Advertisement

Current Dermatology Reports

, Volume 7, Issue 4, pp 338–349 | Cite as

Immune and Inflammatory Reponses to Staphylococcus aureus Skin Infections

  • Qi Liu
  • Momina Mazhar
  • Lloyd S. MillerEmail author
Immunology (D Lee, Section Editor)
  • 157 Downloads
Part of the following topical collections:
  1. Topical Collection on Immunology

Abstract

Purpose of Review

There have been recent advances in our understanding of cutaneous immune responses to the important human skin pathogen, Staphylococcus aureus (S. aureus). This review will highlight these insights into innate and adaptive immune mechanisms in host defense and cutaneous inflammation in response to S. aureus skin infections.

Recent Findings

Antimicrobial peptides, pattern recognition receptors, and inflammasome activation function in innate immunity as well as T cells and their effector cytokines play a key role in adaptive immunity against S. aureus skin infections. In addition, certain mechanisms by which S. aureus contributes to aberrant cutaneous inflammation, such as in flares of the inflammatory skin disease atopic dermatitis, have also been identified.

Summary

These cutaneous immune mechanisms could provide new targets for future vaccines and immune-based therapies to combat skin infections and cutaneous inflammation caused by S. aureus.

Keywords

Staphylococcus aureus Antimicrobial peptides Toll-like receptors Inflammasome T cells Neutrophils 

Notes

Funding

This work was supported by grants R01AR073665 and R01AR069502 (to LSM) from the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the United States National Institutes of Health (NIH). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Compliance with Ethical Standards

Conflict of Interest

L.S.M. has received grant support from MedImmune, Pfizer, Regeneron Pharmaceuticals, Moderna Therapeutics, and Boehringer Ingelheim, is a shareholder of Noveome Biotherapeutics, and is on the scientific advisory board for Integrated Biotherapeutics, which are all developing vaccines and therapeutics against S. aureus infections and inflammatory skin diseases.

