EURO Journal on Computational Optimization

, Volume 5, Issue 3, pp 423–454 | Cite as

Variable neighborhood search: basics and variants

  • Pierre Hansen
  • Nenad Mladenović
  • Raca Todosijević
  • Saïd Hanafi
Original Paper

Abstract

Variable neighborhood search (VNS) is a framework for building heuristics, based upon systematic changes of neighborhoods both in a descent phase, to find a local minimum, and in a perturbation phase to escape from the corresponding valley. In this paper, we present some of VNS basic schemes as well as several VNS variants deduced from these basic schemes. In addition, the paper includes parallel implementations and hybrids with other metaheuristics.

Keywords

Variable neighborhood search Metaheuristic Heuristic 

Mathematics Subject Classification

90C59 68T20 68W25 

References

  1. Audet C, Béchard V, Le Digabel S (2008) Nonsmooth optimization through mesh adaptive direct search and variable neighborhood search. J Global Optim 41(2):299–318CrossRefGoogle Scholar
  2. Audet C, Brimberg J, Hansen P, Digabel SL, Mladenović N (2004) Pooling problem: alternate formulations and solution methods. Manag Sci 50(6):761–776CrossRefGoogle Scholar
  3. Balas E, Martin C (1980) Pivot and complement-a heuristic for 0–1 programming. Manag Sci 26:86–96CrossRefGoogle Scholar
  4. Belhaiza S, Hansen P, Laporte G (2014) A hybrid variable neighborhood tabu search heuristic for the vehicle routing problem with multiple time windows. Comput Oper Res 52:269–281CrossRefGoogle Scholar
  5. Bierlaire M, Thémans M, Zufferey N (2010) A heuristic for nonlinear global optimization. INFORMS J Comput 22(1):59–70CrossRefGoogle Scholar
  6. Brimberg J, Hansen P, Mladenovic N, Taillard ED (2000) Improvements and comparison of heuristics for solving the uncapacitated multisource weber problem. Oper Res 48(3):444–460CrossRefGoogle Scholar
  7. Brimberg J, Mladenović N, Urošević D (2015) Solving the maximally diverse grouping problem by skewed general variable neighborhood search. Inf Sci 295:650–675CrossRefGoogle Scholar
  8. Bussieck MR, Drud AS, Meeraus A (2003) Minlplib—a collection of test models for mixed-integer nonlinear programming. INFORMS J Comput 15(1):114–119CrossRefGoogle Scholar
  9. Carrizosa E, Dražić M, Dražić Z, Mladenović N (2012) Gaussian variable neighborhood search for continuous optimization. Comput Oper Res 39(9):2206–2213CrossRefGoogle Scholar
  10. Carrizosa E, Mladenović N, Todosijević R (2013) Variable neighborhood search for minimum sum-of-squares clustering on networks. Eur J Oper Res 230(2):356–363CrossRefGoogle Scholar
  11. Crainic TG, Gendreau M, Hansen P, Mladenović N (2004) Cooperative parallel variable neighborhood search for the p-median. J Heuristics 10(3):293–314CrossRefGoogle Scholar
  12. Davidovic T, Crainic TG (2013) Parallelization strategies for variable neighborhood search. Tecnical report CIRRELT—2013–47Google Scholar
  13. Di Gaspero L, Schaerf A (2006) Neighborhood portfolio approach for local search applied to timetabling problems. J Math Model Algorithms 5(1):65–89CrossRefGoogle Scholar
  14. de Armas J, Melián-Batista B (2015) Variable neighborhood search for a dynamic rich vehicle routing problem with time windows. Comput Indus Eng 85:120–131CrossRefGoogle Scholar
  15. Dražić M, Lavor C, Maculan N, Mladenović N (2008) A continuous variable neighbourhood search heuristic for finding the tridimensional structure of a molecule. Eur J Oper Res 185:1265–1273CrossRefGoogle Scholar
