Advertisement

A Review of Botanicals Exhibiting Antifungal Activity Against Malassezia spp. Implicated in Common Skin Conditions

  • Stephanie K. Pintas
  • Cassandra L. QuaveEmail author
Infectious Disease and Dermatology (K Krishnamurthy and C Beard), Section Editors)
Part of the following topical collections:
  1. Topical Collection on Infectious Disease and Dermatology

Abstract

Purpose of Review

The integration of botanicals in commercial cosmeceuticals, personal care products, and home remedies has fostered a need for a better understanding of the potential efficacies of these interventions. This review identified plants with antifungal activity against Malassezia, a commensal yeast implicated in inflammatory skin conditions. We sought to discover plants with potent activity comparable or superior to current antifungal agents.

Recent Findings

Malassezia plays a unique role in the pathology of skin disease, encoding for extracellular lipases that initiate an inflammatory response on the surface of the skin and prevent attack through the creation of biofilms. Antifungal resistance is on the rise, with current agents demonstrating increasing minimum inhibitory concentrations when tested in vitro.

Summary

Several plant species exhibited anti-Malassezia activity, including Nyctanthes arbor-tristis, Allium sativum, and Hypericum perforatum, among others. We recommend further research aimed at identification of the plant secondary metabolites responsible for this activity.

Keywords

Botanicals Antifungal Cosmeceutical Tinea versicolor Atopic dermatitis Seborrheic dermatitis 

Notes

Funding Information

We gratefully acknowledge faculty development funds from the Emory University Department of Dermatology for support of this work.

