Freight transportation planning considering carbon emissions and in-transit holding costs: a capacitated multi-commodity network flow model

  • Andreas Rudi
  • Magnus Fröhling
  • Konrad Zimmer
  • Frank Schultmann
Research Paper


To mitigate climate relevant air emissions from freight transportation, policy makers stimulate the application of intermodal freight transport chains. The evaluation and selection of intermodal routes based on the key objectives, i.e., greenhouse gas emission, transportation cost and transit time improvements, are the main challenges in the design of intermodal networks. It is the aim of this paper to provide decision support in intermodal freight transportation planning concerning route and carrier choice in transport service design and the assessment of emission abatement potentials. Core of this approach is a capacitated multi-commodity network flow model considering multiple criteria and in-transit inventory. Thereby two processes are modeled, i.e., the transport and transshipment of full truckloads (FTL), to define the material flow of goods through the network. The objective function of the developed network flow model minimizes the number of transported and transshipped FTL assessed by the weighted and normalized criteria (i.e., CO2-equivalents, cost, time) taking into account tied in-transit capital and the distance traveled. Thereby, the model regards carrier and terminal capacities, the option to transfer or either shift the mode and/or change the carrier at predefined terminal transshipment points. The model is incorporated in a decision support system and applied in an example application with industry data from an automotive supplier to demonstrate its application potentials. Within the application among others the potential benefits of the developed optimization model in comparison to a status quo are analyzed. Different criteria weightings and the influence of various levels of in-transit holding costs are investigated. In addition, the introduction of new transportation means such as the Eurocombi is assessed.


Intermodal transport planning Full truckload Multi-commodity network flow model In-transit holding costs Greenhouse gas emissions Eurocombi 



The authors wish to thank the editor and three anonymous referees for their most valuable and constructive comments which helped to improve the article.


