Advertisement

Photocutaneous Porphyrias

  • Maureen B. Poh-FitzpatrickEmail author
Photodermatology (B Adler and V DeLeo, Section Editor)
  • 1 Downloads
Part of the following topical collections:
  1. Topical Collection on Photodermatology

Abstract

Purpose of Review

Porphyrias are a group of eight uncommon-to-rare inherited or acquired metabolic disorders, each caused by enzyme dysfunction at various steps in the heme biosynthetic pathway. Photocutaneous porphyrias are a subset characterized by acute skin pain and/or chronic skin lesions as major features of disease signs and symptoms. Clinical and laboratory features, epidemiology, genetics, pathologic mechanisms, and current and future therapies of the photocutaneous porphyrias are discussed, with emphasis on information reflected in recent literature.

Recent Findings

Clinical and laboratory investigations of the last two decades have elucidated many aspects of the several porphyrias, especially in areas of genetics and genomic medicine. Published reviews, original investigations, and case reports of the last several years are too voluminous to list exhaustively; many are cited in literature referenced herein.

Summary

Recent progress in unraveling and solving enigmas posed by porphyrias suggests that newer and better approaches to their management, and possible life-altering, or even curative, therapies can be anticipated in the foreseeable future.

Keywords

Erythropoietic porphyrias Hepatic porphyrias Acute porphyrias Cutaneous porphyrias Cutaneous photosensitivity 