Compliance with Ethical Standards

Conflict of Interest

The authors declare no conflict of interest regarding the publication of this review paper.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Grice EA, Segre JA. The skin microbiome. Nat Rev Microbiol. 2011;9(4):244–53.  https://doi.org/10.1038/nrmicro2537.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Gao Z, Perez-Perez GI, Chen Y, Blaser MJ. Quantitation of major human cutaneous bacterial and fungal populations. J Clin Microbiol. 2010;48(10):3575–81.  https://doi.org/10.1128/jcm.00597-10.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Farschian M, Yaghoobi R, Samadi K. Fluconazole versus ketoconazole in the treatment of tinea versicolor. J Dermatol Treat. 2002;13(2).  https://doi.org/10.1080/095466302317584421.CrossRefGoogle Scholar
  4. 4.
    Gupta AK, Batra R, Bluhm R, Boekhout T, Dawson TL. Skin diseases associated with Malassezia species. J Am Acad Dermatol. 2004;51(5):785–98.  https://doi.org/10.1016/j.jaad.2003.12.034.CrossRefPubMedGoogle Scholar
  5. 5.
    Sugita T, Zhang E, Tanaka T, Tajima M, Tsuboi R, Ishibashi Y, et al. Atopic dermatitis and skin fungal microorganisms. In: Esparza-Gordillo J, editor. Atopic dermatitis—disease etiology and clinical management: InTech; 2012. p. 123–40.Google Scholar
  6. 6.
    Brunke S, Hube B. MfLIP1, a gene encoding an extracellular lipase of the lipid-dependent fungus Malassezia furfur. Microbiology. 2006;152(2):547–54.  https://doi.org/10.1099/mic.0.28501-0.CrossRefPubMedGoogle Scholar
  7. 7.
    Harada K, Saito M, Sugita T, Tsuboi R. Malassezia species and their associated skin diseases. J Dermatol. 2015;42(3):250–7.  https://doi.org/10.1111/1346-8138.12700.CrossRefPubMedGoogle Scholar
  8. 8.
    Plotkin LI, Mathov I, Squiquera L, Leoni J. Arachidonic acid released from epithelial cells by Malassezia furfur phospholipase A2: a potential pathophysiologic mechanism. Mycologia. 1998;90(2):163–9.  https://doi.org/10.2307/3761291.CrossRefGoogle Scholar
  9. 9.
    Gupta AK, Nicol K, Batra R. Role of antifungal agents in the treatment of seborrheic dermatitis. Am J Clin Dermatol. 2004;5(6):417–22.CrossRefGoogle Scholar
  10. 10.
    Ruzicka T, Simmet T, Peskar BA, Ring J. Skin levels of arachidonic acid-derived inflammatory mediators and histamine in atopic dermatitis and psoriasis. J Investig Dermatol. 1986;86(2):105–8.CrossRefGoogle Scholar
  11. 11.
    •• Angiolella L, Leone C, Rojas F, Mussin J, de Los Angeles Sosa M, Giusiano G. Biofilm, adherence, and hydrophobicity as virulence factors in Malassezia furfur. Med Mycol. 2018;56(1):110–6.  https://doi.org/10.1093/mmy/myx014 Experimental study demonstrating the hydrophobicity and adherence of various Malassezia furfur strains. This was the first study confirming the development of Malassezia furfur biofilm by every isolate tested after 48 hours and delineates a key aspect of the pathogenesis of Malassezia species. CrossRefPubMedGoogle Scholar
  12. 12.
    Akaza N, Akamatsu H, Takeoka S, Mizutani H, Nakata S, Matsunaga K. Increased hydrophobicity in Malassezia species correlates with increased proinflammatory cytokine expression in human keratinocytes. Med Mycol. 2012;50(8):802–10.  https://doi.org/10.3109/13693786.2012.678019.CrossRefPubMedGoogle Scholar
  13. 13.
    Baroni A, Orlando M, Donnarumma G, Farro P, Iovene MR, Tufano MA, et al. Toll-like receptor 2 (TLR2) mediates intracellular signalling in human keratinocytes in response to Malassezia furfur. Arch Dermatol Res. 2006;297(7):280–8.  https://doi.org/10.1007/s00403-005-0594-4.CrossRefPubMedGoogle Scholar
  14. 14.
    Balkis MM, Leidich SD, Mukherjee PK, Ghannoum MA. Mechanisms of fungal resistance. Drugs. 2012;62(7):1025–40.  https://doi.org/10.2165/00003495-200262070-00004.CrossRefGoogle Scholar
  15. 15.
