Vehicle routing problems for city logistics

  • Diego Cattaruzza
  • Nabil Absi
  • Dominique FeilletEmail author
  • Jesús González-Feliu
Research Paper


This paper surveys the vehicle routing problems met in cities for good distribution. It applies the following methodology. First, it gives an overview of the literature devoted to vehicle route optimization in cities. Then, it classifies and analyses urban logistic flows. As a result, it identifies the principal scientific challenges that need to be addressed: time-dependency, multi-level and multi-trip organization of the distribution, dynamic information. Finally, it focuses on each one of these challenges, analyses the main difficulties they imply and how they are treated in the literature.


City logistics Time-dependent vehicle routing problem Multi-level vehicle routing problem Dynamic vehicle routing problem Multi-trip vehicle routing probem 



This work is supported by the French National Research Agency (ANR—Agence Nationale de la Recherche) and is part of project MODUM—Mutualisation et Optimisation de la distribution Urbaine de Marchandises. We would like to thank two anonymous referees for their very insightful comments that helped improving a lot this paper.


  1. Ahn BH, Shinm JY (1991) Vehicle-routing with time windows and time-varying congestion. J Oper Res Soc 42(5):393–400CrossRefGoogle Scholar
  2. Ambrosini C, Routhier JL (2004) Objectives, methods and results of surveys carried out in the field of urban freight transport: an international comparison. Transp Rev 24(1):57–77CrossRefGoogle Scholar
  3. Anderson S, Allen J, Browne M (2005) Urban logistics—how can it meet policy makers’ sustainability objectives? J Transp Geogr 13(1):71–81CrossRefGoogle Scholar
  4. Ando N, Taniguchi E (2006) Travel time reliability in vehicle routing and scheduling with time windows. Netw Spat Econ 6(3):293–311CrossRefGoogle Scholar
  5. Azi N, Gendreau M, Potvin J-Y (2010) An exact algorithm for a vehicle routing problem with time windows and multiple routes. Eur J Oper Res 202(3):756–763CrossRefGoogle Scholar
  6. Barkaoui M, Gendreau M (2013) An adaptive evolutionary approach for the real-time vehicle routing and dispatching. Comput Oper Res 40(7):1766–1776CrossRefGoogle Scholar
  7. Bent R, Van Hentenryck P (2007) Waiting and relocation strategies in online stochastic vehicle routing. In: Proceedings of the 20th international joint conference on Artificial intelligence. pp 3041–3050Google Scholar
  8. Berbeglia G, Cordeau JF, Laporte G (2010) Dynamic pickup and delivery problems. Eur J Oper Res 202(1):8–15CrossRefGoogle Scholar
  9. Bonnafous A (2001) Les marchandises en ville: le problème méthodologique de l’apréhension statistique. L’intégration des marchandises dans le système des déplacements urbains., Etudes & RecherchesLaboratoire d’economie des transports. Lyon, France, pp 86–91Google Scholar
  10. Boschetti M, Maniezzo V (2014) A set covering based matheuristic for a real-world city logistics problem. Int Trans Oper Res. doi: 10.1111/itor.12110
  11. Branke J, Middendorf M, Noeth G, Dessouky M (2005) Waiting strategies for dynamic vehicle routing. Transp Sci 39(3):298–312CrossRefGoogle Scholar
  12. Browne M, Allen J, Leonardi J (2011) Evaluating the use of an urban consolidation centre and electric vehicles in central london. IATSS Res 35(1):1–6CrossRefGoogle Scholar
  13. Cattaruzza D, Absi N, Feillet D (2014) The multi-trip vehicle routing problem: a survey. Technical Report 2014–03, Ecole des Mines de Saint-EtienneGoogle Scholar
  14. Cattaruzza D, Absi N, Feillet D (2014) The multi-trip vehicle routing problem with time windows and release dates. Technical Report 2014–01, Ecole des Mines de Saint-EtienneGoogle Scholar
  15. Cattaruzza D, Absi N, Feillet D, Vidal T (2014) A memetic algorithm for the multi trip vehicle routing problem. Eur J Oper Res 236(6):833–848CrossRefGoogle Scholar