Notes

Compliance with Ethical Standards

Conflict of Interest

Maureen B. Poh-Fitzpatrick was an consultant for Clinuvel Pharmaceuticals.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects have been previously published and have complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Puy H, Gouya L, Deybach JC. Porphyrias. Lancet. 2010;375(9718):924–37.  https://doi.org/10.1016/S0140-6736(09)61925-5.CrossRefPubMedGoogle Scholar
  2. 2.
    Balwani M, Desnick RJ. The porphyrias: advances in diagnosis and treatment. Blood. 2012;120(23):4496–504.  https://doi.org/10.1182/blood-2012-05-423186.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Schulenberg-Brand D, Katugampola R, Badminton MN. The cutaneous porphyrias. Dermatol Clin. 2014;32(3):369–84.  https://doi.org/10.1016/j.det.2014.03.001.CrossRefGoogle Scholar
  4. 4.
    Besur S, Hou W, Schmeltzer P, Bonkovsky HL. Clinically important features of porphyrin and heme metabolism and the porphyrias. Metabolites. 2014;4(4):977–1006.  https://doi.org/10.3390/metabo4040977.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ramanujam VM, Anderson KE. Porphyria diagnostics-part 1: a brief overview of the porphyrias. Curr Protoc Hum Genet. 2015;86:17–20 1–6.  https://doi.org/10.1002/0471142905.hg1720s86.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Karim Z, Lyoumi S, Nicolas G, Deybach JC, Gouya L, Puy H. Porphyrias: a 2015 update. Clin Res Hepatol Gastroenterol. 2015;39(4):412–25.  https://doi.org/10.1016/j.clinre.2015.05.009.CrossRefPubMedGoogle Scholar
  7. 7.
    Bissell DM, Anderson KE, Bonkovsky HL. Porphyria. N Engl J Med. 2017;377(9):862–72.  https://doi.org/10.1056/NEJMra1608634.CrossRefPubMedGoogle Scholar
  8. 8.
    Yasuda M, Chen B, Desnick RJ. Recent advances on porphyria genetics: inheritance, penetrance & molecular heterogeneity, including new modifying/causative genes. Mol Genet Metab. 2018.  https://doi.org/10.1016/j.ymgme.2018.11.012.
  9. 9.
    • Ryan Caballes F, Sendi H, Bonkovsky HL. Hepatitis C, porphyria cutanea tarda and liver iron: an update. Liver Int. 2012;32(6):880–93.  https://doi.org/10.1111/j.1478-3231.2012.02794.x. Presents an overview of PCT, including the interconnected roles of iron, chronic hepatitis C infection, and hepcidin and updated management guidelines. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Badenas C, To Figueras J, Phillips JD, Warby CA, Munoz C, Herrero C. Identification and characterization of novel uroporphyrinogen decarboxylase gene mutations in a large series of porphyria cutanea tarda patients and relatives. Clin Genet. 2009;75(4):346–53.  https://doi.org/10.1111/j.1399-0004.2009.01153.x.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Egger NG, Goeger DE, Payne DA, Miskovsky EP, Weinman SA, Anderson KE. Porphyria cutanea tarda: multiplicity of risk factors including HFE mutations, hepatitis C, and inherited uroporphyrinogen decarboxylase deficiency. Dig Dis Sci. 2002;47(2):419–26.CrossRefPubMedGoogle Scholar
  12. 12.
    Phillips JD, Bergonia HA, Reilly CA, Franklin MR, Kushner JP. A porphomethene inhibitor of uroporphyrinogen decarboxylase causes porphyria cutanea tarda. Proc Natl Acad Sci U S A. 2007;104(12):5079–84.  https://doi.org/10.1073/pnas.0700547104.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Rossi E. Hepcidin--the iron regulatory hormone. Clin Biochem Rev. 2005;26(3):47–9.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Ajioka RS, Phillips JD, Weiss RB, Dunn DM, Smit MW, Proll SC, et al. Down-regulation of hepcidin in porphyria cutanea tarda. Blood. 2008;112(12):4723–8.  https://doi.org/10.1182/blood-2008-02-138222.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Darwich E, To Figueras J, Molina-López RA, Deulofeu R, Olbina G, Westerman M, et al. Increased serum hepcidin levels in patients with porphyria cutanea tarda. J Eur Acad Dermatol Venereol. 2013;27(1):e68–74.  https://doi.org/10.1111/j.1468-3083.2012.04511.x.CrossRefPubMedGoogle Scholar
  16. 16.
    Fracanzani AL, Taioli E, Sampietro M, Fatta E, Bertelli C, Fiorelli G, et al. Liver cancer risk is increased in patients with porphyria cutanea tarda in comparison to matched control patients with chronic liver disease. J Hepatol. 2001;35(4):498–503.CrossRefPubMedGoogle Scholar