Qi Liu and Momina Mazhar declare they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Daum RS. Clinical practice. Skin and soft-tissue infections caused by methicillin-resistant Staphylococcus aureus. N Engl J Med. 2007;357(4):380–90.  https://doi.org/10.1056/NEJMcp070747.CrossRefPubMedGoogle Scholar
  2. 2.
    Elston DM. Community-acquired methicillin-resistant Staphylococcus aureus. J Am Acad Dermatol. 2007;56(1):1–16; quiz 7-20.  https://doi.org/10.1016/j.jaad.2006.04.018.CrossRefPubMedGoogle Scholar
  3. 3.
    Miller LS, Cho JS. Immunity against Staphylococcus aureus cutaneous infections. Nat Rev Immunol. 2011;11(8):505–18.  https://doi.org/10.1038/nri3010.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Edelsberg J, Taneja C, Zervos M, Haque N, Moore C, Reyes K, et al. Trends in US hospital admissions for skin and soft tissue infections. Emerg Infect Dis. 2009;15(9):1516–8.  https://doi.org/10.3201/eid1509.081228.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Hersh AL, Chambers HF, Maselli JH, Gonzales R. National trends in ambulatory visits and antibiotic prescribing for skin and soft-tissue infections. Arch Intern Med. 2008;168(14):1585–91.  https://doi.org/10.1001/archinte.168.14.1585.CrossRefPubMedGoogle Scholar
  6. 6.
    Suaya JA, Mera RM, Cassidy A, O'Hara P, Amrine-Madsen H, Burstin S, et al. Incidence and cost of hospitalizations associated with Staphylococcus aureus skin and soft tissue infections in the United States from 2001 through 2009. BMC Infect Dis. 2014;14:296.  https://doi.org/10.1186/1471-2334-14-296.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    DeLeo FR, Otto M, Kreiswirth BN, Chambers HF. Community-associated methicillin-resistant Staphylococcus aureus. Lancet. 2010;375(9725):1557–68.  https://doi.org/10.1016/S0140-6736(09)61999-1.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG Jr. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2015;28(3):603–61.  https://doi.org/10.1128/CMR.00134-14.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Tong SY, Chen LF, Fowler VG Jr. Colonization, pathogenicity, host susceptibility, and therapeutics for Staphylococcus aureus: what is the clinical relevance? Semin Immunopathol. 2012;34(2):185–200.  https://doi.org/10.1007/s00281-011-0300-x.CrossRefPubMedGoogle Scholar
  10. 10.
    Yang ES, Tan J, Eells S, Rieg G, Tagudar G, Miller LG. Body site colonization in patients with community-associated methicillin-resistant Staphylococcus aureus and other types of S. aureus skin infections. Clin Microbiol Infect. 2010;16(5):425–31.  https://doi.org/10.1111/j.1469-0691.2009.02836.x.CrossRefPubMedGoogle Scholar
  11. 11.
    Byrd AL, Deming C, Cassidy SKB, Harrison OJ, Ng WI, Conlan S, et al. Staphylococcus aureus and Staphylococcus epidermidis strain diversity underlying pediatric atopic dermatitis. Sci Transl Med. 2017;9(397):eaal4651.  https://doi.org/10.1126/scitranslmed.aal4651.CrossRefGoogle Scholar
  12. 12.
    Kong HH, Oh J, Deming C, Conlan S, Grice EA, Beatson MA, et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 2012;22(5):850–9.  https://doi.org/10.1101/gr.131029.111.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Drucker AM, Wang AR, Li WQ, Sevetson E, Block JK, Qureshi AA. The burden of atopic dermatitis: summary of a report for the National Eczema Association. J Invest Dermatol. 2017;137(1):26–30.  https://doi.org/10.1016/j.jid.2016.07.012.CrossRefPubMedGoogle Scholar
  14. 14.
    Weidinger S, Beck LA, Bieber T, Kabashima K, Irvine AD. Atopic dermatitis. Nat Rev Dis Primers. 2018;4(1):1.  https://doi.org/10.1038/s41572-018-0001-z.CrossRefPubMedGoogle Scholar
  15. 15.
    Wesch D, Peters C, Oberg HH, Pietschmann K, Kabelitz D. Modulation of γδ T cell responses by TLR ligands. Cell Mol Life Sci. 2011;68(14):2357–70.  https://doi.org/10.1007/s00018-011-0699-1.CrossRefPubMedGoogle Scholar
  16. 16.
    Hepburn L, Hijnen DJ, Sellman BR, Mustelin T, Sleeman MA, May RD, et al. The complex biology and contribution of Staphylococcus aureus in atopic dermatitis, current and future therapies. Br J Dermatol. 2017;177(1):63–71.  https://doi.org/10.1111/bjd.15139.CrossRefPubMedGoogle Scholar
  17. 17.
