Advertisement

An extended demand responsive connector

  • Alan Lee
  • Martin Savelsbergh
Research Paper

Abstract

The need for viable public transit systems has been well documented and so has the role that so-called flexible transport systems can play. Flexible transport services offer great potential for increases in mobility and convenience and decreases in travel times and operating costs. One such service is the demand responsive connector, which transports commuters from residential addresses to transit hubs via a shuttle service, from where they continue their journey via a traditional timetabled service. To access this service, commuter and service provider agree on an earliest time the commuter must be available for collection and a latest time the commuter will arrive at a transit station. We investigate various options for implementing a demand responsive connector and the associated vehicle-scheduling problems. Previous work has only considered regional systems, where vehicles drop passengers off at a predetermined station; one of our contributions is to relax that restriction and investigate the benefits of allowing alternative transit stations. An extensive computational study shows that the more flexible system offers cost advantages over regional systems, especially when transit services are frequent, or transit hubs are close together, with little impact on passenger convenience.

Keywords

Flexible transportation services Demand responsive connector Vehicle routing and scheduling Heuristics 

References

  1. Azi N, Gendreau M, Potvin JY (2007) An exact algorithm for a single-vehicle routing problem with time windows and multiple routes. Eur J Oper Res 178(3):755–766CrossRefGoogle Scholar
  2. Azi N, Gendreau M, Potvin JY (2010) An exact algorithm for a vehicle routing problem with time windows and multiple use of vehicles. Eur J Oper Res 202(3):756–763. http://www.sciencedirect.com/science/article/pii/S0377221709004950
  3. Cayford R, Yim Y (2004) Personalized demand-responsive transit serviceGoogle Scholar
  4. Chandra S, Quadrifoglio L (2013) A model for estimating the optimal cycle length of demand responsive feeder transit services. Trans Res Part B Methodol 51(0):1–16 (2013). doi: 10.1016/j.trb.2013.01.008 http://www.sciencedirect.com/science/article/pii/S0191261513000192
  5. Chandra S, Quadrifoglio L (2013) A new street connectivity indicator to predict performance for feeder transit services. Transp Res Part C Emerg Technol 30(0):67–80. doi: 10.1016/j.trc.2013.02.004 http://www.sciencedirect.com/science/article/pii/S0968090X1300034X
  6. Cordeau J, Laporte G (2003) The dial-a-ride problem (DARP): variants, modeling issues and algorithms. Q J Oper Res 1:89–101. doi: 10.1007/s10288-002-0009-8 CrossRefGoogle Scholar
  7. Cordeau J, Laporte G, Potvin JY, Savelsbergh MW (2007) Chapter 7 transportation on demand. In: Barnhart C, Laporte G (eds.) Transportation, Handbooks in Operations research and management science, vol. 14, pp. 429–466. Elsevier. doi: 10.1016/S0927-0507(06) 14007–4 http://www.sciencedirect.com/science/article/pii/S0927050706140074
  8. Cordeau JF, Laporte G (2007) The dial-a-ride problem: models and algorithms. Ann Oper Res 153(1): 29–46 doi: 10.1007/s10479-007-0170-8
  9. Costa DL, Cabral LA, Siebra CA (2012) Metaheuristic iterated local search and variable neighborhood search for the dial-a-ride problem. Global Optim Workshop 2012:61–64Google Scholar
  10. Daniels R, Mulley C (2010) Overcoming barriers to implementing flexible transport services in nswGoogle Scholar
  11. Deleplanque S, Quilliot A (2013) Dial-a-ride problem with time windows, transshipments, and dynamic transfer points. Manuf Model Manag Control 7:1256–1261Google Scholar
  12. Diana M, Quadrifoglio L, Pronello C (2009) A methodology for comparing distances traveled by performance-equivalent fixed-route and demand responsive transit services. Trans Plan Technol 32(4):377–399CrossRefGoogle Scholar
  13. Ferreira L, Charles P, Tether C (2007) Evaluating flexible transport solutions. Trans Plan Technol 30(2–3):249–269CrossRefGoogle Scholar
  14. Fu L, Xu Y (2001) Potential effects of automatic vehicle location and computer-aided dispatch technology on paratransit performance: a simulation study. Trans Res Record J Trans Res Board 1760(1):107–113CrossRefGoogle Scholar
  15. Hall C, Andersson H, Lundgren J, Varbrand P (2009) The integrated dial-a-ride problem. Public Transp 1:39–54 (2009). doi: 10.1007/s12469-008-0006-1 http://dx.doi.org/10.1007/s12469-008-0006-1
  16. Hashimoto H, Yagiura M, Imahori S, Ibaraki T (2013) Recent progress of local search in handling the time window constraints of the vehicle routing problem. Ann Oper Res 204(1):171–187. doi: 10.1007/s10479-012-1264-5 CrossRefGoogle Scholar
  17. Koffman D (2004) Operational experiences with flexible transit services, vol. 53. Transport Res BoardGoogle Scholar