  17. 17.
    Gisbert JP, García-Buey L, Alonso A, Rubio S, Hernández A, Pajares JM, et al. Hepatocellular carcinoma risk in patients with porphyria cutanea tarda. Eur J Gastroenterol Hepatol. 2004;16(7):689–92.CrossRefPubMedGoogle Scholar
  18. 18.
    Singal AK, Venkata KVR, Jampana S, Islam FU, Anderson KE. Hepatitis C treatment in patients with porphyria cutanea tarda. Am J Med Sci. 2017;353(6):523–8.  https://doi.org/10.1016/j.amjms.2017.03.007.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Pandya AG, Nezafati KA, Ashe-Randolph M, Yalamanchili R. Deferasirox for porphyria cutanea tarda: a pilot study. Arch Dermatol. 2012;148(8):898–901.  https://doi.org/10.1001/archdermatol.2012.807.CrossRefPubMedGoogle Scholar
  20. 20.
    Toback AC, Sassa S, Poh-Fitzpatrick MB, Schechter J, Zaider E, Harber LC, et al. Hepatoerythropoietic porphyria: clinical, biochemical, and enzymatic studies in a three-generation family lineage. N Engl J Med. 1987;316(11):645–50.  https://doi.org/10.1056/NEJM198703123161101.CrossRefPubMedGoogle Scholar
  21. 21.
    Hift RJ, Peters TJ, Meissner PN. A review of the clinical presentation, natural history and inheritance of variegate porphyria: its implausibility as the source of the ‘Royal Malady’. J Clin Pathol. 2012;65(3):200–5.  https://doi.org/10.1136/jclinpath-2011-200276.CrossRefPubMedGoogle Scholar
  22. 22.
    Elder G, Harper P, Badminton M, Sandberg S, Deybach JC. The incidence of inherited porphyrias in Europe. J Inherit Metab Dis. 2013;36(5):849–57.  https://doi.org/10.1007/s10545-012-9544-4.CrossRefPubMedGoogle Scholar
  23. 23.
    Singal AK, Anderson KE. Variegate Porphyria. 2013 Feb 14. In: Adam MP, Ardinger HH, Pagon RA, et al, editors. GeneReviews® [Internet]. Seattle: University of Washington, Seattle; 1993-2019. Available from: https://www.ncbi.nlm.nih.gov/books/NBK121283/. Accessed Jan 2019.
  24. 24.
    Hift RJ, Davidson BP, van der Hooft C, Meissner DM, Meissner PN. Plasma fluorescence scanning and fecal porphyrin analysis for the diagnosis of variegate porphyria: precise determination of sensitivity and specificity with detection of protoporphyrinogen oxidase mutations as a reference standard. Clin Chem. 2004;50(5):915–23.  https://doi.org/10.1373/clinchem.2003.025213.CrossRefPubMedGoogle Scholar
  25. 25.
    Anderson KE, Bloomer JR, Bonkovsky HL, Kushner JP, Pierach CA, Pimstone NR, et al. Recommendations for the diagnosis and treatment of the acute porphyrias. Ann Intern Med. 2005;142(6):439–50.CrossRefPubMedGoogle Scholar
  26. 26.
    Stein P, Badminton M, Barth J, Rees D, Stewart MF. Best practice guidelines on clinical management of acute attacks of porphyria and their complications. Ann Clin Biochem. 2013;50(Pt 3):217–23.  https://doi.org/10.1177/0004563212474555.CrossRefPubMedGoogle Scholar
  27. 27.
    •• Stein PE, Badminton MN, Rees DC. Update review of the acute porphyrias. Br J Haematol. 2017;176(4):527–38.  https://doi.org/10.1111/bjh.14459. An overview of all acute hepatic porphyrias, including a schematic of the heme pathway showing sites of deficient enzyme activity associated with each porphyria, a diagnostic algorithm, and treatment guidelines applicable to VP and HCP. CrossRefPubMedGoogle Scholar
  28. 28.
    Balwani M, Wang B, Anderson KE, Bloomer JR, Bissell D, Bonkovsky HL, et al. Acute hepatic porphyrias: recommendations for evaluation and long-term management. Hepatology. 2017;66(4):1314–22.  https://doi.org/10.1002/hep.29313.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Stojeba N, Meyer C, Jeanpierre C, Perrot F, Hirth C, Pottecher T, et al. Recovery from a variegate porphyria by a liver transplantation. Liver Transpl. 2004;10(7):935–8.  https://doi.org/10.1002/lt.20136.CrossRefPubMedGoogle Scholar
  30. 30.
    Schneider-Yin X, van Tuyll van Serooskerken AM, Went P, Tyblewski W, Poblete-Gutiérrez P, Minder EI, et al. Hepatocellular carcinoma in variegate porphyria: a serious complication. Acta Derm Venereol. 2010;90(5):512–5.  https://doi.org/10.2340/00015555-0870.CrossRefPubMedGoogle Scholar