    Ong PY, Leung DY. Bacterial and viral infections in atopic dermatitis: a comprehensive review. Clin Rev Allergy Immunol. 2016;51(3):329–37.  https://doi.org/10.1007/s12016-016-8548-5.CrossRefPubMedGoogle Scholar
  18. 18.
    Spaulding AR, Salgado-Pabon W, Kohler PL, Horswill AR, Leung DY, Schlievert PM. Staphylococcal and streptococcal superantigen exotoxins. Clin Microbiol Rev. 2013;26(3):422–47.  https://doi.org/10.1128/CMR.00104-12.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Daum RS, Spellberg B. Progress toward a Staphylococcus aureus vaccine. Clin Infect Dis. 2012;54(4):560–7.  https://doi.org/10.1093/cid/cir828.CrossRefPubMedGoogle Scholar
  20. 20.
    Fowler VG, Allen KB, Moreira ED, Moustafa M, Isgro F, Boucher HW, et al. Effect of an investigational vaccine for preventing Staphylococcus aureus infections after cardiothoracic surgery: a randomized trial. JAMA. 2013;309(13):1368–78.  https://doi.org/10.1001/jama.2013.3010.CrossRefPubMedGoogle Scholar
  21. 21.
    Fowler VG Jr, Proctor RA. Where does a Staphylococcus aureus vaccine stand? Clin Microbiol Infect. 2014;20(Suppl 5):66–75.  https://doi.org/10.1111/1469-0691.12570.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    McNeely TB, Shah NA, Fridman A, Joshi A, Hartzel JS, Keshari RS, et al. Mortality among recipients of the Merck V710 Staphylococcus aureus vaccine after postoperative S. aureus infections: an analysis of possible contributing host factors. Hum Vaccin Immunother. 2014;10(12):3513–6.  https://doi.org/10.4161/hv.34407.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Missiakas D, Schneewind O. Staphylococcus aureus vaccines: deviating from the carol. J Exp Med. 2016;213(9):1645–53.  https://doi.org/10.1084/jem.20160569.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Rohrl J, Huber B, Koehl GE, Geissler EK, Hehlgans T. Mouse β-defensin 14 (Defb14) promotes tumor growth by inducing angiogenesis in a CCR6-dependent manner. J Immunol. 2012;188(10):4931–9.  https://doi.org/10.4049/jimmunol.1102442.CrossRefPubMedGoogle Scholar
  25. 25.
    Harder J, Bartels J, Christophers E, Schroder JM. Isolation and characterization of human β-defensin-3, a novel human inducible peptide antibiotic. J Biol Chem. 2001;276(8):5707–13.  https://doi.org/10.1074/jbc.M008557200.CrossRefPubMedGoogle Scholar
  26. 26.
    Kisich KO, Howell MD, Boguniewicz M, Heizer HR, Watson NU, Leung DY. The constitutive capacity of human keratinocytes to kill Staphylococcus aureus is dependent on β-defensin 3. J Invest Dermatol. 2007;127(10):2368–80.  https://doi.org/10.1038/sj.jid.5700861.CrossRefPubMedGoogle Scholar
  27. 27.
    Ong PY, Ohtake T, Brandt C, Strickland I, Boguniewicz M, Ganz T, et al. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med. 2002;347(15):1151–60.  https://doi.org/10.1056/NEJMoa021481.CrossRefPubMedGoogle Scholar
  28. 28.
    Schroder JM, Harder J. Human β-defensin-2. Int J Biochem Cell Biol. 1999;31(6):645–51.CrossRefGoogle Scholar
  29. 29.
    Zanger P, Holzer J, Schleucher R, Scherbaum H, Schittek B, Gabrysch S. Severity of Staphylococcus aureus infection of the skin is associated with inducibility of human β-defensin 3 but not human β-defensin 2. Infect Immun. 2010;78(7):3112–7.  https://doi.org/10.1128/IAI.00078-10.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Rohrl J, Yang D, Oppenheim JJ, Hehlgans T. Human β-defensin 2 and 3 and their mouse orthologs induce chemotaxis through interaction with CCR2. J Immunol. 2010;184(12):6688–94.  https://doi.org/10.4049/jimmunol.0903984.CrossRefPubMedGoogle Scholar
  31. 31.
    Niyonsaba F, Iwabuchi K, Matsuda H, Ogawa H, Nagaoka I. Epithelial cell-derived human β-defensin-2 acts as a chemotaxin for mast cells through a pertussis toxin-sensitive and phospholipase C-dependent pathway. Int Immunol. 2002;14(4):421–6.CrossRefGoogle Scholar
  32. 32.
    Yang D, Chertov O, Bykovskaia SN, Chen Q, Buffo MJ, Shogan J, et al. β-Defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science. 1999;286(5439):525–8.CrossRefGoogle Scholar
  33. 33.