    Dessinioti C, Katsambas A. Seborrheic dermatitis: etiology, risk factors, and treatments: facts and controversies. Clin Dermatol. 2013;31(4):343–51.  https://doi.org/10.1016/j.clindermatol.2013.01.001.CrossRefPubMedGoogle Scholar
  16. 16.
    Loeffler J, Stevens DA. Antifungal drug resistance. Clin Infect Dis. 2003;36(Supplement 1):S31–41.  https://doi.org/10.1086/344658.CrossRefPubMedGoogle Scholar
  17. 17.
    Schwartz RA, Janusz CA, Janniger CK. Seborrheic dermatitis: an overview. Am Fam Physician. 2006;74(1):125–30.PubMedGoogle Scholar
  18. 18.
    Vandeputte P, Ferrari S, Coste AT. Antifungal resistance and new strategies to control fungal infections. Int J Microbiol. 2012;2012:1–26.  https://doi.org/10.1155/2012/713687.CrossRefGoogle Scholar
  19. 19.
    García Rodríguez LA, Duque A, Castellsague J, Pérez-Gutthann S, Stricker BHC. A cohort study on the risk of acute liver injury among users of ketoconazole and other antifungal drugs. Br J Clin Pharmacol. 1999;48(6):847–52.  https://doi.org/10.1046/j.1365-2125.1999.00095.x.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Shemer A, Nathansohn N, Kaplan B, Trau H. Itraconazole versus ketoconazole in the treatment of tinea versicolor. J Dermatol Treat. 1999;10(1):19–23.  https://doi.org/10.3109/09546639909055906.CrossRefGoogle Scholar
  21. 21.
    Rincón S, Cepero de García MC, Espinel-Ingroff A. A modified Christensen's urea and CLSI broth microdilution method for testing susceptibilities of six Malassezia species to voriconazole, itraconazole, and ketoconazole. J Clin Microbiol. 2006;44(9):3429–31.  https://doi.org/10.1128/jcm.00989-06.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Gupta A, Kohli Y, Li A, Faergemann J, Summerbell R. In vitro susceptibility of the seven Malassezia species to ketoconazole, voriconazole, itraconazole and terbinafine. Br J Dermatol. 2000;142(4):758–65.  https://doi.org/10.1046/j.1365-2133.2000.03294.x.CrossRefPubMedGoogle Scholar
  23. 23.
    Rojas FD, Sosa Mde L, Fernandez MS, Cattana ME, Cordoba SB, Giusiano GE. Antifungal susceptibility of Malassezia furfur, Malassezia sympodialis, and Malassezia globosa to azole drugs and amphotericin B evaluated using a broth microdilution method. Med Mycol. 2014;52(6):641–6.  https://doi.org/10.1093/mmy/myu010.CrossRefPubMedGoogle Scholar
  24. 24.
    Watanabe S, Koike A, Kano R, Nagata M, Chen C, Hwang CY, et al. In vitro susceptibility of Malassezia pachydermatis isolates from canine skin with atopic dermatitis to ketoconazole and itraconazole in East Asia. J Vet Med Sci. 2014;76(4):579–81.  https://doi.org/10.1292/jvms.13-0433.CrossRefPubMedGoogle Scholar
  25. 25.
    Willis KJ, editor. State of the world’s plants. London: Royal Botanic Gardens Kew; 2017.Google Scholar
  26. 26.
    WHO. WHO traditional medicine strategy 2002-2005. Geneva: WHO; 2002.Google Scholar
  27. 27.
    Bourgaud F, Gravot A, Milesi S, Gontier E. Production of plant secondary metabolites: a historical perspective. Plant Sci. 2001;161(5):839–51.  https://doi.org/10.1016/S0168-9452(01)00490-3.CrossRefGoogle Scholar
  28. 28.
    TPL. The Plant List, Version 1.1. http://www.theplantlist.org/. 2017. Accessed December 21, 2017.
  29. 29.
    APG. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc. 2016;181(1):1–20.  https://doi.org/10.1111/boj.12385.CrossRefGoogle Scholar
  30. 30.
    MycoBank. MycoBank Database: fungal databases, nomenclature and species banks. http://www.mycobank.org/. 2016. Accessed June 1 2016.
  31. 31.
    Pandey A, Mishra RK, Tiwari AK, Kumar A, Bajaj AK, Dikshit A. Management of cosmetic embarrassment caused by Malassezia spp. with fruticose lichen Cladia using phylogenetic approach. Biomed Res Int. 2013;2013:1–8.  https://doi.org/10.1155/2013/169794.CrossRefGoogle Scholar
  32. 32.