  16. Chang TS, Yen HM (2012) City-courier routing and scheduling problems. Eur J Oper Res 223(2):489–498CrossRefGoogle Scholar
  17. Chen Z-L, Xu H (2006) Dynamic column generation for dynamic vehicle routing with time windows. Transp Sci 40(1):74–88CrossRefGoogle Scholar
  18. Crainic TG (2008) City Logistics, pages 181–212. Tutorials in Operations Research 2008—state-of-the-Art Decision Making Tools in the Information-Intensive Age. INFORMSGoogle Scholar
  19. Crainic TG, Gajapl Y, Gendreau M (2012) Multi-zone multi-trip vehicle routing problem with time windows. Technical Report 2012–36, Centre interuniversitaire de recherche sur les réseaux d’enterprise, la logistique et le transport, Université de Montréal, Montréal, QC, CanadaGoogle Scholar
  20. Crainic TG, Mancini S, Perboli G, Tadei R (2008) Clustering-based heuristic for the two-echelon vehicle routing problem. Technical Report 2008–46, Centre interuniversitaire de recherche sur les réseaux d’enterprise, la logistique et le transport, Université de Montréal, Montréal, QC, CanadaGoogle Scholar
  21. Crainic TG, Mancini S, Perboli G, Tadei R (2011) Heuristics for the two-echelon vehicle routing problem: A multi-start approach. Technical Report 2011–16, Centre interuniversitaire de recherche sur les réseaux d’enterprise, la logistique et le transport, Université de Montréal, Montréal, QC, CanadaGoogle Scholar
  22. Crainic TG, Perboli G, Mancini S, Tadei R (2010) Two-echelon vehicle routing problem: a satellite location analysis. Procedia Soc Behav Sci 2(3):5944–5955CrossRefGoogle Scholar
  23. Crainic TG, Ricciardi N, Storchi G (2004) Advanced freight transportation systems for congested urban areas. Transp Res Part C 12(2):119–137CrossRefGoogle Scholar
  24. Crainic TG, Ricciardi N, Storchi G (2009) Models for evaluating and planning city logistics systems. Transp Sci 43(4):432–454CrossRefGoogle Scholar
  25. Cuda R, Guastaroba G, Speranza MG (2014) A survey on two-echelon routing problems. Comput Oper Res. doi: 10.1016/j.cor.2014.06.008
  26. Del Pia A, Filippi C (2006) A variable neighborhood descent algorithm for a real waste collection problem with mobile depots. Int Trans Oper Res 13(2):125–141CrossRefGoogle Scholar
  27. Delaître L, De Barbeyrac C (2012) Improving an urban distribution centre, the french case of samada monoprix. Procedia Soc Behav Sci 39:753–769CrossRefGoogle Scholar
  28. Donati AV, Montemanni R, Casagrande N, Rizzoli AE, Gambardella LM (2008) Time dependent vehicle routing problem with a multi ant colony system. Eur J Oper Res 185(3):1174–1191CrossRefGoogle Scholar
  29. Drexl M (2012) Synchronization in vehicle routing—a survey of vrps with multiple synchronization constraints. Transp Sci 46(3):297–316CrossRefGoogle Scholar
  30. Durand B, Gonzalez-Feliu J (2012) Urban logistics and e-grocery: have proximity delivery services a positive impact on shopping trips? Procedia Soc Behav Sci 39:510–520CrossRefGoogle Scholar
  31. Egger D, Ruesch M (2002) Best practice handbook year 3—road pricing and urban freight transport urban freight platforms. Technical report, BESTUFSGoogle Scholar
  32. Ehmke JF (2012) Provision of distance matrices. In: Integration of Information and Optimization Models for Routing in City Logistics, International Series in Operations Research & Management Science. Springer, pp 83–104Google Scholar
  33. Ehmke JF, Mattfeld DC (2010) Data allocation and application for time-dependent vehicle routing in city logistics. Eur Transp 46:24–35Google Scholar
  34. Ehmke JF, Mattfeld DC (2011) Integration of information and optimization models for vehicle routing in urban areas. Procedia Soc Behav Sci 20:110–119CrossRefGoogle Scholar
  35. Ehmke JF, Meisel S, Mattfeld DC (2012) Floating car based travel times for city logistics. Transp Res Part C 21(1):338–352CrossRefGoogle Scholar
  36. Ehmke JF, Steinert A, Mattfeld DC (2012) Advanced routing for city logistics service providers based on time-dependent travel times. J Comput Sci 3(4):193–205CrossRefGoogle Scholar