    Braff MH, Zaiou M, Fierer J, Nizet V, Gallo RL. Keratinocyte production of cathelicidin provides direct activity against bacterial skin pathogens. Infect Immun. 2005;73(10):6771–81.  https://doi.org/10.1128/IAI.73.10.6771-6781.2005.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Peric M, Koglin S, Kim SM, Morizane S, Besch R, Prinz JC, et al. IL-17A enhances vitamin D3-induced expression of cathelicidin antimicrobial peptide in human keratinocytes. J Immunol. 2008;181(12):8504–12.CrossRefGoogle Scholar
  35. 35.
    Chen K, Xiang Y, Huang J, Gong W, Yoshimura T, Jiang Q, et al. The formylpeptide receptor 2 (Fpr2) and its endogenous ligand cathelin-related antimicrobial peptide (CRAMP) promote dendritic cell maturation. J Biol Chem. 2014;289(25):17553–63.  https://doi.org/10.1074/jbc.M113.535674.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    De Y, Chen Q, Schmidt AP, Anderson GM, Wang JM, Wooters J, et al. LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med. 2000;192(7):1069–74.CrossRefGoogle Scholar
  37. 37.
    Niyonsaba F, Iwabuchi K, Someya A, Hirata M, Matsuda H, Ogawa H, et al. A cathelicidin family of human antibacterial peptide LL-37 induces mast cell chemotaxis. Immunology. 2002;106(1):20–6.CrossRefGoogle Scholar
  38. 38.
    Cho JS, Xuan C, Miller LS. Lucky number seven: RNase 7 can prevent Staphylococcus aureus skin colonization. J Invest Dermatol. 2010;130(12):2703–6.  https://doi.org/10.1038/jid.2010.294.CrossRefPubMedGoogle Scholar
  39. 39.
    Simanski M, Dressel S, Glaser R, Harder J. RNase 7 protects healthy skin from Staphylococcus aureus colonization. J Invest Dermatol. 2010;130(12):2836–8.  https://doi.org/10.1038/jid.2010.217.CrossRefPubMedGoogle Scholar
  40. 40.
    Choi SM, McAleer JP, Zheng M, Pociask DA, Kaplan MH, Qin S, et al. Innate Stat3-mediated induction of the antimicrobial protein Reg3γ is required for host defense against MRSA pneumonia. J Exp Med. 2013;210(3):551–61.  https://doi.org/10.1084/jem.20120260.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Lai Y, Li D, Li C, Muehleisen B, Radek KA, Park HJ, et al. The antimicrobial protein REG3A regulates keratinocyte proliferation and differentiation after skin injury. Immunity. 2012;37(1):74–84.  https://doi.org/10.1016/j.immuni.2012.04.010.CrossRefPubMedGoogle Scholar
  42. 42.
    Rieg S, Steffen H, Seeber S, Humeny A, Kalbacher H, Dietz K, et al. Deficiency of dermcidin-derived antimicrobial peptides in sweat of patients with atopic dermatitis correlates with an impaired innate defense of human skin in vivo. J Immunol. 2005;174(12):8003–10.CrossRefGoogle Scholar
  43. 43.
    Steffen H, Rieg S, Wiedemann I, Kalbacher H, Deeg M, Sahl HG, et al. Naturally processed dermcidin-derived peptides do not permeabilize bacterial membranes and kill microorganisms irrespective of their charge. Antimicrob Agents Chemother. 2006;50(8):2608–20.  https://doi.org/10.1128/AAC.00181-06.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Ericksen B, Wu Z, Lu W, Lehrer RI. Antibacterial activity and specificity of the six human α-defensins. Antimicrob Agents Chemother. 2005;49(1):269–75.  https://doi.org/10.1128/AAC.49.1.269-275.2005.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Grigat J, Soruri A, Forssmann U, Riggert J, Zwirner J. Chemoattraction of macrophages, T lymphocytes, and mast cells is evolutionarily conserved within the human α-defensin family. J Immunol. 2007;179(6):3958–65.CrossRefGoogle Scholar
  46. 46.
    Nakashige TG, Zhang B, Krebs C, Nolan EM. Human calprotectin is an iron-sequestering host-defense protein. Nat Chem Biol. 2015;11(10):765–71.  https://doi.org/10.1038/nchembio.1891.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Kehl-Fie TE, Chitayat S, Hood MI, Damo S, Restrepo N, Garcia C, et al. Nutrient metal sequestration by calprotectin inhibits bacterial superoxide defense, enhancing neutrophil killing of Staphylococcus aureus. Cell Host Microbe. 2011;10(2):158–64.  https://doi.org/10.1016/j.chom.2011.07.004.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Nurjadi D, Herrmann E, Hinderberger I, Zanger P. Impaired β-defensin expression in human skin links DEFB1 promoter polymorphisms with persistent Staphylococcus aureus nasal carriage. J Infect Dis. 2013;207(4):666–74.  https://doi.org/10.1093/infdis/jis735.CrossRefPubMedGoogle Scholar
  49. 49.