    Weckesser S, Engel K, Simon-Haarhaus B, Wittmer A, Pelz K, Schempp CM. Screening of plant extracts for antimicrobial activity against bacteria and yeasts with dermatological relevance. Phytomedicine. 2007;14(7–8):508–16.  https://doi.org/10.1016/j.phymed.2006.12.013.CrossRefPubMedGoogle Scholar
  33. 33.
    Shams-Ghahfarokhi M, Shokoohamiri MR, Amirrajab N, Moghadasi B, Ghajari A, Zeini F, et al. In vitro antifungal activities of Allium cepa, Allium sativum and ketoconazole against some pathogenic yeasts and dermatophytes. Fitoterapia. 2006;77(4):321–3.  https://doi.org/10.1016/j.fitote.2006.03.014.CrossRefPubMedGoogle Scholar
  34. 34.
    Kaur SJ, Bhakti M, Thankamani M. Antimycotic activity of Noni juice against seborrhoeic dermatitis. Int J Pharm Bio Sci. 2016;7(1):403–7.Google Scholar
  35. 35.
    Pednekar PA, Raman B. Assessment of Semecarpus anacardium (Linn. F.) leaf methanolic extract for their antibacterial, antifungal and antioxidant activity. Int J Pharm Pharm Sci. 2013;5(1):1–5.Google Scholar
  36. 36.
    Mahmoud YAG, Metwally MA, Mubarak HH, Zewawy NE. Treatment of tinea versicolor caused by Malassezia furfur with dill seed extract: an experimental study. Int J Pharm Pharm Sci. 2015;7(2):1–7.Google Scholar
  37. 37.
    Filip R, Davicino R, Anesini C. Antifungal activity of the aqueous extract of Ilex paraguariensis against Malassezia furfur. Phytother Res. 2010;24(5):715–9.  https://doi.org/10.1002/ptr.3004.CrossRefPubMedGoogle Scholar
  38. 38.
    Onlom C, Khanthawong S, Waranuch N, Ingkaninan K. In vitro anti-Malassezia activity and potential use in anti-dandruff formulation of Asparagus racemosus. Int J Cosmet Sci. 2014;36(1):74–8.  https://doi.org/10.1111/ics.12098.CrossRefPubMedGoogle Scholar
  39. 39.
    Brodin K, Alahyar H, Hedner T, Sterner O, Faergemann J. In vitro activity of Artemisia abrotanum extracts against Malassezia spp., Candida albicans and Staphylococcus aureus. Acta Derm Venereol. 2007;87(6):540–2.  https://doi.org/10.2340/00015555-0312.CrossRefPubMedGoogle Scholar
  40. 40.
    Dhanalakshmi P, Jaya Prakash Priya A, Sagadevan E, Sudha Lakshmi Y, Manimaran A, Sindu S, et al. Evaluation of inhibitory effect of Vernonia cinerea L. leaf extracts on different fungal species. Int J Pharm Pharm Sci. 2013;5(2):414–6.Google Scholar
  41. 41.
    Rhimi W, Salem IB, Immediato D, Saidi M, Boulila A, Cafarchia C. Chemical composition, antibacterial and antifungal activities of crude Dittrichia viscosa (L.) Greuter leaf extracts. Molecules (Basel, Switzerland). 2017;22(7):942–55.  https://doi.org/10.3390/molecules22070942.CrossRefGoogle Scholar
  42. 42.
    Regupathi T, Chitra K. Antidandruff activity of Eclipta alba (L.) Hassk. and Lippia nodiflora Linn. Int J Res Pharm Sci. 2015;6(2):185–8.Google Scholar
  43. 43.
    Biabiany M, Roumy V, Hennebelle T, François N, Sendid B, Pottier M, et al. Antifungal activity of 10 Guadeloupean plants. Phytother Res. 2012;27(11):1640–5.  https://doi.org/10.1002/ptr.4906.CrossRefPubMedGoogle Scholar
  44. 44.
    Vollekova A, Kostalova D, Sochorova R. Isoquinoline alkaloids from Mahonia aquifolium stem bark are active against Malassezia spp. Folia Microbiol. 2001;46(2):107–11.CrossRefGoogle Scholar
  45. 45.
    Giordani C, Simonetti G, Natsagdorj D, Choijamts G, Ghirga F, Calcaterra A, et al. Antifungal activity of Mongolian medicinal plant extracts. Nat Prod Res. 2019:1–7.  https://doi.org/10.1080/14786419.2019.1610960.
  46. 46.
    Balakrishnan KP, Narayanaswamy N, Mathews S, Gurung K. Evaluation of some medicinal plants for their dandruff control properties. Int J Pharma Bio Sci. 2011;2(4):38–45.Google Scholar
  47. 47.
    Sibi G, Alam A, Shah J, Razak M. Susceptibility pattern of Malassezia species to selected plant extracts and antifungal agents. Int J Green Pharm. 2014;8(4):226–30.  https://doi.org/10.4103/0973-8258.142675.CrossRefGoogle Scholar
  48. 48.
