.1172/JCI46044.PubMedCentralPubMedGoogle Scholar
  22. 22.
    Bammann K, Peplies J, De Henauw S, et al. Early life course risk factors for childhood obesity: the IDEFICS case–control study. PLoS One. 2014;9(2):e86914. doi: 10.1371/journal.pone.0086914.PubMedCentralPubMedGoogle Scholar
  23. 23.
    Wen LM, Baur LA, Rissel C, et al. Correlates of body mass index and overweight and obesity of children aged 2 years: findings from the healthy beginnings trial. Obesity (Silver Spring). 2014;22(7):1723–30. doi: 10.1002/oby.20700.Google Scholar
  24. 24.
    Makela J, Vaarno J, Kaljonen A, et al. Maternal overweight impacts infant feeding patterns—the STEPS Study. Eur J Clin Nutr. 2014;68(1):43–9. doi: 10.1038/ejcn.2013.229.PubMedGoogle Scholar
  25. 25.
    Ornoy A. Prenatal origin of obesity and their complications: gestational diabetes, maternal overweight and the paradoxical effects of fetal growth restriction and macrosomia. Reprod Toxicol. 2011;32(2):205–12. doi: 10.1016/j.reprotox.2011.05.002.PubMedGoogle Scholar
  26. 26.
    Zambrano E, Nathanielsz PW. Mechanisms by which maternal obesity programs offspring for obesity: evidence from animal studies. Nutr Rev. 2013;71 Suppl 1:S42–54. doi: 10.1111/nure.12068.PubMedGoogle Scholar
  27. 27.
    Sanders TR, Kim DW, Glendining KA, et al. Maternal obesity and IL-6 lead to aberrant developmental gene expression and deregulated neurite growth in the fetal arcuate nucleus. Endocrinology. 2014;155(7):2566–77. doi: 10.1210/en.2013-1968.PubMedGoogle Scholar
  28. 28.
    Melo AM, Benatti RO, Ignacio-Souza LM, et al. Hypothalamic endoplasmic reticulum stress and insulin resistance in offspring of mice dams fed high-fat diet during pregnancy and lactation. Metabolism. 2014;63(5):682–92. doi: 10.1016/j.metabol.2014.02.002.PubMedGoogle Scholar
  29. 29.
    Ovilo C, Gonzalez-Bulnes A, Benitez R, et al. Prenatal programming in an obese swine model: sex-related effects of maternal energy restriction on morphology, metabolism and hypothalamic gene expression. Br J Nutr. 2014;111(4):735–46. doi: 10.1017/S0007114513002948.PubMedGoogle Scholar
  30. 30.
    Heerwagen MJ, Miller MR, Barbour LA, et al. Maternal obesity and fetal metabolic programming: a fertile epigenetic soil. Am J Physiol Regul Integr Comp Physiol. 2010;299(3):R711–22. doi: 10.1152/ajpregu.00310.2010.PubMedCentralPubMedGoogle Scholar
  31. 31.
    Li CC, Young PE, Maloney CA, et al. Maternal obesity and diabetes induces latent metabolic defects and widespread epigenetic changes in isogenic mice. Epigenetics. 2013;8(6):602–11. doi: 10.4161/epi.24656.PubMedCentralPubMedGoogle Scholar
  32. 32.
    Orth T, Gurley-Calvez T, Onge JS, et al. Effect of obesity on breastfeeding. Obstet Gynecol. 2014;123 Suppl 1:74S–5. doi: 10.1097/01.AOG.0000447391.26338.ee.Google Scholar
  33. 33.
    Thompson LA, Zhang S, Black E, et al. The association of maternal pre-pregnancy body mass index with breastfeeding initiation. Matern Child Health J. 2013;17(10):1842–51. doi: 10.1007/s10995-012-1204-7.PubMedGoogle Scholar
  34. 34.
    Hauff LE, Leonard SA, Rasmussen KM. Associations of maternal obesity and psychosocial factors with breastfeeding intention, initiation, and duration. Am J Clin Nutr. 2014;99(3):524–34. doi: 10.3945/ajcn.113.071191.PubMedCentralPubMedGoogle Scholar
  35. 35.
    Nommsen-Rivers LA, Chantry CJ, Peerson JM, et al. Delayed onset of lactogenesis among first-time mothers is related to maternal obesity and factors associated with ineffective breastfeeding. Am J Clin Nutr. 2010;92(3):574–84. doi: 10.3945/ajcn.2010.29192.PubMedGoogle Scholar
  36. 36.