    Menzies BE, Kenoyer A. Signal transduction and nuclear responses in Staphylococcus aureus-induced expression of human β-defensin 3 in skin keratinocytes. Infect Immun. 2006;74(12):6847–54.  https://doi.org/10.1128/IAI.00389-06.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Ommori R, Ouji N, Mizuno F, Kita E, Ikada Y, Asada H. Selective induction of antimicrobial peptides from keratinocytes by staphylococcal bacteria. Microb Pathog. 2013;56:35–9.  https://doi.org/10.1016/j.micpath.2012.11.005.CrossRefPubMedGoogle Scholar
  51. 51.
    Sumikawa Y, Asada H, Hoshino K, Azukizawa H, Katayama I, Akira S, et al. Induction of β-defensin 3 in keratinocytes stimulated by bacterial lipopeptides through toll-like receptor 2. Microbes Infect. 2006;8(6):1513–21.  https://doi.org/10.1016/j.micinf.2006.01.008.CrossRefPubMedGoogle Scholar
  52. 52.
    Malhotra N, Yoon J, Leyva-Castillo JM, Galand C, Archer N, Miller LS, et al. IL-22 derived from γδ T cells restricts Staphylococcus aureus infection of mechanically injured skin. J Allergy Clin Immunol. 2016;138(4):1098–107 e3.  https://doi.org/10.1016/j.jaci.2016.07.001.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Minegishi Y, Saito M, Nagasawa M, Takada H, Hara T, Tsuchiya S, et al. Molecular explanation for the contradiction between systemic Th17 defect and localized bacterial infection in hyper-IgE syndrome. J Exp Med. 2009;206(6):1291–301.  https://doi.org/10.1084/jem.20082767.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Wang R, Braughton KR, Kretschmer D, Bach TH, Queck SY, Li M, et al. Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA. Nat Med. 2007;13(12):1510–4.  https://doi.org/10.1038/nm1656.CrossRefPubMedGoogle Scholar
  55. 55.
    Miller LS, Sorensen OE, Liu PT, Jalian HR, Eshtiaghpour D, Behmanesh BE, et al. TGF-α regulates TLR expression and function on epidermal keratinocytes. J Immunol. 2005;174(10):6137–43.CrossRefGoogle Scholar
  56. 56.
    Sorensen OE, Thapa DR, Roupe KM, Valore EV, Sjobring U, Roberts AA, et al. Injury-induced innate immune response in human skin mediated by transactivation of the epidermal growth factor receptor. J Clin Invest. 2006;116(7):1878–85.  https://doi.org/10.1172/JCI28422.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Liu PT, Stenger S, Li H, Wenzel L, Tan BH, Krutzik SR, et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science. 2006;311(5768):1770–3.  https://doi.org/10.1126/science.1123933.CrossRefPubMedGoogle Scholar
  58. 58.
    Schauber J, Dorschner RA, Coda AB, Buchau AS, Liu PT, Kiken D, et al. Injury enhances TLR2 function and antimicrobial peptide expression through a vitamin D-dependent mechanism. J Clin Invest. 2007;117(3):803–11.  https://doi.org/10.1172/JCI30142.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Wang JW, Hogan PG, Hunstad DA, Fritz SA. Vitamin D sufficiency and Staphylococcus aureus infection in children. Pediatr Infect Dis J. 2015;34(5):544–5.  https://doi.org/10.1097/INF.0000000000000667.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Miller LS. Adipocytes armed against Staphylococcus aureus. N Engl J Med. 2015;372(14):1368–70.  https://doi.org/10.1056/NEJMcibr1500271.CrossRefPubMedGoogle Scholar
  61. 61.
    •• Zhang LJ, Guerrero-Juarez CF, Hata T, Bapat SP, Ramos R, Plikus MV, et al. Innate immunity. Dermal adipocytes protect against invasive Staphylococcus aureus skin infection. Science. 2015;347(6217):67–71.  https://doi.org/10.1126/science.1260972 This manuscript found that dermal adipocytes produce the antimicrobial peptide cathelicidin to promote clearance of a S. aureus skin infection in the deep dermis. CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Kisich KO, Carspecken CW, Fieve S, Boguniewicz M, Leung DY. Defective killing of Staphylococcus aureus in atopic dermatitis is associated with reduced mobilization of human β-defensin-3. J Allergy Clin Immunol. 2008;122(1):62–8.  https://doi.org/10.1016/j.jaci.2008.04.022.CrossRefPubMedGoogle Scholar
  63. 63.
    Nilsen NJ, Deininger S, Nonstad U, Skjeldal F, Husebye H, Rodionov D, et al. Cellular trafficking of lipoteichoic acid and Toll-like receptor 2 in relation to signaling: role of CD14 and CD36. J Leukoc Biol. 2008;84(1):280–91.  https://doi.org/10.1189/jlb.0907656.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Triantafilou M, Gamper FG, Haston RM, Mouratis MA, Morath S, Hartung T, et al. Membrane sorting of toll-like receptor (TLR)-2/6 and TLR2/1 heterodimers at the cell surface determines heterotypic associations with CD36 and intracellular targeting. J Biol Chem. 2006;281(41):31002–11.  https://doi.org/10.1074/jbc.M602794200.CrossRefPubMedGoogle Scholar