  37. Figliozzi MA (2012) The time dependent vehicle routing problem with time windows: Benchmark problems, an efficient solution algorithm, and solution characteristics. Transp ResPart E 48(3):616–636CrossRefGoogle Scholar
  38. Fleischmann B (1990) The vehicle routing problem with multiple use of vehicles. Technical report, Fachbereich Wirtschaftswissenschaften, Universität HamburgGoogle Scholar
  39. Fleischmann B, Gietz M, Gnutzmann S (2004) Time-varying travel times in vehicle routing. Transp Sci 38(2):160–173CrossRefGoogle Scholar
  40. Fleischmann B, Gnutzmann S, Sandvoß E (2004) Dynamic vehicle routing based on online traffic information. Transp Sci 38(4):420–433CrossRefGoogle Scholar
  41. Ghiani G, Guerriero F, Laporte G, Musmanno R (2003) Real-time vehicle routing: Solutions concepts, algorithms and parallel computing strategies. Eur J Oper Res 151(1):1–11CrossRefGoogle Scholar
  42. Gonzalez-Feliu J (2008) Models and methods for the City Logistic. The Two-Echelon Capacitated Vehicle Routing Problem. Ph.D. thesis, Politecnico di TorinoGoogle Scholar
  43. Gonzalez-Feliu J (2013) Vehicle routing in multi-echelon distribution systems with cross-docking: a systematic lexical-metanarrative analysis. Comput Inf Sci 6(3):28–47Google Scholar
  44. Gonzalez-Feliu J, Ambrosini C, Pluvinet P, Toilier F, Routhier JL (2012) A simulation framework for evaluating the impacts of urban goods transport in terms of road occupancy. J Comput Sci 6(4):206–215CrossRefGoogle Scholar
  45. Gonzalez-Feliu J, Toilier F, Ambrosini C, Routhier JL (2014) Estimated data production for urban goods transport diagnosis. The freturb methodology. Sustainable urban logistics: concepts., methods and information systems. Springer, Berlin, pp 113–143Google Scholar
  46. Grangier P, Gendreau M, Lehuédé F, Rousseau L-M (2014) An adaptive large neighborhood search for the two-echelon multiple-trip vehicle routing problem with satellite synchronization. Technical Report 2014–33, Centre interuniversitaire de recherche sur les réseaux d’enterprise, la logistique et le transport, Université de Montréal, Montréal, QC, CanadaGoogle Scholar
  47. Grzybowska H, Barceló J (2012) Decision support system for real-time urban freight management. Procedia Soc Behav Sci 39:712–725CrossRefGoogle Scholar
  48. Güner AR, Murat A, Chinnam RB (2012) Dynamic routing under recurrent and non-recurrent congestion using real-time its information. Comput Oper Res 39(2):358–373CrossRefGoogle Scholar
  49. Hashimoto H, Yagiura M, Ibaraki T (2008) An iterated local search algorithm for time-dependent vehicle routing problem with time windows. Discrete Optim 5(2):434–456CrossRefGoogle Scholar
  50. Hasle G, Kloster O (2007) Geometric modelling, numerical simulation, and optimization. In: Operations Research Computer Science Interfaces. Springer, pp 397–436Google Scholar
  51. Hemmelmayr VC, Cordeau JF, Crainic TG (2012) An adaptive large neighbourhood search heuristic for two-echelon vehicle routing problems arising in city logistics. Comput Oper Res 39(12):3215–3228CrossRefGoogle Scholar
  52. Hernandez F, Feillet D, Giroudeau R, Naud O (2013) A new exact algorithm to solve the multi-trip vehicle routing problem with time windows and limited duration. 4OR. doi:10.1007/s10288-013-0238-zGoogle Scholar
  53. Hill AV, Benton WC (1992) Modelling intra-city time-dependent travel speeds for vehicle scheduling problems. J Oper Res Soc 43(4):343–351CrossRefGoogle Scholar
  54. Hitchcock FL (1941) The distribution of a product from several sources to numerous facilities. J Math Phys 20(2):224–230CrossRefGoogle Scholar
  55. Ichoua S, Gendreau M, Potvin J-Y (2000) Diversion issues in real-time vehicle dispatching. Transp Sci 34(4):426–438CrossRefGoogle Scholar
  56. Ichoua S, Gendreau M, Potvin J-Y (2003) Vehicle dispatching with time-dependent travel times. Eur J Oper Res 144(2):379–396CrossRefGoogle Scholar