  16. Dražić M, Dražić Z, Mladenović N, Urošević D, Zhao QH (2014) Continuous variable neighbourhood search with modified nelder–mead for non-differentiable optimization. IMA J Manag Math. doi:10.1093/imaman/dpu012
  17. Drazić M, Kovacevic-Vujcić V, Cangalović M, Mladenović N (2006) Glob—a new vns-based software for global optimization. In: Global optimization, Springer, pp 135–154Google Scholar
  18. Eskandarpour M, Zegordi SH, Nikbakhsh E (2013) A parallel variable neighborhood search for the multi-objective sustainable post-sales network design problem. Int J Prod Econ 145(1):117–131CrossRefGoogle Scholar
  19. Fischetti M, Glover F, Lodi A (2005) The feasibility pump. Math Program 104(1):91–104CrossRefGoogle Scholar
  20. Fischetti M, Lodi A (2003) Local branching. Math Prog 98:23–47CrossRefGoogle Scholar
  21. Fletcher R, Leyffer S (1998) Numerical experience with lower bounds for miqp branch-and-bound. SIAM J Optim 8(2):604–616CrossRefGoogle Scholar
  22. García-López F, Melián-Batista B, Moreno-Pérez JA, Moreno-Vega JM (2002) The parallel variable neighborhood search for the p-median problem. J Heuristics 8(3):375–388CrossRefGoogle Scholar
  23. Gill PE, Murray W, Saunders MA (2002) Snopt: an sqp algorithm for large-scale constrained optimization. SIAM J Optim 12(4):979–1006CrossRefGoogle Scholar
  24. Glover F, McMillan C, Glover R (1984) A heuristic programming approach to the employee scheduling problem and some thoughts on managerial robots. J Oper Manag 4(2):113–128CrossRefGoogle Scholar
  25. Hanafi S, Lazić J, Mladenović N (2010) Variable neighbourhood pump heuristic for 0–1 mixed integer programming feasibility. Electron Notes Discrete Math 36:759–766CrossRefGoogle Scholar
  26. Hanafi S, Lazić J, Mladenović N, Wilbaut C, Crévits I (2010) Hybrid variable neighbourhood decomposition search for 0–1 mixed integer programming problem. Electron Notes Discrete Math 36:883–890CrossRefGoogle Scholar
  27. Hansen P, Brimberg J, Uroševic D, Mladenovic N (2007) Primal-dual variable neighborhood search for the simple plant-location problem. INFORMS J Comput 19(4):552–564CrossRefGoogle Scholar
  28. Hansen P, Mladenović N (2006) First vs. best improvement: an empirical study. Discrete Appl Math 154(5):802–817CrossRefGoogle Scholar
  29. Hansen P, Mladenović N, Pérez JAM (2010) Variable neighbourhood search: methods and applications. Ann Oper Res 175(1):367–407CrossRefGoogle Scholar
  30. Hansen P, Mladenović N, Perez-Britos D (2001) Variable neighborhood decomposition search. J Heuristics 7(4):335–350CrossRefGoogle Scholar
  31. Hansen P, Mladenović N, Urosević D (2006) Variable neighborhood search and local branching. Comput Oper Res 33(10):3034–3045CrossRefGoogle Scholar
  32. Ilić A, Urošević D, Brimberg J, Mladenović N (2010) A general variable neighborhood search for solving the uncapacitated single allocation p-hub median problem. Eur J Oper Res 206(2):289–300CrossRefGoogle Scholar
  33. Johnson DS, McGeoch L (1997) The traveling salesman problem: a case study in local optimization. In: Aarts E, Lenstra J (eds) Local search in combinatorial optimization. Wiley, New York, pp 215–310Google Scholar
  34. Khemakhem M, Haddar B, Chebil K, Hanafi S (2012) A filter-and-fan metaheuristic for the 0–1 multidimensional knapsack problem. Int. J. Appl Metaheuristic Comput 3:43–63CrossRefGoogle Scholar
  35. Kirkpatrick S, Toulouse G (1985) Configuration space analysis of traveling salesman problems. J Phys 46:1277–1292CrossRefGoogle Scholar
  36. Kirlik G, Oguz C (2012) A variable neighborhood search for minimizing total weighted tardiness with sequence dependent setup times on a single machine. Comput Oper Res 39(7):1506–1520CrossRefGoogle Scholar