    Lepe M, Bacardi Gascon M, Castaneda-Gonzalez LM, et al. Effect of maternal obesity on lactation: systematic review. Nutr Hosp. 2011;26(6):1266–9. doi: 10.1590/S0212-16112011000600012.PubMedGoogle Scholar
  37. 37.
    Rasmussen KM, Kjolhede CL. Prepregnant overweight and obesity diminish the prolactin response to suckling in the first week postpartum. Pediatrics. 2004;113(5):e465–71.PubMedGoogle Scholar
  38. 38.
    Lovelady CA. Is maternal obesity a cause of poor lactation performance. Nutr Rev. 2005;63(10):352–5.PubMedGoogle Scholar
  39. 39.
    Buyken AE, Karaolis-Danckert N, Remer T, et al. Effects of breastfeeding on trajectories of body fat and BMI throughout childhood. Obesity (Silver Spring). 2008;16(2):389–95. doi: 10.1038/oby.2007.57.Google Scholar
  40. 40.
    Li C, Kaur H, Choi WS, et al. Additive interactions of maternal prepregnancy BMI and breast-feeding on childhood overweight. Obes Res. 2005;13(2):362–71.PubMedGoogle Scholar
  41. 41.
    Beyerlein A, Toschke AM, von Kries R. Breastfeeding and childhood obesity: shift of the entire BMI distribution or only the upper parts? Obesity (Silver Spring). 2008;16(12):2730–3. doi: 10.1038/oby.2008.432.Google Scholar
  42. 42.
    Fields DA, Demerath EW. Relationship of insulin, glucose, leptin, IL-6 and TNF-alpha in human breast milk with infant growth and body composition. Pediatric Obes. 2012;7(4):304–12. doi: 10.1111/j.2047-6310.2012.00059.x.Google Scholar
  43. 43.
    Palou A, Pico C. Leptin intake during lactation prevents obesity and affects food intake and food preferences in later life. Appetite. 2009;52(1):249–52. doi: 10.1016/j.appet.2008.09.013.PubMedGoogle Scholar
  44. 44.
    Woo JG, Guerrero ML, Altaye M, et al. Human milk adiponectin is associated with infant growth in two independent cohorts. Breastfeed Med. 2009;4(2):101–9. doi: 10.1089/bfm.2008.0137.PubMedCentralPubMedGoogle Scholar
  45. 45.
    Woo JG, Guerrero ML, Guo F, et al. Human milk adiponectin affects infant weight trajectory during the second year of life. J Pediatr Gastroenterol Nutr. 2012;54(4):532–9. doi: 10.1097/MPG.0b013e31823fde04.PubMedCentralPubMedGoogle Scholar
  46. 46.
    Weyermann M, Brenner H, Rothenbacher D. Adipokines in human milk and risk of overweight in early childhood: a prospective cohort study. Epidemiology. 2007;18(6):722–9.PubMedGoogle Scholar
  47. 47.
    Cacho N, Neu J. Manipulation of the intestinal microbiome in newborn infants. Adv Nutr. 2014;5(1):114–8. doi: 10.3945/an.113.004820.PubMedCentralPubMedGoogle Scholar
  48. 48.
    Weng M, Walker WA. The role of gut microbiota in programming the immune phenotype. J Dev Origins Health Dis. 2013;4(3):203–14. doi: 10.1017/S2040174412000712.Google Scholar
  49. 49.
    Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–31. doi: 10.1038/nature05414.PubMedGoogle Scholar
  50. 50.
    Backhed F. Programming of host metabolism by the gut microbiota. Ann Nutr Metab. 2011;58 Suppl 2:44–52. doi: 10.1159/000328042.PubMedGoogle Scholar
  51. 51.
    Kaplan JL, Walker WA. Early gut colonization and subsequent obesity risk. Curr Opin Clin Nutr Metab Care. 2012;15(3):278–84. doi: 10.1097/MCO.0b013e32835133cb.PubMedGoogle Scholar
  52. 52.
    Backhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004;101(44):15718–23. doi: 10.1073/pnas.0407076101.PubMedCentralPubMedGoogle Scholar
  53. 53.
    Munyaka PM, Khafipour E, Ghia JE. External influence of early childhood establishment of gut microbiota and subsequent health implications. Front Pediatr. 2014;2:109. doi: 10.3389/fped.2014.00109.PubMedCentralPubMedGoogle Scholar
  54. 54.