  57. Ichoua S, Gendreau M, Potvin J-Y (2006) Exploiting knowledge about future demands for real-time vehicle dispatching. Transp Sci 40(2):211–225CrossRefGoogle Scholar
  58. Ichoua S, Gendreau M, Potvin J-Y (2007) Planned Route Optimization for Real-Time Vehicle Routing. Springer, pp 1–18Google Scholar
  59. Jepsen M, Spoorendonk S, Ropke S (2013) A branch-and-cut algorithm for the symmetric two-echelon capacitated vehicle routing problem. Transp Sci 4(1):23–37CrossRefGoogle Scholar
  60. Kim S, Lewis M, White C (2005) Optimal vehicle routing with real-time traffic information. Intell Transp Syst IEEE Trans 6(2):178–188CrossRefGoogle Scholar
  61. Kok AL, Hans EW, Shutten JMJ (2009) Vehicle routing under time-dependent travel times: the impact of congestion avoidance. In: Technical Report 267, Beta Research School for Operations Management and Logistics, University of TwenteGoogle Scholar
  62. Kok AL, Hans EW, Shutten JMJ, Zijm WHM (2010) A dynamic programming heuristic for a vehicle routing with time-dependent travel times and required breaks. Flex Serv Manuf J 22(1–2):83–108CrossRefGoogle Scholar
  63. Kritzinger S, Doerner KF, Hartl RF, Kiechle G, Stadler H, Manohar SS (2011) Using traffic information for time-dependent vehicle routing. Procedia Soc Behav Sci 39:217–229CrossRefGoogle Scholar
  64. Kuo Y (2010) Using simulated annealing to minimize fuel consumption for the time-dependent vehicle routing problem. Comput Ind Eng 59(1):157–165CrossRefGoogle Scholar
  65. Kuo Y, Wang CC, Chuang PY (2009) Optimizing goods assignment and the vehicle routing problem with time-dependent travel speeds. Comput Ind Eng 57(4):1385–1392CrossRefGoogle Scholar
  66. Larsen A, Madsen OBG, Solomon MM (2008) Recent Developments in Dynamic Vehicle Routing Systems. In: The vehicle routing problem—latest advances and new challenges, number 43 in Operations Research Computer Science Interface. Springer, pp 199–218Google Scholar
  67. Lee Y, Jung J, Lee K (2006) Vehicle routing scheduling for cross-docking in the supply chain. Comput Ind Eng 51(2):247–256CrossRefGoogle Scholar
  68. Macedo R, Alves C, Valério deCarvalho JM, Clautiaux F, Hanafi S (2011) Solving the vehicle routing problem with time windows and multiple routes exactly using a pseudo-polynomial model. Eur J Oper Res 214(3):536–545CrossRefGoogle Scholar
  69. Maden W, Eglese R, Black D (2010) Vehicle routing and scheduling with time-varying data: a case study. J Oper Res Soc 61:515–522CrossRefGoogle Scholar
  70. Makhloufi R, Cattaruzza D, Meunier F, Absi N, Feillet D (2014) Simulation of a mutualized urban logistics system with real-time management,International Symposium of Transport SimulationGoogle Scholar
  71. Malandraki C, Daskin MS (1992) Time dependent vehicle routing problems: formulations, properties and heuristic algorithms. Transp Sci 26(3):185–200CrossRefGoogle Scholar
  72. Masson R, Trentini A, Lehuédé F, Malhéné N, Péton O, Tlahig H (2013) Optimization of a city logistics transportation system with mixed passenger and goods. Technical Report ENM Working Paper 13/1/AUTO, Ecole des Mines de NantesGoogle Scholar
  73. Mitrović-Minić S, Laporte G (2004) Waiting strategies for the dynamic pickup and delivery problem with time windows. Transp Res Part B 38(7):635–655CrossRefGoogle Scholar
  74. Muñuzuri J, Cortés P, Guadix J, Onieva L (2012) City logistics in spain: Why it might never work. Cities 29(2):133–141CrossRefGoogle Scholar
  75. Muñuzuri J, Grosso R, Cortés P, Guadix J (2013) Estimating the extra costs imposed on delivery vehicles using access time windows in a city. Comput Environ Urban Syst 41:262–275CrossRefGoogle Scholar
  76. Nguyen PK, Crainic TG, Toulouse M (2013) A tabu search for time-dependent multi-zone multi-trip vehicle routing problem with time windows. Eur J Oper Res 231(1):43–56CrossRefGoogle Scholar
  77. Nguyen PK, Crainic TG, Toulouse M (2014) Multi-zone multi-trip pickup and delivery problem with time windows and synchronization. Technical Report 2014–18, Centre interuniversitaire de recherche sur les réseaux d’enterprise, la logistique et le transport, Université de Montréal, Montréal, QC, CanadaGoogle Scholar
  78. Nguyen V-P, Prins C, Prodhon C (2012) Solving the two-echelon location routing problem by a grasp reinforced by a learning process and path relinking. Eur J Oper Res 216(1):113–126CrossRefGoogle Scholar
  79. Noveas AGN, Frazzon EM, Burin PJ (2011) Dynamic vehicle routing in over congested areas. Dyn Logist Second Int Conf LDIC 2009:49–58Google Scholar
  80. Commission of the European Communities (2009) Action plan on urban mobility. Technical Report COM (2009) 490.
  81. Commission of the European Communities (2009) Full evaluation report - satellite based traffic management for smes. Technical report.\_menu=23&measure\_id=250Google Scholar
  82. Commission of the European Communities (2009) A sustainable future for transport: Towards an integrated, technology-led and user friendly system. Technical Report COM, pp 279.
  83. Commission of the European Communities (2011) Roadmap to a single european transport area - towards a competitive and resource efficient transport system. Technical Report COM (2011) 144.
  84. Olivera A, Viera O (2007) Adaptive memory programming for the vehicle routing problem with multiple trips. Comput Oper Res 34(1):28–47CrossRefGoogle Scholar
  85. Ortúzar JD, Willumsen LG (2011) Modelling transport, 4th edn. WileyGoogle Scholar
  86. Patier D, Routhier JL (2009) How to Improve the Capture of Urban Goods Movement Data. In: Transport survey methods. Keeping up with a changing world. Emerald, Bingley, pp 251–287Google Scholar
  87. Perboli G, Tadei R, Vigo D (2011) The two-echelon capacitated vehicle routing problem: models and math-based heuristic. Transp Sci 45(3):364–380CrossRefGoogle Scholar
  88. Perrier Nathalie, Langevin André, Amaya Ciro-Alberto (2008) Vehicle routing for urban snow plowing operations. Transp Sci 42(1):44–56CrossRefGoogle Scholar
  89. Perrier N, Langevin A, Campbell JF (2007) A survey of models and algorithms for winter road maintenance. part III: vehicle routing and depot location for spreading. Comput OR 34(1):211–257CrossRefGoogle Scholar
  90. Perrier N, Langevin A, Campbell JF (2007) A survey of models and algorithms for winter road maintenance. part IV: vehicle routing and fleet sizing for plowing and snow disposal. Comput OR 34(1):258–294CrossRefGoogle Scholar
  91. Petch RJ, Salhi S (2004) A multi-phase constructive heuristic for the vehicle routing problem with multi trips. Discrete Appl Math 133(1–3):69–92Google Scholar
  92. Pillac V, Gendreau M, Guéret C, Medaglia AL (2013) A review of dynamic vehicle routing problems. European Journal of Operational Research 225(1):1–11CrossRefGoogle Scholar
  93. Potvin J-Y, Xu Y, Benyahia I (2006) Vehicle routing and scheduling with dynamic travel times. Comput Oper Res 33(4):1129–1137CrossRefGoogle Scholar
  94. Psaraftis HN (1995) Dynamic vehicle routing: status and prospects. Ann Oper Res 61(1):143–164CrossRefGoogle Scholar
  95. Quak HJ (2012) Improving urban freight transport sustainability by carriers—best practices from the netherlands and the eu project citylog. Procedia Soc Behav Sci 39:158–171CrossRefGoogle Scholar
  96. Quak HJ, de Koster MBM (2009) Delivering goods in urban areas: how to deal with urban policy restrictions and the environment. Transp Sci 43(2):211–227CrossRefGoogle Scholar
  97. Qureshi AG, Hanaoka S (2005) Analysis of the effects of a cooperative delivery system in bangkok. In: Recent adavances in city logistics. LangkawiGoogle Scholar
  98. Qureshi AG, Taniguchi E, Yamada T (2011) A microsimulation based analysis of exact solution of dynamic vehicle routing with soft time windows. Procedia Soc Behav Sci 39:205–216CrossRefGoogle Scholar