  1. Arnold D, Isermann H, Kuhn A, Tempelmeier H, Furmans K (2008) Handbuch logistik, 3rd edn. Springer, HeidelbergCrossRefGoogle Scholar
  2. Bauer J, Bektas T, Crainic TG (2010) Minimizing greenhouse gas emissions in intermodal freight transport: an application to rail service design. J Oper Res Soc. doi: 10.1057/jors.2009.102 Google Scholar
  3. Bektas T, Crainic T (2008) A brief overview of intermodal transportation. In: Taylor GD (ed) Logistics engineering handbook. CRC Press, Boca Raton, pp 1–16 chapter 28Google Scholar
  4. Bektas T, Laporte G (2011) The pollution-routing problem. Transp Res Part B 45:1232–1250. doi: 10.1016/j.trb.2011.02.004 CrossRefGoogle Scholar
  5. Caris A, Macharis C, Janssens GK (2008) Planning problems in intermodal freight transport: accomplishments and prospects. Transport Plan Tech. doi: 10.1080/03081060802086397 Google Scholar
  6. Caris A, Macharis C, Janssens GK (2012) Decision support in intermodal transport: a new research agenda. Comput Ind. doi: 10.1016/j.compind.2012.12.001 Google Scholar
  7. Caris A, Macharis C, Janssens GK (2013) Decision support in intermodal transport: a new research agenda. Comput Ind 64(2013):105–112. doi: 10.1016/j.compind.2012.12.001 CrossRefGoogle Scholar
  8. Chang T-S (2007) Best routes selection in international intermodal networks. Comput Oper Res. doi: 10.1016/j.cor.2006.12.025 Google Scholar
  9. Christiansen M, Fagerholt K, Nygreen B, Ronen D (2007) Chapter 4 Maritime transportation. In: Barnhart C, Laporte G (eds) Transportation. Handbooks in operations research and management science, vol 14, pp 189–284. doi: 10.1016/S0927-0507(06)14004-9
  10. Christopher M (2011) Logistics and supply chain management, 4th edn. Pearson, EdinburghGoogle Scholar
  11. Cirovic G, Pamucar D, Bozanic D (2014) Green logistic vehicle routing problem: routing light delivery vehicles in urban areas using a neuro-fuzzy model. Expert Syst Appl 41(2014):4245–4258. doi: 10.1016/j.eswa.2014.01.005 CrossRefGoogle Scholar
  12. Corbett JJ, Winebrake JJ, Hatcher J, Farrel AE (2007) Emissions analysis of freight transport comparing land-side and water-side short-sea routes: development and demonstration of a freight routing and emissions analysis tool (FREAT). US Department of Transportation. Accessed 29 Dec 2013
  13. Crainic TG (2000) Service network design in freight transportation. Euro J Oper Res. doi: 10.1016/S0377-2217(99)00233-7 Google Scholar
  14. Crainic TG (2002) A survey of optimization models for long-haul freight transportation. In: Hall RW (ed) Handbook of Transportation Science, 2nd edn. Kluwer, BostonGoogle Scholar
  15. Crainic TG, Dejax PJ (1987) Freight distribution and transport systems planning. Logist Inf Manag. doi: 10.1108/eb007517 Google Scholar
  16. Crainic TG, Kim KH (2007) Intermodal transportation. Handb Oper Res Manag Sci. doi: 10.1016/S0927-0507(06)14008-6 Google Scholar
  17. Crainic TG, Laporte G (1997) Planning models for freight transportation. Euro J Oper Res. doi: 10.1016/S0377-2217(96)00298-6 Google Scholar
  18. Current J, Min H (1986) Multiobjective design of transportation networks: taxonomy and annotation. Euro J Oper Res. doi: 10.1016/0377-2217(86)90180-3 Google Scholar
  19. Dekker R, Bloemhof J, Mallidis I (2012) Operations Research for green logistics: an overview of aspects, issues, contributions and challenges. Euro J Oper Res. doi: 10.1016/j.ejor.2011.11.010 Google Scholar
  20. Demir E, Bektas T, Laporte G (2014) The bi-objective pollution-routing problem. Eur J Oper Res 232(2014):464–478. doi: 10.1016/j.ejor.2013.08.002 CrossRefGoogle Scholar
  21. Domschke W (1985) Logistik: transport—grundlagen, lineare transport- und umladeprobleme. Oldenbourg, MunichGoogle Scholar
  22. Dorfman R (1960) Operations Research. Am Econ Rev 50:575–623Google Scholar
  23. EC (2013) EU transport in figures: statistical pocket book 2013. European Union, LuxembourgGoogle Scholar
  24. EcoTransIT (2011) Ecological transport information tool for worldwide transports. Accessed 29 Dec 2013
  25. EEA (2012) Climate change, impacts and vulnerability in Europe 2012: an indicator-based report. European Environment Agency, CopenhagenGoogle Scholar
  26. Floden J (2007) Modelling intermodal freight transport: the potential of combined transport in Sweden. Dissertation, University of GothenburgGoogle Scholar