    Mackie RI, Sghir A, Gaskins HR. Developmental microbial ecology of the neonatal gastrointestinal tract. Am J Clin Nutr. 1999;69(5):1035S–45.PubMedGoogle Scholar
  55. 55.
    Putignani L, Del Chierico F, Petrucca A, et al. The human gut microbiota: a dynamic interplay with the host from birth to senescence settled during childhood. Pediatr Res. 2014;76(1):2–10. doi: 10.1038/pr.2014.49.PubMedGoogle Scholar
  56. 56.
    Yoshioka H, Iseki K, Fujita K. Development and differences of intestinal flora in the neonatal period in breast-fed and bottle-fed infants. Pediatrics. 1983;72(3):317–21.PubMedGoogle Scholar
  57. 57.•
    O’Sullivan A, He X, McNiven EM, et al. Early diet impacts infant rhesus gut microbiome, immunity, and metabolism. J Proteome Res. 2013;12(6):2833–45. doi: 10.1021/pr4001702. This paper describes a randomized trial comparing infant formula and rhesus milk in infant rhesus monkeys. Anthropometry, microbiome, urine metabolite, and serum metabolic profiles are compared by group, demonstrating clear differences.PubMedGoogle Scholar
  58. 58.•
    Cabrera-Rubio R, Collado MC, Laitinen K, et al. The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am J Clin Nutr. 2012;96(3):544–51. doi: 10.3945/ajcn.112.037382. This comprehensive longitudinal view of the microbiome of human milk also shows microbiome differences in human milk between obese and normal-weight mothers.PubMedGoogle Scholar
  59. 59.
    Collado MC, Laitinen K, Salminen S, et al. Maternal weight and excessive weight gain during pregnancy modify the immunomodulatory potential of breast milk. Pediatr Res. 2012;72(1):77–85. doi: 10.1038/pr.2012.42.PubMedGoogle Scholar
  60. 60.
    Chen J, Wang R, Li XF, et al. Bifidobacterium adolescentis supplementation ameliorates visceral fat accumulation and insulin sensitivity in an experimental model of the metabolic syndrome. Br J Nutr. 2012;107(10):1429–34. doi: 10.1017/S0007114511004491.PubMedGoogle Scholar
  61. 61.
    Bode L. Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology. 2012;22(9):1147–62. doi: 10.1093/glycob/cws074.PubMedCentralPubMedGoogle Scholar
  62. 62.
    Rogier EW, Frantz AL, Bruno ME, et al. Secretory antibodies in breast milk promote long-term intestinal homeostasis by regulating the gut microbiota and host gene expression. Proc Natl Acad Sci U S A. 2014;111(8):3074–9. doi: 10.1073/pnas.1315792111.PubMedCentralPubMedGoogle Scholar
  63. 63.•
    Musilova S, Rada V, Vlkova E, et al. Beneficial effects of human milk oligosaccharides on gut microbiota. Benefic Microbes. 2014;5(3):273–83. doi: 10.3920/BM2013.0080. This review provides a comprehensive overview of the effect of human milk oligosaccharides, with their known probiotic properties, on infant gut microbiome development.Google Scholar
  64. 64.
    Penders J, Thijs C, Vink C, et al. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics. 2006;118(2):511–21. doi: 10.1542/peds. 2005-2824.PubMedGoogle Scholar
  65. 65.
    Flores MS, Fairchok MP. The relationship of breastfeeding to antimicrobial exposure in the first year of life. Clin Pediatr. 2004;43(7):631–6.Google Scholar
  66. 66.
    Ajslev TA, Andersen CS, Gamborg M, et al. Childhood overweight after establishment of the gut microbiota: the role of delivery mode, pre-pregnancy weight and early administration of antibiotics. Int J Obes (Lond). 2011;35(4):522–9. doi: 10.1038/ijo.2011.27.Google Scholar
  67. 67.
    Bailey LC, Forrest CB, Zhang P, et al. Association of antibiotics in infancy with early childhood obesity. JAMA Pediatr. 2014;168(11):1063–9. doi: 10.1001/jamapediatrics.2014.1539.PubMedGoogle Scholar
  68. 68.
    Murphy R, Stewart AW, Braithwaite I, et al. Antibiotic treatment during infancy and increased body mass index in boys: an international cross-sectional study. Int J Obes (Lond). 2014;38(8):1115–9. doi: 10.1038/ijo.2013.218.Google Scholar
  69. 69.