  31. 31.
    Luvai A, Mbagaya W, Narayanan D, Degg T, Toogood G, Wyatt JI, et al. Hepatocellular carcinoma in variegate porphyria: a case report and literature review. Ann Clin Biochem. 2015;52(Pt 3):407–12.  https://doi.org/10.1177/0004563214557568.CrossRefPubMedGoogle Scholar
  32. 32.
    Wang B, Bissell DM. Hereditary Coproporphyria. 2012 Dec 13. In: Adam MP, Ardinger HH, Pagon R, et al., editors. GeneReviews® [Internet]. Seattle: University of Washington, Seattle; 1993-2019. Available from: https://www.ncbi.nlm.nih.gov/books/NBK114807/. Accessed Jan 2019.
  33. 33.
    • Pallet N, Karras A, Thervet E, Gouya L, Karim Z, Puy H. Porphyria and kidney diseases. Clin Kidney J. 2018;11(2):191–7.  https://doi.org/10.1093/ckj/sfx146. Summarizes the complex interactions of renal physiology and pathology with porphyrias, emphasizing their underestimated importance. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Stewart MF. Review of hepatocellular cancer, hypertension and renal impairment as late complications of acute porphyria and recommendations for patient follow-up. J Clin Pathol. 2012;65(11):976–80.  https://doi.org/10.1136/jclinpath-2012-200791.CrossRefPubMedGoogle Scholar
  35. 35.
    Peoc’h K, Manceau H, Karim Z, Wahlin S, Gouya L, Puy H, et al. Hepatocellular carcinoma in acute hepatic porphyrias: a Damocles Sword. Mol Genet Metab. 2018.  https://doi.org/10.1016/j.ymgme.2018.10.001.
  36. 36.
    Kühnel A, Gross U, Doss MO. Hereditary coproporphyria in Germany: clinical-biochemical studies in 53 patients. Clin Biochem. 2000;33(6):465–73.CrossRefPubMedGoogle Scholar
  37. 37.
    Willandt B, Langendonk JG, Biermann K, Meersseman W, D’Heygere F, George C, et al. Liver fibrosis associated with iron accumulation due to long-term heme-arginate treatment in acute intermittent porphyria: a case series. JIMD Rep. 2016;25:77–81.  https://doi.org/10.1007/8904_2015_458.CrossRefPubMedGoogle Scholar
  38. 38.
    Fontanellas A, Ávila MA, Berraondo P. Emerging therapies for acute intermittent porphyria. Expert Rev Mol Med. 2016;18:e17.  https://doi.org/10.1017/erm.2016.18.CrossRefPubMedGoogle Scholar
  39. 39.
    •• Whatley SD, Ducamp S, Gouya L, Grandchamp B, Beaumont C, Badminton MN, et al. C-terminal deletions in the ALAS2 gene lead to gain of function and cause X-linked dominant protoporphyria without anemia or iron overload. Am J Hum Genet. 2008;83(3):408–14.  https://doi.org/10.1016/j.ajhg.2008.08.003. Discovery of novel mutations in the ALAS2 gene in eight families leading to recognition of a new form of protoporphyria. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    •• Yien YY, Ducamp S, van der Vorm LN, Kardon JR, Manceau H, Kannengiesser C, et al. Mutation in human CLPX elevates levels of δ-aminolevulinate synthase and protoporphyrin IX to promote erythropoietic protoporphyria. Proc Natl Acad Sci U S A. 2017;114(38):E8045–52.  https://doi.org/10.1073/pnas.1700632114. Describes the identification and analysis of a dominant heterozygous mutation in the CLPX gene causing an EPP-like phenotype in a family, showing how impaired CLPX activity impacts heme metabolism, organismal physiology, and human health. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Whitman JC, Paw BH, Chung J. The role of ClpX in erythropoietic protoporphyria. Hematol Transfus Cell Ther. 2018;40(2):182–8.  https://doi.org/10.1016/j.htct.2018.03.001.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Gouya L, Deybach JC, Lamoril J, Da Silva V, Beaumont C, Grandchamp B, et al. Modulation of the phenotype in dominant erythropoietic protoporphyria by a low expression of the normal ferrochelatase allele. Am J Hum Genet. 1996;58(2):292–9.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Gouya L, Puy H, Robreau AM, Bourgeois M, Lamoril J, Da Silva V, et al. The penetrance of dominant erythropoietic protoporphyria is modulated by expression of wildtype FECH. Nat Genet. 2002;30(1):27–8.  https://doi.org/10.1038/ng809.CrossRefPubMedGoogle Scholar
  44. 44.
    Gouya L, Martin-Schmitt C, Robreau AM, Austerlitz F, Da Silva V, Brun P, et al. Contribution of a common single-nucleotide polymorphism to the genetic predisposition for erythropoietic protoporphyria. Am J Hum Genet. 2006;78(1):2–14.  https://doi.org/10.1086/498620.CrossRefPubMedGoogle Scholar