  37. Knausz M (2008) Parallel variable neighbourhood search for the car sequencing problem. Tecnical report, Fakultat fur Informatik der Technischen Universitat WienGoogle Scholar
  38. Lazić J, Hanafi S, Mladenović N, Urosević D (2010) Variable neighbourhood decomposition search for 0–1 mixed integer programs. Comput Oper Res 37:1055–1067CrossRefGoogle Scholar
  39. Lazić J, Todosijević R, Hanafi S, Mladenović N (2014) Variable and single neighbourhood diving for mip feasibility. Yugoslav J Oper Res. doi:10.2298/YJOR140417027L
  40. Li J, Pan Q, Wang F (2014) A hybrid variable neighborhood search for solving the hybrid flow shop scheduling problem. Appl Soft Comput 24:63–77CrossRefGoogle Scholar
  41. Liberti L, Lavor C, Maculan N, Marinelli F (2009) Double variable neighbourhood search with smoothing for the molecular distance geometry problem. J Global Optim 43:207–218CrossRefGoogle Scholar
  42. Liberti L, Mladenović N, Nannicini G (2011) A recipe for finding good solutions to MINLPs. Math Program Comput 3:349–390CrossRefGoogle Scholar
  43. Liberti L, Nannicini G, Mladenović N (2010) A good recipe for solving minlps. In: Maniezzo V, Stuetze T, Voss S (eds) MATHEURISTICS: hybridizing metaheuristics and mathematical programming, Operations Research/Computer Science Interface Series. Springer, Berlin, pp 231–244Google Scholar
  44. Lü Z, Hao JK, Glover F (2011) Neighborhood analysis: a case study on curriculum-based course timetabling. J Heuristics 17(2):97–118CrossRefGoogle Scholar
  45. Mjirda A, Todosijević R, Hanafi S, Hansen P, Mladenović N (2016) Sequential variable neighborhood descent variants: an empirical study on the traveling salesman problem. Int Trans Oper Res. doi:10.1111/itor.12282
  46. Mladenović N, Dražić M, Kovačevic-Vujčić V, Čangalović M (2008) General variable neighborhood search for the continuous optimization. Eur J Oper Res 191(3):753–770CrossRefGoogle Scholar
  47. Mladenović N, Hansen P (1997) Variable neighborhood search. Comput Oper Res 24(11):1097–1100CrossRefGoogle Scholar
  48. Mladenović N, Petrović J, Kovačević-Vujčić V, Čangalović M (2003) Solving spread spectrum radar polyphase code design problem by tabu search and variable neighbourhood search. Eur J Oper Res 151(2):389–399CrossRefGoogle Scholar
  49. Mladenović N, Plastria F, Urošević D (2005) Reformulation descent applied to circle packing problems. Comput Oper Res 32(9):2419–2434CrossRefGoogle Scholar
  50. Mladenović N, Todosijević R, Urošević D (2013) An efficient general variable neighborhood search for large travelling salesman problem with time windows. Yugoslav J Oper Res 23(1):19–31CrossRefGoogle Scholar
  51. Mladenović N, Todosijević R, Urošević D (2014) Two level general variable neighborhood search for attractive traveling salesman problem. Comput Oper Res 52:341–348CrossRefGoogle Scholar
  52. Mladenović N, Urošević D, Perez-Brito D (2014) Variable neighborhood search for minimum linear arrangement problem. Yugoslav J Oper Res. doi:10.2298/YJOR140928038M
  53. Oliveira T, Coelho V, Souza MJF, Boava DLT, Boava F, Coelho IM, Coelho BN (2015) A hybrid variable neighborhood search algorithm for targeted offers in direct marketing. Electron Notes Discrete Math 47:205–212CrossRefGoogle Scholar
  54. Pardo EG, Mladenović N, Pantrigo JJ, Duarte A (2013) Variable formulation search for the cutwidth minimization problem. Appl Soft Comput 13(5):2242–2252CrossRefGoogle Scholar