    Azad MB, Bridgman SL, Becker AB, et al. Infant antibiotic exposure and the development of childhood overweight and central adiposity. Int J Obes (Lond). 2014;38(10):1290–8. doi: 10.1038/ijo.2014.119.Google Scholar
  70. 70.
    Mueller NT, Whyatt R, Hoepner L, et al. Prenatal exposure to antibiotics, cesarean section and risk of childhood obesity. Int J Obes (Lond). 2014. doi: 10.1038/ijo.2014.180.Google Scholar
  71. 71.••
    Cox LM, Yamanishi S, Sohn J, et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell. 2014;158(4):705–21. doi: 10.1016/j.cell.2014.05.052. This comprehensive study in mice provides direct evidence not only that antibiotic use (low-dose penicillin) given in infancy alters the gut microbiome, but that it is these changes in the microbiome, not antibiotic use per se, that alter weight gain in response to a high fat diet. Importantly, this study also demonstrated that infancy is a critical window during which alterations in the microbiome can have long-term effects on obesity and metabolism.PubMedGoogle Scholar
  72. 72.
    Zhang L, Huang Y, Zhou Y, et al. Antibiotic administration routes significantly influence the levels of antibiotic resistance in gut microbiota. Antimicrob Agents Chemother. 2013;57(8):3659–66. doi: 10.1128/AAC. 00670-13.PubMedCentralPubMedGoogle Scholar
  73. 73.
    Angelakis E, Merhej V, Raoult D. Related actions of probiotics and antibiotics on gut microbiota and weight modification. Lancet Infect Dis. 2013;13(10):889–99. doi: 10.1016/S1473-3099(13)70179-8.PubMedGoogle Scholar
  74. 74.
    Beauchamp GK, Mennella JA. Early flavor learning and its impact on later feeding behavior. J Pediatr Gastroenterol Nutr. 2009;48 Suppl 1:S25–30. doi: 10.1097/MPG.0b013e31819774a5.PubMedGoogle Scholar
  75. 75.
    Beauchamp GK, Mennella JA. Flavor perception in human infants: development and functional significance. Digestion. 2011;83 Suppl 1:1–6. doi: 10.1159/000323397.PubMedCentralPubMedGoogle Scholar
  76. 76.
    Cooke L, Fildes A. The impact of flavour exposure in utero and during milk feeding on food acceptance at weaning and beyond. Appetite. 2011;57(3):808–11. doi: 10.1016/j.appet.2011.05.317.PubMedGoogle Scholar
  77. 77.
    Schwartz C, Chabanet C, Laval C, et al. Breast-feeding duration: influence on taste acceptance over the first year of life. Br J Nutr. 2013;109(6):1154–61. doi: 10.1017/S0007114512002668.PubMedGoogle Scholar
  78. 78.•
    Mennella JA. Ontogeny of taste preferences: basic biology and implications for health. Am J Clin Nutr. 2014;99(3):704S–11. doi: 10.3945/ajcn.113.067694. This review of the development of taste preference in infants provides a critical summary of over 20 years of work in this area.PubMedCentralPubMedGoogle Scholar
  79. 79.
    Mennella JA, Beauchamp GK. Maternal diet alters the sensory qualities of human milk and the nursling’s behavior. Pediatrics. 1991;88(4):737–44.PubMedGoogle Scholar
  80. 80.
    Mennella JA, Beauchamp GK. Flavor experiences during formula feeding are related to preferences during childhood. Early Hum Dev. 2002;68(2):71–82.PubMedCentralPubMedGoogle Scholar
  81. 81.
    Mennella JA, Beauchamp GK. Experience with a flavor in mother’s milk modifies the infant’s acceptance of flavored cereal. Dev Psychobiol. 1999;35(3):197–203.PubMedGoogle Scholar
  82. 82.
    Scott JA, Chih TY, Oddy WH. Food variety at 2 years of age is related to duration of breastfeeding. Nutrients. 2012;4(10):1464–74. doi: 10.3390/nu4101464.PubMedCentralPubMedGoogle Scholar
  83. 83.
    Laster LE, Lovelady CA, West DG, et al. Diet quality of overweight and obese mothers and their preschool children. J Acad Nutr Diet. 2013;113(11):1476–83. doi: 10.1016/j.jand.2013.05.018.PubMedCentralPubMedGoogle Scholar
  84. 84.