  45. 45.
    Whatley SD, Mason NG, Holme SA, Anstey AV, Elder GH, Badminton MN. Molecular epidemiology of erythropoietic protoporphyria in the UK. Br J Dermatol. 2010;162(3):642–6.  https://doi.org/10.1111/j.1365-2133.2010.09631.x.CrossRefPubMedGoogle Scholar
  46. 46.
    Schmitt C, Ducamp S, Gouya L, Deybach JC, Puy H. Inheritance in erythropoietic protoporphyria. Pathol Biol (Paris). 2010;58(5):372–80.  https://doi.org/10.1016/j.patbio.2010.01.007.CrossRefGoogle Scholar
  47. 47.
    Balwani M, Doheny D, Bishop DF, Nazarenko I, Yasuda M, Dailey HA, et al. Loss-of-function ferrochelatase and gain-of-function erythroid-specific 5-aminolevulinate synthase mutations causing erythropoietic protoporphyria and x-linked protoporphyria in North American patients reveal novel mutations and a high prevalence of x-linked protoporphyria. Mol Med. 2013;19:26–35.  https://doi.org/10.2119/molmed.2012.00340.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Whatley SD, Mason NG, Khan M, Zamiri M, Badminton MN, Missaoui WN, et al. Autosomal recessive erythropoietic protoporphyria in the United Kingdom: prevalence and relationship to liver disease. J Med Genet. 2004;41(8):e105.  https://doi.org/10.1136/jmg.2003.016121.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Holme SA, Whatley SD, Roberts AG, Anstey AV, Elder GH, Ead RD, et al. Seasonal palmar keratoderma in erythropoietic protoporphyria indicates autosomal recessive inheritance. J Investig Dermatol. 2009;129(3):599–605.  https://doi.org/10.1038/jid.2008.272.CrossRefPubMedGoogle Scholar
  50. 50.
    Méndez M, Poblete-Gutiérrez P, Morán-Jiménez MJ, Rodriguez ME, Garrido-Astray MC, Fontanellas A, et al. A homozygous mutation in the ferrochelatase gene underlies erythropoietic protoporphyria associated with palmar keratoderma. Br J Dermatol. 2009;160(6):1330–4.  https://doi.org/10.1111/j.1365-2133.2009.09084.x.CrossRefPubMedGoogle Scholar
  51. 51.
    Minder EI, Schneider-Yin X, Mamet R, Horev L, Neuenschwander S, Baumer A, et al. A homoallelic FECH mutation in a patient with both erythropoietic protoporphyria and palmar keratoderma. J Eur Acad Dermatol Venereol. 2010;24(11):1349–53.  https://doi.org/10.1111/j.1468-3083.2010.03640.x.CrossRefPubMedGoogle Scholar
  52. 52.
    Blagojevic D, Schenk T, Haas O, Zierhofer B, Konnaris C, Trautinger F. Acquired erythropoietic protoporphyria. Ann Hematol. 2010;89(7):743–4.  https://doi.org/10.1007/s00277-009-0859-7.CrossRefPubMedGoogle Scholar
  53. 53.
    Sarkany RP, Ross G, Willis F. Acquired erythropoietic protoporphyria as a result of myelodysplasia causing loss of chromosome 18. Br J Dermatol. 2006;155(2):464–6.  https://doi.org/10.1111/j.1365-2133.2006.07318.x.CrossRefPubMedGoogle Scholar
  54. 54.
    • Balwani M, Naik H, Anderson KE, Bissell DM, Bloomer J, Bonkovsky HL, et al. Clinical, biochemical, and genetic characterization of North American patientJAMA Dermatols with erythropoietic protoporphyria and X-linked protoporphyria. 2017;153(8):789–96.  https://doi.org/10.1001/jamadermatol.2017.1557. Clinical features, porphyrin levels, and genotypes in 187 patients with EPP and 22 with XLP are described; protoporphyrin levels correlate positively with disease severity. CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Anstey AV, Hift RJ. Liver disease in erythropoietic protoporphyria: insights and implications for management. Gut. 2007;56(7):1009–18.  https://doi.org/10.1136/gut.2006.097576.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    • Singal AK, Parker C, Bowden C, Thapar M, Liu L, McGuire BM. Liver transplantation in the management of porphyria. Hepatology. 2014;60(3):1082–9.  https://doi.org/10.1002/hep.27086. Rationales and indications for liver transplantation in several porphyrias, pre-transplant evaluations and preparations, and post-transplant management issues are presented. CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Rand EB, Bunin N, Cochran W, Ruchelli E, Olthoff KM, Bloomer JR. Sequential liver and bone marrow transplantation for treatment of erythropoietic protoporphyria. Pediatrics. 2006;118(6):e1896–9.  https://doi.org/10.1542/peds.2006-0833.CrossRefPubMedGoogle Scholar