    Simonetti G, Tocci N, Valletta A, Brasili E, D'Auria FD, Idoux A, et al. In vitro antifungal activity of extracts obtained from Hypericum perforatum adventitious roots cultured in a mist bioreactor against planktonic cells and biofilm of Malassezia furfur. Nat Prod Res. 2015;30(5):544–50.CrossRefGoogle Scholar
  49. 49.
    Mir MA, Rameashkannan MV, Raj JA, Malik AH, Rajesh TS. Phytochemical and pharmacological profile of Crocus sativus L. by-products found in Kashmir. Acta Hortic. 2018;1200:213–26.  https://doi.org/10.17660/ActaHortic.2018.1200.35.CrossRefGoogle Scholar
  50. 50.
    Pooja A, Arun N, Maninder K. Screening of plant essential oils for antifungal activity against Malassezia furfur. Int J Pharm Pharm Sci. 2013;5(2):1–3.Google Scholar
  51. 51.
    Varsani M, Graikou K, Velegraki A, Chinou I. Phytochemical analysis and antimicrobial activity of Origanum dictamnus traditional herbal tea (decoction). Nat Prod Commun. 2017;12(11):1801–4.Google Scholar
  52. 52.
    Mariappan PM, Sabesan G, Koilpillai B, Janakiraman S, Sharma NK. Chemical characterisation and antifungal activity of methanolic extract of Cinnamomum verum J. Presl bark against Malassezia spp. Pharmacogn J. 2013;5(5):197–204.  https://doi.org/10.1016/j.phcgj.2013.09.001.CrossRefGoogle Scholar
  53. 53.
    Sreelatha GL, Babu UV, Sharath Kumar LM, Soumya K, Sharmila T. Investigation on biochemical characterisation and in vitro antifungal efficacy of plant extracts on Malassezia furfur. Int J Pharm Bio Sci. 2015;6(2):1027–41.Google Scholar
  54. 54.
    Nenoff P, Haustein UF, Brandt W. Antifungal activity of the essential oil of Melaleuca alternifolia (tea tree oil) against pathogenic fungi in vitro. Skin Pharmacol. 1996;9(6):388–94.CrossRefGoogle Scholar
  55. 55.
    Arumugam A, Dhailappan A. Fatty acid composition and antidermatophytic and antidiarrheal activity of Nelumbo nucifera seed oil. Int J Pharm Pharm Sci. 2012;4(SUPPL.3):769–75.Google Scholar
  56. 56.
    • Mishra RK, Mishra V, Pandey A, Tiwari AK, Pandey H, Sharma S, et al. Exploration of anti-Malassezia potential of Nyctanthes arbor-tristis L. and their application to combat the infection caused by Mala s1 a novel allergen. BMC Complement Altern Med. 2016;16:1–14.  https://doi.org/10.1186/s12906-016-1092-2 Experimental study demonstrating the antifungal activity of leaves of Nyctanthes arbor-tristis . Particularly important study because it tested the ethanolic plant extract against four unique Malassezia species in contrast to most studies that only examined Malassezia furfur . Results demonstrated MICs and MFCs superior to commonly prescribed antifungal drugs ( < 3.12 μg/μl). The first study to test active constituents β-Sitosterol and Calceolarioside A, demonstrating 75% cell death by disruption of the plasma membrane. CrossRefGoogle Scholar
  57. 57.
    Choi J, Kim W, Park J, Cheong H. The beneficial effects of extract of Pinus densiflora needles on skin health. Microbiol Biotechnol Lett. 2016;44(2):208–17.  https://doi.org/10.4014/mbl.1603.03006.CrossRefGoogle Scholar
  58. 58.
    Bernard P, Pesando D. Antibacterial and antifungal activity of extracts from the rhizomes of the Mediterranean seagrass Posidonia oceanica (L.) Delile. Bot Mar. 1989;32(2):85–8.  https://doi.org/10.1515/botm.1989.32.2.85.CrossRefGoogle Scholar
  59. 59.
    Sivasankar C, Gayathri S, Bhaskar JP, Krishnan V, Pandian SK. Evaluation of selected Indian medicinal plants for antagonistic potential against Malassezia spp. and the synergistic effect of embelin in combination with ketoconazole. Microb Pathog. 2017;110:66–72.  https://doi.org/10.1016/j.micpath.2017.06.026.CrossRefPubMedGoogle Scholar
  60. 60.
    Prasad SB, Bist M. In vitro anti acne activity of methanolic extract of dried fruit of Embelia ribes. Int J Pharm Qualty Assurance. 2018;9(1):90–4.  https://doi.org/10.25258/ijpqa.v9i01.11921.CrossRefGoogle Scholar