  18. Laporte G (2009) Fifty years of vehicle routing. Transp Sci 43(4):408–416 (2009). doi: 10.1287/trsc.1090.0301 http://pubsonline.informs.org/doi/abs/10.1287/trsc.1090.0301
  19. Laws R, Enoch MP, Ison SG, Potter S (2009) Demand responsive transport: a review of schemes in england and walesGoogle Scholar
  20. Levine J, Hong Q, Hug GE, Rodriguez D (2000) Impacts of an advanced public transportation system demonstration project. Transp Res Record J Transp Res Board 1735(1):169–177CrossRefGoogle Scholar
  21. Li X, Quadrifoglio L (2009) Optimal zone design for feeder transit services. Transp Res Record J Transp Res Board 2111(1):100–108CrossRefGoogle Scholar
  22. Li X, Quadrifoglio L (2010) Feeder transit services: choosing between fixed and demand responsive policy. Transp Res Part C Emerg Technol 18(5):770–780. Applications of Advanced Technologies in Transportation: Selected papers from the 10th AATT Conference. doi: 10.1016/j.trc.2009.05.015 http://www.sciencedirect.com/science/article/pii/S0968090X09000801
  23. Martí R, Moreno-Vega JM, Duarte A (2010) Advanced multi-start methods. In: Handbook of Metaheuristics, pp. 265–281. SpringerGoogle Scholar
  24. Masson R, Lehuede F, Peton O (2014) The dial-a-ride problem with transfers. Comput Oper Res 41:12–23CrossRefGoogle Scholar
  25. McGuckin NA, Srinivasan N (2003) Journey to work in the united states and its major metropolitan areas-1960-2000. Tech RepGoogle Scholar
  26. Muelas S, LaTorre A, Pena JM (2013) A variable neighborhood search algorithm for the optimization of a dial-a-ride problem in a large city. Expert Syst Appl 40(14):5516–5531. http://www.sciencedirect.com/science/article/pii/S0957417413002522
  27. Mulley C, Nelson JD (2009) Flexible transport services: a new market opportunity for public transport. Res Trans Econ 25(1):39–45CrossRefGoogle Scholar
  28. Nelson JD, Wright S, Masson B, Ambrosino G, Naniopoulos A (2010) Recent developments in flexible transport services. Res Trans Econ 29(1):243–248CrossRefGoogle Scholar
  29. Parragh SN, Doerner KF, Hartl RF (2008) A survey on pickup and delivery problems. J fur Betriebswirtschaft 58(1):21–51. doi: 10.1007/s11301-008-0033-7 http://dx.doi.org/10.1007/s11301-008-0033-7
  30. Parragh SN, Doerner KF, Hartl RF (2010) Variable neighborhood search for the dial-a-ride problem. Comput Oper Res 37(6):1129–1138CrossRefGoogle Scholar
  31. Polacek M, Hartl RF, Doerner K, Reimann M (2004) A variable neighborhood search for the multi depot vehicle routing problem with time windows. J Heuristics 10(6):613–627CrossRefGoogle Scholar
  32. Potts JF, Marshall MA, Crockett EC, Washington J (2010) A guide for planning and operating flexible public transportation services. Project B-35Google Scholar
  33. Quadrifoglio L, Dessouky MM, Ordonez F (2008) A simulation study of demand responsive transit system design. Trans Res Part A Policy Pract 42(4):718–737. doi: 10.1016/j.tra.2008.01.018 http://www.sciencedirect.com/science/article/pii/S0965856408000256
  34. Sevilla FC, de Blas CS (2003) Vehicle routing problem with time windows and intermediate facilities. SEIO 003 Edicions de la Universitat de Lleida pp. 3088–3096Google Scholar
  35. Shen CW, Quadrifoglio L (2012) Evaluation of zoning design with transfers for paratransit services. Transp Res Record J Transp Res Board 2277(1):82–89CrossRefGoogle Scholar
  36. Taillard ED, Laporte G, Gendreau M (1996) Vehicle routeing with multiple use of vehicles. J Oper Res Soc 47:1065–1070CrossRefGoogle Scholar
  37. Velaga NR, Nelson JD, Wright SD, Farrington JH (2012) The potential role of flexible transport services in enhancing rural public transport provision. J Public Transp 15(1):111–131CrossRefGoogle Scholar
  38. Vidal T, Crainic T, Gendreau M, Lahrichi N, Rei W (2012) A hybrid genetic algorithm for multidepot and periodic vehicle routing problems. Oper Res 60:611–624CrossRefGoogle Scholar
  39. Vidal T, Crainic TG, Gendreau M, Prins C (2013) Heuristics for multi-attribute vehicle routing problems: a survey and synthesis. Eur J Oper Res 231(1):1–21 doi: 10.1016/j.ejor.2013.02.053 http://www.sciencedirect.com/science/article/pii/S0377221713002026
  40. Vidal T, Crainic TG, Gendreau M, Prins C (2014) A unified solution framework for multi-attribute vehicle routing problems. Eur J Oper Res 234(3):658–673 (2014). doi: 10.1016/j.ejor.2013.09.045 http://www.sciencedirect.com/science/article/pii/S037722171300800X
  41. Wright S (2013) Designing flexible transport services: guidelines for choosing the vehicle type. Transp Plan Technol 36(1):76–92CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and EURO - The Association of European Operational Research Societies 2014

Authors and Affiliations

  1. 1.University of NewcastleCallaghanAustralia

Personalised recommendations