    Byrne R, Magarey A, Daniels L. Food and beverage intake in Australian children aged 12–16 months participating in the NOURISH and SAIDI studies. Aust N Z J Public Health. 2014;38(4):326–31. doi: 10.1111/1753-6405.12249.PubMedGoogle Scholar
  85. 85.•
    de Lauzon-Guillian B, Jones L, Oliveira A, et al. The influence of early feeding practices on fruit and vegetable intake among pre-school children in 4 European birth cohorts. Am J Clin Nutr. 2013; 98:804–12. This large study of 9927 children from four large birth cohorts with differing cultural feeding practices provides consistent evidence for the relationship between breastfeeding duration and fruit and vegetable intake.Google Scholar
  86. 86.
    Moller LM, de Hoog ML, van Eijsden M, et al. Infant nutrition in relation to eating behaviour and fruit and vegetable intake at age 5 years. Br J Nutr. 2013;109(3):564–71. doi: 10.1017/S0007114512001237.PubMedGoogle Scholar
  87. 87.
    Burnier D, Dubois L, Girard M. Exclusive breastfeeding duration and later intake of vegetables in preschool children. Eur J Clin Nutr. 2011;65(2):196–202. doi: 10.1038/ejcn.2010.238 ejcn2010238.PubMedGoogle Scholar
  88. 88.
    Scholtens S, Brunekreef B, Smit HA, et al. Do differences in childhood diet explain the reduced overweight risk in breastfed children? Obesity (Silver Spring). 2008;16(11):2498–503. doi: 10.1038/oby.2008.403 oby2008403.Google Scholar
  89. 89.
    Khalessi A, Reich SM. A Month of Breastfeeding Associated with Greater Adherence to Pediatric Nutrition Guidelines. J Reprod Infant Psychol. 2013;31(3):299–308. doi: 10.1080/02646838.2013.784898.PubMedCentralPubMedGoogle Scholar
  90. 90.
    Gibbs BG, Forste R. Socioeconomic status, infant feeding practices and early childhood obesity. Pediatr Obes. 2014;9(2):135–46. doi: 10.1111/j.2047-6310.2013.00155.x.PubMedGoogle Scholar
  91. 91.
    Azadbakht L, Esmaillzadeh A. Dietary diversity score is related to obesity and abdominal adiposity among Iranian female youth. Public Health Nutr. 2011;14(1):62–9. doi: 10.1017/S1368980010000522.PubMedGoogle Scholar
  92. 92.
    Zamora D, Gordon-Larsen P, Jacobs Jr DR, et al. Diet quality and weight gain among black and white young adults: the Coronary Artery Risk Development in Young Adults (CARDIA) Study (1985–2005). Am J Clin Nutr. 2010;92(4):784–93. doi: 10.3945/ajcn.2010.29161.PubMedCentralPubMedGoogle Scholar
  93. 93.
    Shrewsbury V, Wardle J. Socioeconomic status and adiposity in childhood: a systematic review of cross-sectional studies 1990–2005. Obesity (Silver Spring). 2008;16(2):275–84. doi: 10.1038/oby.2007.35.Google Scholar
  94. 94.
    Bammann K, Gwozdz W, Lanfer A, et al. Socioeconomic factors and childhood overweight in Europe: results from the multi-centre IDEFICS study. Pediatr Obes. 2013;8(1):1–12. doi: 10.1111/j.2047-6310.2012.00075.x.PubMedGoogle Scholar
  95. 95.
    Dinsa GD, Goryakin Y, Fumagalli E, et al. Obesity and socioeconomic status in developing countries: a systematic review. Obes Rev. 2012;13(11):1067–79. doi: 10.1111/j.1467-789X.2012.01017.x.PubMedCentralPubMedGoogle Scholar
  96. 96.
    Perrin EM, Rothman RL, Sanders LM, et al. Racial and ethnic differences associated with feeding- and activity-related behaviors in infants. Pediatrics. 2014;133(4):e857–67. doi: 10.1542/peds. 2013-1326.PubMedCentralPubMedGoogle Scholar
  97. 97.
    Northstone K, Emmett P, Rogers I. Dietary patterns in pregnancy and associations with socio-demographic and lifestyle factors. Eur J Clin Nutr. 2008;62(4):471–9. doi: 10.1038/sj.ejcn.1602741.PubMedCentralPubMedGoogle Scholar
  98. 98.
    Emmett PM, Jones LR. Diet and growth in infancy: relationship to socioeconomic background and to health and development in the Avon Longitudinal Study of Parents and Children. Nutr Rev. 2014;72(8):483–506. doi: 10.1111/nure.12122.PubMedGoogle Scholar
  99. 99.