  27. Franceschetti A, Honhon D, Van Woensel T, Bektaş T, Laporte G (2013) The time-dependent pollution-routing problem. Transp Res Part B Methodol 56(10):265–293. doi: 10.1016/j.trb.2013.08.008 CrossRefGoogle Scholar
  28. Froehling M, Zimmer K, Schultmann F (2013) A case study on route and haulier choice considering carbon emissions. Working paper, Karlsruhe Institute of TechnologyGoogle Scholar
  29. Geldermann J (2006) Mehrzielentscheidung in der industriellen Produktion. University Press Karlsruhe, KarlsruheGoogle Scholar
  30. Ghiani G, Laporte G, Musmanno R (2004) Introduction to logistics systems planning and control. Wiley, ChichesterGoogle Scholar
  31. Goetschalckx M (2011) Supply chain engineering. Springer, LondonCrossRefGoogle Scholar
  32. Goetschalckx M, Vidal CJ, Dogan K (2002) Modeling and design of global logistics systems: a review of integrated strategic and tactical models and design algorithms. Euro J Oper Res. doi: 10.1016/S0377-2217(02)00142-X Google Scholar
  33. Gross WF, Hayden C, Butz C (2012) About the impact of rising oil price on logistics networks and transportation greenhouse gas emission. Log Res 4:147–156CrossRefGoogle Scholar
  34. Gudehus T (2011) Logistik: Grundlagen—Strategien—Anwendungen, 4th edn. Springer, HeidelbergGoogle Scholar
  35. Helmreich S, Keller H (2011) Freightvision: sustainable European freight transport 2050. Springer, HeidelbergCrossRefGoogle Scholar
  36. Hoen KMR, Tan T, Fransoo JC, van Houtum GJ (2011) Switching transport modes to meet voluntary carbon emission targets. Flex Serv Manuf J. doi: 10.1007/s10696-012-9151-6 Google Scholar
  37. Hoen KMR, Tan T, Fransoo JC, van Houtum GJ (2012) Effect of carbon emission regulations on transport mode selection under stochastic demand. Flex Serv Manuf J. doi: 10.1007/s10696-012-9151-6 Google Scholar
  38. Hoff A, Andersson H, Christiansed M, Hasle G, Lokkerangen A (2010) Industrial aspects and literature survey: fleet composition and routing. Comput Oper Res. doi: 10.1016/j.cor.2010.03.015 Google Scholar
  39. Janic M, Regglani A, Nijkamp P (1999) Sustainability of the European freight transport system: evaluation of innovative bundling networks. Transp Plan Technol. doi: 10.1080/03081069908717644 Google Scholar
  40. Kallrath J, Wilson JM (1997) Business Optimisation Using Mathematical Programming. Macmillan, BasingstokeGoogle Scholar
  41. Kranke A, Schmied M, Schön A (2011) CO2-Berechnung in der Logistik. Vogel, MunichGoogle Scholar
  42. Kumar S (2008) Inventory logistics cost analysis model for the proposed EU intermodal loading unit: a business case. Inf Knowl Syst Manag 7:335–355Google Scholar
  43. Laporte G (2013) Scheduling issues in vehicle routing. Ann Oper Res. doi: 10.1007/s10479-013-1423-3 Google Scholar
  44. Macharis C, Bontekoning YM (2004) Opportunities for OR in intermodal freight transport research: a review. Euro J Oper Res. doi: 10.1016/S0377-2217(03)00161-9 Google Scholar
  45. Meixel MJ, Norbis M (2008) A review of the transportation mode choice and carrier selection literature. Int J Logist Manag. doi: 10.1108/09574090810895951 Google Scholar
  46. Min H (1990) International intermodal choices via chance-constrained goal programming. Transp Res. doi: 10.1016/0191-2607(91)90013-G Google Scholar
  47. Riekst BQ, Ventura JA (2008) Optimal inventory policies with two modes of freight transportation. Euro J Oper Res. doi: 10.1016/j.ejor.2007.01.042 Google Scholar
  48. Seiler T (2012) Operative transportation planning: solutions in consumer goods supply chains. Dissertation, Technical University of BerlinGoogle Scholar
  49. SteadieSeifi M, Dellaert NP, Nuijten W, Van Woensel T, Raoufi R (2014) Multimodal freight transportation planning: a literature review. Eur J Oper Res 233(2014):1–15. doi: 10.1016/j.ejor.2013.06.055 CrossRefGoogle Scholar
  50. Yaghini M, Akhavan R (2012) Multicommodity Network Design Problem in Rail Freight Transportation Planning. Procedia- Soc Behav Sci. doi: 10.1016/j.sbspro.2012.04.146 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and EURO - The Association of European Operational Research Societies 2015

Authors and Affiliations

  • Andreas Rudi
    • 1
  • Magnus Fröhling
    • 2
  • Konrad Zimmer
    • 2
  • Frank Schultmann
    • 2
  1. 1.prismat GmbHRatingenGermany
  2. 2.Institute for Industrial Production (IIP)Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations