Advertisement

Ten years of feasibility pump, and counting

  • Timo Berthold
  • Andrea LodiEmail author
  • Domenico Salvagnin
Review
  • 20 Downloads

Abstract

The Feasibility Pump (fp) is probably the best-known primal heuristic for mixed-integer programming. The original work by Fischetti et al. (Math Program 104(1):91–104, 2005), which introduced the heuristic for 0–1 mixed-integer linear programs, has been succeeded by more than twenty follow-up publications which improve the performance of the fp and extend it to other problem classes. Year 2015 was the tenth anniversary of the first fp publication. The present paper provides an overview of the diverse Feasibility Pump literature that has been presented over the last decade.

Keywords

Mixed-integer programming Primal heuristics Mixed-integer programming solvers 

Mathematics Subject Classification

90C11 90C57 90C59 

Notes

Acknowledgements

The authors are indebted to two anonymous referees for their detailed reading and useful comments. The first author acknowledges the support of the Research Campus Modal funded by the German Federal Ministry of Education and Research (Fund Number 05M14ZAM).

References

  1. Achterberg T (2010) LP basis selection and cutting planes. Presentation slides from MIP 2010 workshop in Atlanta. https://www.isye.gatech.edu/news-events/events/past-conferences/2010-mixed-integer-programming-workshop
  2. Achterberg T (2011) LP relaxation modification and cut selection in a MIP solver. US Patent, US20110131167Google Scholar
  3. Achterberg T, Berthold T (2007) Improving the feasibility pump. Discrete Optim Spec Issue 4(1):77–86CrossRefGoogle Scholar
  4. Baena D, Castro J (2011) Using the analytic center in the feasibility pump. Oper Res Lett 39(5):310–317CrossRefGoogle Scholar
  5. Belotti P, Berthold T (2016) Three ideas for a feasibility pump for nonconvex MINLP. Optim Lett 11(1):3–15CrossRefGoogle Scholar
  6. Bertacco L, Fischetti M, Lodi A (2007) A feasibility pump heuristic for general mixed-integer problems. Discrete Optim Spec Issue 4(1):63–76CrossRefGoogle Scholar
  7. Berthold T, Salvagnin D (2013) Cloud branching. In: Gomes C, Sellmann M (eds) Integration of AI and OR techniques in constraint programming for combinatorial optimization problems. Lecture notes in computer science, vol 7874. Springer, Berlin, pp 28–43CrossRefGoogle Scholar
  8. Boland NL, Eberhard AC, Engineer FG, Fischetti M, Savelsbergh MWP, Tsoukalas A (2014) Boosting the feasibility pump. Math Program Comput 6(3):255–279CrossRefGoogle Scholar
  9. Boland NL, Eberhard AC, Engineer FG, Tsoukalas A (2012) A new approach to the feasibility pump in mixed integer programming. SIAM J Optim 22(3):831–861CrossRefGoogle Scholar
  10. Bonami P, Biegler LT, Conn AR, Cornuéjols G, Grossmann IE, Laird CD, Lee J, Lodi A, Margot F, Sawaya N, Wächter A (2008) An algorithmic framework for convex mixed integer nonlinear programs. Discrete Optim 5:186–204CrossRefGoogle Scholar
  11. Bonami P, Cornuéjols G, Lodi A, Margot F (2009) A feasibility pump for mixed integer nonlinear programs. Math Program 119(2):331–352CrossRefGoogle Scholar
  12. Bonami P, Gonçalves J (2012) Heuristics for convex mixed integer nonlinear programs. Comput Optim Appl 51:729–747CrossRefGoogle Scholar
  13. Bosco A, Laganà D, Musmanno R, Vocaturo F (2013) Modeling and solving the mixed capacitated general routing problem. Optim Lett 7(7):1451–1469CrossRefGoogle Scholar
  14. Brearley A, Mitra G, Williams H (1975) Analysis of mathematical programming problems prior to applying the simplex algorithm. Math Program 8:54–83CrossRefGoogle Scholar
  15. Cafieri S, D’Ambrosio C (2017) Feasibility pump for aircraft deconfliction with speed regulation. J Glob Optim 71(3):501–515CrossRefGoogle Scholar
  16. D’Ambrosio C (2009) Application-oriented mixed integer non-linear programming. Ph.D. Thesis, University of BolognaGoogle Scholar
  17. D’Ambrosio C, Frangioni A, Liberti L, Lodi A (2010) Experiments with a feasibility pump approach for nonconvex MINLPs. In: Festa P (ed) Experimental algorithms. Lecture notes in computer science, vol 6049. Springer, Berlin Heidelberg, pp 350–360Google Scholar
  18. D’Ambrosio C, Frangioni A, Liberti L, Lodi A (2012) A storm of feasibility pumps for nonconvex MINLP. Math Program 136:375–402CrossRefGoogle Scholar
  19. De Santis M, Lucidi S, Rinaldi F (2013) A new class of functions for measuring solution integrality in the feasibility pump approach. SIAM J Optim 23(3):1575–1606CrossRefGoogle Scholar
  20. De Santis M, Lucidi S, Rinaldi F (2014) Feasibility pump-like heuristics for mixed integer problems. Discrete Appl Math 165:152–167CrossRefGoogle Scholar
  21. Dey S (2017) Personal communicationGoogle Scholar
  22. Dey S, Iroume A, Molinaro M, Salvagnin D. Exploiting sparsity of MILPs by improving the randomization step in feasibility pump. SIAM J Optim (to appear)Google Scholar
  23. Duran MA, Grossmann IE (1986) An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math Program 36(3):307–339CrossRefGoogle Scholar
  24. Eckstein J, Nediak M (2007) Pivot, cut, and dive: a heuristic for 0–1 mixed integer programming. J Heuristics 13(5):471–503CrossRefGoogle Scholar
  25. Fischetti M, Glover F, Lodi A (2005) The feasibility pump. Math Program 104(1):91–104CrossRefGoogle Scholar
  26. Fischetti M, Lodi A (2003) Local branching. Math Program 98(1–3):23–47CrossRefGoogle Scholar
  27. Fischetti M, Lodi A (2008) Repairing MIP infeasibility through local branching. Comput Oper Res 35(5):1436–1445CrossRefGoogle Scholar
  28. Fischetti M, Monaci M (2014) Proximity search for 0–1 mixed-integer convex programming. J Heuristics 20(6):709–731CrossRefGoogle Scholar
  29. Fischetti M, Salvagnin D (2009) Feasibility pump 2.0. Math Program Comput 1:201–222CrossRefGoogle Scholar
  30. Frank M, Wolfe P (1956) An algorithm for quadratic programming. Naval Res Logist Q 3(1–2):95–110CrossRefGoogle Scholar
  31. Geißler B, Morsi A, Schewe L, Schmidt M (2017) Penalty alternating direction methods for mixed-integer optimization: a new view on feasibility pumps. SIAM J Optim 27:1611–1636CrossRefGoogle Scholar
  32. Guyon O, Lemaire P, Pinson E, Rivreau D (2009) Near optimal and optimal solutions for an integrated employee timetabling and production scheduling problem. IFAC Proc Vol 42(4):1523–1528CrossRefGoogle Scholar
  33. Hanafi S, Lazić J, Mladenović N (2010) Variable neighbourhood pump heuristic for 0–1 mixed integer programming feasibility. Electron Notes Discrete Math 36:759–766CrossRefGoogle Scholar
  34. Li M, Liu Q (2017) Inexact feasibility pump for mixed integer nonlinear programming. Inf Process Lett 118:110–116CrossRefGoogle Scholar
  35. Misener R, Floudas CA (2012) Global optimization of mixed-integer quadratically-constrained quadratic programs (MIQCQP) through piecewise-linear and edge-concave relaxations. Math Program 136(1):155–182CrossRefGoogle Scholar
  36. Naoum-Sawaya J (2013) Recursive central rounding for mixed integer programs. Comput Oper Res 43:191–200CrossRefGoogle Scholar
  37. Pal A, Charkhgard H (2017) A feasibility pump and local search based heuristic for bi-objective pure integer linear programming. Technical Report 5902, Optimization OnlineGoogle Scholar
  38. Perregaard M (2017) How MILP solvers can benefit from Interior Point solutions. Presentation slides from MIP 2017 workshop in Montréal. https://sites.google.com/site/mipworkshop2017/home
  39. Pesneau P, Sadykov R, Vanderbeck F (2012) Feasibility pump heuristics for column generation approaches. In: 11th International symposium on experimental algorithms (SEA 2012), pp 332–343CrossRefGoogle Scholar
  40. Requejo C, Santos E (2017) A feasibility pump and a local branching heuristics for the weight-constrained minimum spanning tree problem. In: Gervasi O, Murgante B, Misra S, Borruso G, Torre CM, Rocha AMA, Taniar D, Apduhan BO, Stankova E, Cuzzocrea A (eds) Computational science and its applications—ICCSA 2017: 17th international conference, Trieste, Italy, July 3–6, 2017, Proceedings, Part II, pp 669–683. Springer International Publishing, ChamGoogle Scholar
  41. Schöning U (1999) A probabilistic algorithm for k-SAT and constraint satisfaction problems. In: FOCS: IEEE symposium on foundations of computer science (FOCS)Google Scholar
  42. Sharma S (2013) Mixed-integer nonlinear programming heuristics applied to a shale gas production optimization problem. Master’s Thesis. Norwegian University of Science and TechnologyGoogle Scholar
  43. Sharma S, Knudsen BR, Grimstad B (2014) Towards an objective feasibility pump for convex MINLPs. Comput Optim Appl 63(3):737–753CrossRefGoogle Scholar
  44. Sonnevend G (1986) An “analytical centre” for polyhedrons and new classes of global algorithms for linear (smooth, convex) programming. In: Prékopa A, Szelezsáan J, Strazicky B (eds) System modelling and optimization. Lecture notes in control and information sciences, vol 84. Springer, Berlin, pp 866–875Google Scholar
  45. Vigerske S (2013) Decomposition in multistage stochastic programming and a constraint integer programming approach to mixed-integer nonlinear programming. Ph.D. Thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät IIGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature and EURO - The Association of European Operational Research Societies 2018

Authors and Affiliations

  1. 1.Fair IsaacBerlinGermany
  2. 2.CERC and École Polytechnique de MontréalMontrealCanada
  3. 3.DEI, University of PadovaPaduaItaly

Personalised recommendations