  61. 61.
    Lee JH, Lee JS. Chemical composition and antifungal activity of plant essential oils against Malassezia furfur. Korean J Microbiol Biotechnol. 2010;38(3):315–21.Google Scholar
  62. 62.
    Pednekar PA, Raman B. Antimicrobial and antioxidant potential with ftir analysis of Ampelocissus latifolia (Roxb.) Planch. leaves. Asian J Pharm Clin Res. 2013;6(1):1–6.Google Scholar
  63. 63.
    Simonetti GDA, Diodata F, Mulinacci N, Innocenti M, Antonacci D, Angiolella L, et al. Anti-dermatophyte and anti-Malassezia activity of extracts rich in polymeric flavan-3-ols obtained from Vitis vinifera seeds. Phytother Res. 2017;31(1):124–31.  https://doi.org/10.1002/ptr.5739.CrossRefPubMedGoogle Scholar
  64. 64.
    Block E. The chemistry of garlic and onions. Sci Am. 1985;252(3):114–9.CrossRefGoogle Scholar
  65. 65.
    Block E. The organosulfur chemistry of the genus Allium—implications for the organic chemistry of sulfur. Angew Chem Int Ed Engl. 1992;31(9):1135–78.  https://doi.org/10.1002/anie.199211351.CrossRefGoogle Scholar
  66. 66.
    Hughes BG, Lawson LD. Antimicrobial effects of Allium sativum L. (garlic), Allium ampeloprasum L. (elephant garlic), and Allium cepa L. (onion), garlic compounds and commercial garlic supplement products. Phytother Res. 1991;5(4):154–8.  https://doi.org/10.1002/ptr.2650050403.CrossRefGoogle Scholar
  67. 67.
    Ayaz E, Turel I, Gul A, Yilmaz O. Evaluation of the anthelmentic activity of garlic (Allium sativum) in mice naturally infected with Aspiculuris tetraptera. Recent Pat Antiinfect Drug Discov. 2008;3(2):149–52.CrossRefGoogle Scholar
  68. 68.
    Nicastro HL, Ross SA, Milner JA. Garlic and onions: their cancer prevention properties. Cancer Prev Res. 2015;8(3):181–9.  https://doi.org/10.1158/1940-6207.capr-14-0172.CrossRefGoogle Scholar
  69. 69.
    Lazarevic JS, Ethordevic AS, Zlatkovic BK, Radulovic NS, Palic RM. Chemical composition and antioxidant and antimicrobial activities of essential oil of Allium sphaerocephalon L. subsp. sphaerocephalon (Liliaceae) inflorescences. J Sci Food Agric. 2011;91(2):322–9.  https://doi.org/10.1002/jsfa.4189.CrossRefPubMedGoogle Scholar
  70. 70.
    • Mazu TK, Bricker BA, Flores-Rozas H, Ablordeppey SY. The mechanistic targets of antifungal agents: an overview. Mini Rev Med Chem. 2016;16(7):555–78 Review article discussing the biological target of common antifungal agents, such as ergosterol depletion which negatively impacts the structure of the fungal cell membrane. Important to understand effective mechanisms of action that plant extracts may also exhibit against Malassezia species. CrossRefGoogle Scholar
  71. 71.
    Biswas K, Chattopadhyay I, Banerjee RK, Bandyopadhyay U. Biological activities and medicinal properties of neem (Azadirachta indica). Curr Sci. 2002;82(11):1336–45.Google Scholar
  72. 72.
    Essid R, Hammami M, Gharbi D, Karkouch I, Hamouda TB, Elkahoui S, et al. Antifungal mechanism of the combination of Cinnamomum verum and Pelargonium graveolens essential oils with fluconazole against pathogenic Candida strains. Appl Microbiol Biotechnol. 2017;101(18):6993–7006.  https://doi.org/10.1007/s00253-017-8442-y.CrossRefPubMedGoogle Scholar
  73. 73.
    Taguchi Y, Hasumi Y, Abe S, Nishiyama Y. The effect of cinnamaldehyde on the growth and the morphology of Candida albicans. Med Mol Morphol. 2013;46(1):8–13.  https://doi.org/10.1007/s00795-012-0001-0.CrossRefPubMedGoogle Scholar
  74. 74.
    Klemow KM, Bartlow A, Crawford J, Kocher N, Shah J, Ritsick M. Medical attributes of St. John’s Wort (Hypericum perforatum). Herbal medicine: biomolecular and clinical aspects. 2nd ed. Boca Raton: CRC Press/Taylor & Francis; 2011.Google Scholar
  75. 75.
    Pinto E, Afonso C, Duarte S, Vale-Silva L, Costa E, Sousa E, et al. Antifungal activity of xanthones: evaluation of their effect on ergosterol biosynthesis by high-performance liquid chromatography. Chem Biol Drug Des. 2011;77(3):212–22.  https://doi.org/10.1111/j.1747-0285.2010.01072.x.CrossRefPubMedGoogle Scholar
  76. 76.
    Crockett SL, Poller B, Tabanca N, Pferschy-Wenzig EM, Kunert O, Wedge DE, et al. Bioactive xanthones from the roots of Hypericum perforatum (common St John’s wort). J Sci Food Agric. 2011;91(3):428–34.  https://doi.org/10.1002/jsfa.4202.CrossRefPubMedGoogle Scholar
  77. 77.
    Chaudhary G, Goyal S, Poonia P. Lawsonia inermis Linnaeus: a phytopharmacological review. Int J Pharm Sci Drug Res. 2010;2(2):91–8.Google Scholar
  78. 78.
    Ferreira Mdo P, Cardoso MC, da Silva FC, Ferreira VF, Lima ES, Souza JVB. Antifungal activity of synthetic naphthoquinones against dermatophytes and opportunistic fungi: preliminary mechanism-of-action tests. Ann Clin Microbiol Antimicrob. 2014;13:26.  https://doi.org/10.1186/1476-0711-13-26.CrossRefPubMedGoogle Scholar
  79. 79.
    Nazzaro F, Fratianni F, Coppola R, De Feo V. Essential oils and antifungal activity. Pharmaceuticals (Basel). 2017;10(4):1–20.  https://doi.org/10.3390/ph10040086.CrossRefGoogle Scholar
  80. 80.
    Agrawal J, Pal A. Nyctanthes arbor-tristis Linn—a critical ethnopharmacological review. J Ethnopharmacol. 2013;146(3):645–58.  https://doi.org/10.1016/j.jep.2013.01.024.CrossRefPubMedGoogle Scholar
  81. 81.
    Nadkarni A. Indian Materia Medica. 3rd ed. Bombay: Popular Prakashan Pvt. Ltd.; 1954.Google Scholar
  82. 82.
    Jaiswal V. Culture and ethnobotany of Jaintia tribal community of Meghalaya, north east India—a mini review. Indian J Tradit Knowl. 2010;9(1):38–44.Google Scholar
  83. 83.
    Jain A, Katewa SS, Galav PK, Sharma P. Medicinal plant diversity of Sitamata wildlife sanctuary, Rajasthan, India. J Ethnopharmacol. 2005;102:143–57.CrossRefGoogle Scholar
  84. 84.
    Chauhan NS. Medicinal and aromatic plants of Himachal Pradesh: Indus Publishing Company; 1999.Google Scholar
  85. 85.
    Rangika BS, Dayananda PD, Peiris DC. Hypoglycemic and hypolipidemic activities of aqueous extract of flowers from Nycantus arbor-tristis L. in male mice. BMC Complement Altern Med. 2015;15:1–9.  https://doi.org/10.1186/s12906-015-0807-0.CrossRefGoogle Scholar
  86. 86.
    Ratnasooriya WD, Jayakody JRAC, Hettiarachchi ADI, Dharmasiri MG. Sedative effects of hot flower infusion of Nyctanthes arbor-tristis on rats. Pharm Biol. 2005;43(2):140–6.  https://doi.org/10.1080/13880200590919474.CrossRefGoogle Scholar
  87. 87.
    Sopi RB, Hayat Khan MF. Bronchodilatory effect of ethanolic extract of the leaves of Nyctanthes arbor-tristis. Pharm Res. 2013;5(3):169–72.  https://doi.org/10.4103/0974-8490.112422.CrossRefGoogle Scholar
  88. 88.
    Hussain A, Ramteke A. Flower extract of Nyctanthes arbor-tristis modulates glutathione level in hydrogen peroxide treated lymphocytes. Pharm Res. 2012;4(4):230–3.  https://doi.org/10.4103/0974-8490.102272.CrossRefGoogle Scholar
  89. 89.
    Khatune NA, Mosaddik MA, Haque ME. Antibacterial activity and cytotoxicity of Nyctanthes arbor-tristis flowers. Fitoterapia. 2001;72(4):412–4.CrossRefGoogle Scholar
  90. 90.
    Saxena RS, Gupta B, Lata S. Tranquilizing, antihistaminic and purgative activity of Nyctanthes arbor-tristis leaf extract. J Ethnopharmacol. 2002;81(3):321–5.CrossRefGoogle Scholar
  91. 91.
    Paul BN, Saxena AK. Depletion of tumor necrosis factor-alpha in mice by Nyctanthes arbor-tristis. J Ethnopharmacol. 1997;56(2):153–8.CrossRefGoogle Scholar
  92. 92.
    Saxena RS, Gupta B, Saxena KK, Singh RC, Prasad DN. Study of anti-inflammatory activity in the leaves of Nyctanthes arbor-tristis Linn.—an Indian medicinal plant. J Ethnopharmacol. 1984;11(3):319–30.CrossRefGoogle Scholar
  93. 93.