  58. 58.
    Poh-Fitzpatrick MB, Wang X, Anderson KE, Bloomer JR, Bolwell B, Lichtin AE. Erythropoietic protoporphyria: altered phenotype after bone marrow transplantation for myelogenous leukemia in a patient heteroallelic for ferrochelatase gene mutations. J Am Acad Dermatol. 2002;46(6):861–6.CrossRefPubMedGoogle Scholar
  59. 59.
    Butler DF, Ginn KF, Daniel JF, Bloomer JR, Kats A, Shreve N, et al. Bone marrow transplant for X-linked protoporphyria with severe hepatic fibrosis. Pediatr Transplant. 2015;19(4):E106–10.  https://doi.org/10.1111/petr.12472.CrossRefPubMedGoogle Scholar
  60. 60.
    Rand EB, Bunin N, Cochran W, Ruchelli E, Olthoff KM, Bloomer JR. Sequential liver and bone marrow transplantation for treatment of erythropoietic protoporphyria. Pediatrics. 2006;118(6):e1896–9.  https://doi.org/10.1542/peds.2006-0833.CrossRefPubMedGoogle Scholar
  61. 61.
    Wahlin S, Stal P, Adam R, Karam V, Porte R, Seehofer D, et al. Liver transplantation for erythropoietic protoporphyria in Europe. Liver Transpl. 2011;17(9):1021–6.  https://doi.org/10.1002/lt.22341.CrossRefPubMedGoogle Scholar
  62. 62.
    Windon AL, Tondon R, Singh N, Abu-Gazala S, Porter DL, Russell JE, et al. Erythropoietic protoporphyria in an adult with sequential liver and hematopoietic stem cell transplantation: a case report. Am J Transplant. 2018;18(3):745–9.  https://doi.org/10.1111/ajt.14581.CrossRefPubMedGoogle Scholar
  63. 63.
    Wahlin S, Srikanthan N, Hamre B, Harper P, Brun A. Protection from phototoxic injury during surgery and endoscopy in erythropoietic protoporphyria. Liver Transpl. 2008;14(9):1340–6.  https://doi.org/10.1002/lt.21527.CrossRefPubMedGoogle Scholar
  64. 64.
    Holme SA, Anstey AV, Badminton MN, Elder GH. Serum 25-hydroxyvitamin D in erythropoietic protoporphyria. Br J Dermatol. 2008;159(1):211–3.  https://doi.org/10.1111/j.1365-2133.2008.08616.x.CrossRefPubMedGoogle Scholar
  65. 65.
    Biewenga M, Matawlie RH, Friesema ECH, Koole-Lesuis H, Langeveld M, Wilson JHP, et al. Osteoporosis in patients with erythropoietic protoporphyria. Br J Dermatol. 2017;177(6):1693–8.  https://doi.org/10.1111/bjd.15893.CrossRefPubMedGoogle Scholar
  66. 66.
    Balwani M, Bloomer J, Desnick R. Porphyrias. Erythropoietic protoporphyria, autosomal recessive. 2012 Sep 27 [Updated 2017 Sep 7]. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle: University of Washington, Seattle; 1993-2019. Available from: https://www.ncbi.nlm.nih.gov/books/NBK100826/. Accessed Jan 2019.
  67. 67.
    Bonkovsky HL, Rudnick S. Erythropoietic protoporphyria and X-linked protoporphyria. Merck Manuals Professional Version. Updated Feb 2017. Available from: https://www.merckmanuals.com/professional/endocrine-and-metabolic-disorders/porphyrias/erythropoietic-protoporphyria-and-x-linked-protoporphyria. Accessed Jan 2019.
  68. 68.
    Harms J, Lautenschlager S, Minder CE, Minder EI. An alpha-melanocyte-stimulating hormone analogue in erythropoietic protoporphyria. N Engl J Med. 2009;360(3):306–7.  https://doi.org/10.1056/NEJMc0805682.CrossRefPubMedGoogle Scholar
  69. 69.
    Harms JH, Lautenschlager S, Minder CE, Minder EI. Mitigating photosensitivity of erythropoietic protoporphyria patients by an agonistic analog of alpha-melanocyte stimulating hormone. Photochem Photobiol. 2009;85(6):1434–9.  https://doi.org/10.1111/j.1751-1097.2009.00595.x.CrossRefPubMedGoogle Scholar
  70. 70.
    • Langendonk JG, Balwani M, Anderson KE, Bonkovsky HL, Anstey A, Bissell DM, et al. Afamelanotide for erythropoietic protoporphyria. N Engl J Med. 2015;373(1):48–59.  https://doi.org/10.1056/NEJMoa1411481. Results of combined phase three clinical trials of a novel therapeutic agent indicating satisfactory efficacy was achieved and safety profiles were acceptable. CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Biolcati G, Marchesini E, Sorge F, Barbieri L, Schneider-Yin X, Minder EI. Long-term observational study of afamelanotide in 115 patients with erythropoietic protoporphyria. Br J Dermatol. 2015;172(6):1601–12.  https://doi.org/10.1111/bjd.13598.CrossRefPubMedGoogle Scholar