    Centers for Disease Control and Prevention. Racial and Socioeconomic Disparities in Breastfeeding--United States, 2004. MMWR. 2006; 55(12):335–9.Google Scholar
  100. 100.
    Li R, Darling N, Maurice E, et al. Breastfeeding rates in the United States by characteristics of the child, mother, or family: the 2002 National Immunization Survey. Pediatrics. 2005;115(1):e31–7.PubMedGoogle Scholar
  101. 101.
    Ludvigsson JF, Ludvigsson J. Socio-economic determinants, maternal smoking and coffee consumption, and exclusive breastfeeding in 10205 children. Acta Paediatr. 2005;94(9):1310–9.PubMedGoogle Scholar
  102. 102.
    Li R, Grummer-Strawn L. Racial and ethnic disparities in breastfeeding among United States infants: Third National Health and Nutrition Examination Survey, 1988–1994. Birth. 2002;29(4):251–7.PubMedGoogle Scholar
  103. 103.
    Grummer-Strawn LM, Mei Z. Does breastfeeding protect against pediatric overweight? Analysis of longitudinal data from the Centers for Disease Control and Prevention Pediatric Nutrition Surveillance System. Pediatrics. 2004;113(2):e81–6.PubMedGoogle Scholar
  104. 104.
    Burdette HL, Whitaker RC. Differences by race and ethnicity in the relationship between breastfeeding and obesity in preschool children. Ethn Dis. 2007;17(3):467–70.PubMedGoogle Scholar
  105. 105.
    Woo JG, Dolan LM, Morrow AL, et al. Breastfeeding helps explain racial and socioeconomic status disparities in adolescent adiposity. Pediatrics. 2008;121(3):e458–65. doi: 10.1542/peds.2007-1446.PubMedCentralPubMedGoogle Scholar
  106. 106.
    Li R, Scanlon KS, May A, et al. Bottle-feeding practices during early infancy and eating behaviors at 6 years of age. Pediatrics. 2014;134 Suppl 1:S70–7. doi: 10.1542/peds. 2014-0646L.PubMedGoogle Scholar
  107. 107.
    Taveras EM, Scanlon KS, Birch L, et al. Association of breastfeeding with maternal control of infant feeding at age 1 year. Pediatrics. 2004;114(5):e577–83. doi: 10.1542/peds. 2004-0801.PubMedCentralPubMedGoogle Scholar
  108. 108.
    Brown A, Lee M. Breastfeeding during the first year promotes satiety responsiveness in children aged 18–24 months. Pediatr Obes. 2012;7(5):382–90. doi: 10.1111/j.2047-6310.2012.00071.x.PubMedGoogle Scholar
  109. 109.
    Reyes M, Hoyos V, Martinez SM, et al. Satiety responsiveness and eating behavior among Chilean adolescents and the role of breastfeeding. Int J Obes (Lond). 2014;38(4):552–7. doi: 10.1038/ijo.2013.191.Google Scholar
  110. 110.
    Disantis KI, Collins BN, Fisher JO, et al. Do infants fed directly from the breast have improved appetite regulation and slower growth during early childhood compared with infants fed from a bottle? Int J Behav Nutr Phys Act. 2011;8:89. doi: 10.1186/1479-5868-8-89.PubMedCentralPubMedGoogle Scholar
  111. 111.
    Li R, Fein SB, Grummer-Strawn LM. Do infants fed from bottles lack self-regulation of milk intake compared with directly breastfed infants? Pediatrics. 2010;125(6):e1386–93. doi: 10.1542/peds. 2009-2549.PubMedGoogle Scholar
  112. 112.
    Taveras EM, Rifas-Shiman SL, Scanlon KS, et al. To what extent is the protective effect of breastfeeding on future overweight explained by decreased maternal feeding restriction? Pediatrics. 2006;118(6):2341. doi: 10.1542/peds–8, 2006-1814.PubMedCentralPubMedGoogle Scholar
  113. 113.••
    Neville MC, Anderson SM, McManaman JL, et al. Lactation and neonatal nutrition: defining and refining the critical questions. J Mammary Gland Biol Neoplasia. 2012;17(2):167–88. doi: 10.1007/s10911-012-9261-5. This paper provides a significant recent summary and roadmap concerning research priorities in human lactation and neonatal nutrition.PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Division of Biostatistics and EpidemiologyCincinnati Children’s Hospital Medical CenterCincinnatiUSA
  2. 2.Division of Human GeneticsCincinnati Children’s Hospital Medical CenterCincinnatiUSA

Personalised recommendations