  55. Pirkwieser S, Raidl GR (2009) Multiple variable neighborhood search enriched with ilp techniques for the periodic vehicle routing problem with time windows. In: Hybrid metaheuristics. Springer, pp 45–59Google Scholar
  56. Polacek M, Benkner S, Doerner KF, Hartl RF (2008) A cooperative and adaptive variable neighborhood search for the multi depot vehicle routing problem with time windows. BuR Bus Res 1(2):207–218CrossRefGoogle Scholar
  57. Rego C, Glover F (2010) Ejection chain and filter-and-fan methods in combinatorial optimization. Ann Oper Res 175(1):77–105CrossRefGoogle Scholar
  58. Reinelt G (1991) TSPLIB—a traveling salesman problem library. ORSA J Comput 3:376–384CrossRefGoogle Scholar
  59. Sánchez-Oro J, Sevaux M, Rossi A, Martí R, Duarte A (2015) Solving dynamic memory allocation problems in embedded systems with parallel variable neighborhood search strategies. Electron Notes Discrete Math 47:85–92CrossRefGoogle Scholar
  60. Sevkli M, Aydin ME (2007) Parallel variable neighbourhood search algorithms for job shop scheduling problems. IMA J Manag Math 18(2):117–133CrossRefGoogle Scholar
  61. Todosijević R, Benmansour R, Hanafi S, Mladenović N, Artiba A (2016) Nested general variable neighborhood search for the periodic maintenance problem. Eur J Oper Res 252(2):385–396CrossRefGoogle Scholar
  62. Todosijević R, Hanafi S, Urošević D, Jarboui B, Gendron B (2016) A general variable neighborhood search for the swap-body vehicle routing problem. Comput Oper Res. doi:10.1016/j.cor.2016.01.016
  63. Todosijević R, Mjirda A, Mladenović M, Hanafi S, Gendron B (2014) A general variable neighborhood search variants for the travelling salesman problem with draft limits. Optim Lett. doi:10.1007/s11590-014-0788-9
  64. Todosijević R, Mladenović M, Hanafi S, Crévits I (2012) Vns based heuristic for solving the unit commitment problem. Electron Notes Discrete Math 39:153–160CrossRefGoogle Scholar
  65. Todosijević R, Mladenović M, Hanafi S, Mladenović N, Crévits I (2016) Adaptive general variable neighborhood search heuristics for solving the unit commitment problem. Int J Electr Power Energy Syst 78:873–883CrossRefGoogle Scholar
  66. Todosijević R, Urošević D, Mladenović N, Hanafi S (2015) A general variable neighborhood search for solving the uncapacitated r-allocation p-hub median problem. Optim Lett. doi:10.1007/s11590-015-0867-6
  67. Toksarı MD, Güner E (2007) Solving the unconstrained optimization problem by a variable neighborhood search. J Math Anal Appl 328(2):1178–1187CrossRefGoogle Scholar
  68. Wu Q, Hao JK, Glover F (2012) Multi-neighborhood tabu search for the maximum weight clique problem. Ann Oper Res 196(1):611–634CrossRefGoogle Scholar
  69. Yazdani M, Amiri M, Zandieh M (2010) Flexible job-shop scheduling with parallel variable neighborhood search algorithm. Expert Syst Appl 37(1):678–687CrossRefGoogle Scholar
  70. Zhao Q, Mladenovic N, Uroševic D (2012) A parametric simplex search for unconstrained optimization problem. Trans Adv Res 8:22–27Google Scholar
  71. Zhao QH, Urosević D, Mladenović N, Hansen P (2009) A restarted and modified simplex search for unconstrained optimization. Comput Oper Res 36(12):3263–3271CrossRefGoogle Scholar

Copyright information

© EURO - The Association of European Operational Research Societies 2016

Authors and Affiliations

  • Pierre Hansen
    • 1
  • Nenad Mladenović
    • 2
    • 3
  • Raca Todosijević
    • 2
    • 3
  • Saïd Hanafi
    • 2
  1. 1.GERAD and HEC MontréalMontréalCanada
  2. 2.LAMIH-UVHC, CNRS UMR 8201Valenciennes Cedex 9France
  3. 3.Mathematical InstituteSANUBelgradeSerbia

Personalised recommendations