    Zhang LZ, Zhao WH, Guo YJ, Tu GZ, Lin S, Xin LG. Studies on chemical constituents in fruits of Tibetan medicine Phyllanthus emblica. Zhongguo Zhong Yao Za Zhi. 2003;28(10):940–3.PubMedGoogle Scholar
  94. 94.
    • Li ZJ, Liu M, Dawuti G, Dou Q, Ma Y, Liu HG, et al. Antifungal activity of gallic acid in vitro and in vivo. Phytother Res. 2017;31(7):1039–45.  https://doi.org/10.1002/ptr.5823 Experimental study demonstrating the antifungal activity of polyphenol gallic acid, a plant secondary metabolite found in Punica granatum , Phyllanthus emblica , and Vitis vinifera , and which demonstrated moderate antifungal activity against Malassezia species. Although this paper did not test gallic acid on Malassezia species, it describes the antifungal effects of gallic acid via reduction in ergosterol and subsequent damage to the cell wall. CrossRefPubMedGoogle Scholar
  95. 95.
    Madamombe IT, Afolayan AJ. Evaluation of antimicrobial activity of extracts from South African Usnea barbata. Pharm Biol. 2003;41(3):199–202.CrossRefGoogle Scholar
  96. 96.
    Francolini I, Norris P, Piozzi A, Donelli G, Stoodley P. Usnic acid, a natural antimicrobial agent able to inhibit bacterial biofilm formation on polymer surfaces. Antimicrob Agents Chemother. 2004;48(11):4360–5.  https://doi.org/10.1128/aac.48.11.4360-4365.2004.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Corrales M, Han JH, Tauscher B. Antimicrobial properties of grape seed extracts and their effectiveness after incorporation into pea starch films. Int J Food Sci Technol. 2009;44:425–33.CrossRefGoogle Scholar
  98. 98.
    Jayaprakasha GK, Selvi T, Sakariah KK. Antibacterial and antioxidant activities of grape (Vitis vinifera) seed extracts. Food Res Int. 2003;36:117–22.CrossRefGoogle Scholar
  99. 99.
    Sasmal D, Das S, Basu S. Diuretic activity of Nyctanthes arbortristis Linn. Anc Sci Life. 2007;27(2):19–23.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Saxena RS, Gupta B, Saxena KK, Srivastava VK, Prasad DN. Analgesic, antipyretic and ulcerogenic activity of Nyctanthes arbor tristis leaf extract. J Ethnopharmacol. 1987;19(2):193–200.CrossRefGoogle Scholar
  101. 101.
    • Waller SB, Cleff MB, Serra EF, Silva AL, Gomes AD, de Mello JR, et al. Plants from Lamiaceae family as source of antifungal molecules in humane and veterinary medicine. Microb Pathog. 2017;104:232–7.  https://doi.org/10.1016/j.micpath.2017.01.050 Review article summarizing 55 botanical species from Lamiaceae family that were tested against various pathogenic fungi, including Malassezia species. Highlights the importance of universal standardization in testing fungal species to accurately determine MICs. This is especially critical for Malassezia species which requires a lipid-rich growth environment; improper methodology could lead to inaccurate or skewed antimicrobial potential. CrossRefPubMedGoogle Scholar
  102. 102.
    Fennell CW, Lindsey KL, McGaw LJ, Sparg SG, Stafford GI, Elgorashi EE, et al. Assessing African medicinal plants for efficacy and safety: pharmacological screening and toxicology. J Ethnopharmacol. 2004;94(2–3):205–17.  https://doi.org/10.1016/j.jep.2004.05.012.CrossRefPubMedGoogle Scholar
  103. 103.
    CLSI. M27-S4: reference method for broth dilution antifungal susceptibility testing of yeasts; Fourth Informational Supplement: Clinical and Laboratory Standards Institute; 2012.Google Scholar
  104. 104.
    CLSI. M27-A3. Reference method for broth dilution antifungal susceptibility testing of yeasts; Approved Standard-Third Edition: Clinical and Laboratory Standards Institute; 2008.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Emory University Center for the Study of Human HealthAtlantaUSA
  2. 2.Department of DermatologyEmory University School of MedicineAtlantaUSA
  3. 3.Emory University HerbariumAtlantaUSA

Personalised recommendations