  72. 72.
    Holme SA, Worwood M, Anstey AV, Elder GH, Badminton MN. Erythropoiesis and iron metabolism in dominant erythropoietic protoporphyria. Blood. 2007;110(12):4108–10.  https://doi.org/10.1182/blood-2007-04-088120.CrossRefPubMedGoogle Scholar
  73. 73.
    Bossi K, Lee J, Schmeltzer P, Holburton E, Groseclose G, Besur S, et al. Homeostasis of iron and hepcidin in erythropoietic protoporphyria. Eur J Clin Investig. 2015;45(10):1032–41.  https://doi.org/10.1111/eci.12503.CrossRefGoogle Scholar
  74. 74.
    Landefeld C, Kentouche K, Gruhn B, Stauch T, Rößler S, Schuppan D, et al. X-linked protoporphyria: iron supplementation improves protoporphyrin overload, liver damage and anaemia. Br J Haematol. 2016;173(3):482–4.  https://doi.org/10.1111/bjh.13612.CrossRefPubMedGoogle Scholar
  75. 75.
    Balwani M, Bloomer J, Desnick R. X-linked Protoporphyria. 2013 Feb 14. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle: University of Washington, Seattle; 1993-2019. Available from: https://www.ncbi.nlm.nih.gov/books/NBK121284/. Accessed Jan 2019.
  76. 76.
    •• Katugampola RP, Badminton MN, Finlay AY, Whatley S, Woolf J, Mason N, et al. Congenital erythropoietic porphyria: a single-observer clinical study of 29 cases. Br J Dermatol. 2012;167(4):901–13.  https://doi.org/10.1111/j.1365-2133.2012.11160.x. Comprehensively details clinical phenotypes of CEP in a large number of cases; newly reported features include acute symptoms previously considered distinctive to protoporphyrias, expanding the differential diagnosis in patients with these complaints. CrossRefPubMedGoogle Scholar
  77. 77.
    Katugampola RP, Anstey AV, Finlay AY, Whatley S, Woolf J, Mason N, et al. A management algorithm for congenital erythropoietic porphyria derived from a study of 29 cases. Br J Dermatol. 2012;167(4):888–900.  https://doi.org/10.1111/j.1365-2133.2012.11154.x.CrossRefPubMedGoogle Scholar
  78. 78.
    Phillips JD, Steensma DP, Pulsipher MA, Spangrude GJ, Kushner JP. Congenital erythropoietic porphyria due to a mutation in GATA1: the first trans-acting mutation causative for a human porphyria. Blood. 2007;109(6):2618–21.  https://doi.org/10.1182/blood-2006-06-022848.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    • Di Pierro E, Russo R, Karakas Z, Brancaleoni V, Gambale A, Kurt I, et al. Congenital erythropoietic porphyria linked to GATA1-R216W mutation: challenges for diagnosis. Eur J Haematol. 2015;94(6):491–7.  https://doi.org/10.1111/ejh.12452. Discusses effects of GATA1 mutations on the CEP phenotype and illustrates the complexities of managing its features and complications. CrossRefPubMedGoogle Scholar
  80. 80.
    To Figueras J, Ducamp S, Clayton J, Badenas C, Delaby C, Ged C, et al. ALAS2 acts as a modifier gene in patients with congenital erythropoietic porphyria. Blood. 2011;118(6):1443–51.  https://doi.org/10.1182/blood-2011-03-342873.CrossRefPubMedGoogle Scholar
  81. 81.
    Robert-Richard E, Moreau-Gaudry F, Lalanne M, Lamrissi-Garcia I, Cario-André M, Guyonnet-Dupérat V, et al. Effective gene therapy of mice with congenital erythropoietic porphyria is facilitated by a survival advantage of corrected erythroid cells. Am J Hum Genet. 2008;82(1):113–24.  https://doi.org/10.1016/j.ajhg.2007.09.007.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Fortian A, González E, Castaño D, Falcon-Perez JM, Millet O. Intracellular rescue of the uroporphyrinogen III synthase activity in enzymes carrying the hotspot mutation C73R. J Biol Chem. 2011;286(15):13127–33.  https://doi.org/10.1074/jbc.M110.205849.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Blouin JM, Duchartre Y, Costet P, Lalanne M, Ged C, Lain A, et al. Therapeutic potential of proteasome inhibitors in congenital erythropoietic porphyria. Proc Natl Acad Sci U S A. 2013;110(45):18238–43.  https://doi.org/10.1073/pnas.1314177110.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Division of DermatologyColumbia University Vagelos College of Physicians and SurgeonsNew YorkUSA

Personalised recommendations