  99. Rodrigue JP (2013) The geography of transportation systems. Routledge, Taylor & Francis Group.
  100. Rushton A, Croucher P, Baker P (2006) The handbook of Logistic and Distribution Management, 3rd edn. Kogan PageGoogle Scholar
  101. Segalou E, Ambrosini C, Routhier JL (2004) The environmental assessment of urban goods movement. In: Logistics systems for sustainable cities—proceedings of the 3rd International Conference on City Logistics. Elsevier, pp 207–220Google Scholar
  102. Soler D, Albiach J, Martínez E (2009) A way to optimally solve a time-dependent vehicle routing problem with time windows. Oper Res Lett 37(1):37–42CrossRefGoogle Scholar
  103. Taillard ÉD, Laporte G, Gendreau M (1996) Vehicle routeing with multiple use of vehicles. J Oper Res Soc 47(8):1065–1070CrossRefGoogle Scholar
  104. Taniguchi E, Shimamoto H (2004) Intelligent transportation sustem based dynamic vehicle routing and scheduling with variable travel times. Transp Res Part C 12(3–4):235–250CrossRefGoogle Scholar
  105. Taniguchi E, Thompson RG, Yamada T, van Duin R (2001) City logistic—network modelling and intelligent transport systems. Pergamon, AmsterdamGoogle Scholar
  106. Taniguchi E, Van Der Heijden RECM (2000) An evaluation methodology for the city logistics. Transp Rev 20(1):65–90CrossRefGoogle Scholar
  107. Tarantilis CD, Kiranoudis CT (2001) Using the vehicle routing problem for the transportation of hazardous materials. Oper Res 1(1):67–78Google Scholar
  108. Thompson RG, Hassall KP (2012) A collaborative urban distribution network. Procedia Soc Behav Sci 39:230–240CrossRefGoogle Scholar
  109. Toth P, Vigo D (2002) The vehicle routing problem. Monographs on discrete mathematics and applications, SiamGoogle Scholar
  110. Van Woensel T, Kerbache L, Peremans H, Vandaele N (2008) Vehicle routing with dynamic travel times: a queueing approach. Eur J Oper Res 186(3):990–1007CrossRefGoogle Scholar
  111. Wen M, Larsen J, Clausen J, Cordeau J-F, Laporte G (2009) Vehicle routing with cross-docking. J Oper Res Soc 60:1708–1718CrossRefGoogle Scholar
  112. Yang J, Jaillet P, Mahmassani H (2004) Real-time multivehicle truckload pickup and delivery problems. Transp Sci 38(2):135–148CrossRefGoogle Scholar
  113. Zeimpekis V, Giaglis GM (2005) A dynamic real-time management system for incident handling in city logistics. In: Vehicular Technology Conference, 2005. VTC 2005-Spring. 2005 IEEE 61st, vol. 5. pp 2900–2904Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and EURO - The Association of European Operational Research Societies 2015

Authors and Affiliations

  • Diego Cattaruzza
    • 1
    • 2
  • Nabil Absi
    • 1
  • Dominique Feillet
    • 1
    Email author
  • Jesús González-Feliu
    • 3
    • 4
  1. 1.Ecole des Mines de Saint-Etienne and LIMOS UMR CNRS 6158, CMP Georges CharpakGardanneFrance
  2. 2.INRIA Lille-Nord EuropeVilleneuve d’AscqFrance
  3. 3.PIESO, EVS UMR 5600, Institut Fayol, Ecole Des Mines de Saint-EtienneSaint-ÉtienneFrance
  4. 4.Centre National de la Recherche Scientifique, LET ISHLyonFrance

Personalised recommendations