  65. 65.
    Hoebe K, Georgel P, Rutschmann S, Du X, Mudd S, Crozat K, et al. CD36 is a sensor of diacylglycerides. Nature. 2005;433(7025):523–7.  https://doi.org/10.1038/nature03253.CrossRefPubMedGoogle Scholar
  66. 66.
    Stappers MH, Thys Y, Oosting M, Plantinga TS, Ioana M, Reimnitz P, et al. TLR1, TLR2, and TLR6 gene polymorphisms are associated with increased susceptibility to complicated skin and skin structure infections. J Infect Dis. 2014;210(2):311–8.  https://doi.org/10.1093/infdis/jiu080.CrossRefPubMedGoogle Scholar
  67. 67.
    Cho JS, Guo Y, Ramos RI, Hebroni F, Plaisier SB, Xuan C, et al. Neutrophil-derived IL-1β is sufficient for abscess formation in immunity against Staphylococcus aureus in mice. PLoS Pathog. 2012;8(11):e1003047.  https://doi.org/10.1371/journal.ppat.1003047.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Miller LS, O'Connell RM, Gutierrez MA, Pietras EM, Shahangian A, Gross CE, et al. MyD88 mediates neutrophil recruitment initiated by IL-1R but not TLR2 activation in immunity against Staphylococcus aureus. Immunity. 2006;24(1):79–91.  https://doi.org/10.1016/j.immuni.2005.11.011.CrossRefPubMedGoogle Scholar
  69. 69.
    Miller LS. Toll-like receptors in skin. Adv Dermatol. 2008;24:71–87.CrossRefGoogle Scholar
  70. 70.
    Pohar J, Yamamoto C, Fukui R, Cajnko MM, Miyake K, Jerala R, et al. Selectivity of human TLR9 for double CpG motifs and implications for the recognition of genomic DNA. J Immunol. 2017;198(5):2093–104.  https://doi.org/10.4049/jimmunol.1600757.CrossRefPubMedGoogle Scholar
  71. 71.
    Nurjadi D, Heeg K, Weber ANR, Zanger P. Toll-like receptor 9 (TLR-9) promotor polymorphisms and gene expression are associated with persistent Staphylococcus aureus nasal carriage. Clin Microbiol Infect. 2018.  https://doi.org/10.1016/j.cmi.2018.02.014.CrossRefGoogle Scholar
  72. 72.
    • Scumpia PO, Botten GA, Norman JS, Kelly-Scumpia KM, Spreafico R, Ruccia AR, et al. Opposing roles of Toll-like receptor and cytosolic DNA-STING signaling pathways for Staphylococcus aureus cutaneous host defense. PLoS Pathog. 2017;13(7):e1006496.  https://doi.org/10.1371/journal.ppat.1006496 This study demonstrated that the DNA sensor STING functions to suppress protective TLR-mediated immune responses against a S. aureus skin infection. CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Muller-Anstett MA, Muller P, Albrecht T, Nega M, Wagener J, Gao Q, et al. Staphylococcal peptidoglycan co-localizes with Nod2 and TLR2 and activates innate immune response via both receptors in primary murine keratinocytes. PLoS One. 2010;5(10):e13153.  https://doi.org/10.1371/journal.pone.0013153.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Roth SA, Simanski M, Rademacher F, Schroder L, Harder J. The pattern recognition receptor NOD2 mediates Staphylococcus aureus-induced IL-17C expression in keratinocytes. J Invest Dermatol. 2014;134(2):374–80.  https://doi.org/10.1038/jid.2013.313.CrossRefPubMedGoogle Scholar
  75. 75.
    Hruz P, Zinkernagel AS, Jenikova G, Botwin GJ, Hugot JP, Karin M, et al. NOD2 contributes to cutaneous defense against Staphylococcus aureus through α-toxin-dependent innate immune activation. Proc Natl Acad Sci U S A. 2009;106(31):12873–8.  https://doi.org/10.1073/pnas.0904958106.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Cho JS, Zussman J, Donegan NP, Ramos RI, Garcia NC, Uslan DZ, et al. Noninvasive in vivo imaging to evaluate immune responses and antimicrobial therapy against Staphylococcus aureus and USA300 MRSA skin infections. J Invest Dermatol. 2011;131(4):907–15.  https://doi.org/10.1038/jid.2010.417.CrossRefPubMedGoogle Scholar
  77. 77.
    Miller LS, Pietras EM, Uricchio LH, Hirano K, Rao S, Lin H, et al. Inflammasome-mediated production of IL-1β is required for neutrophil recruitment against Staphylococcus aureus in vivo. J Immunol. 2007;179(10):6933–42.CrossRefGoogle Scholar
  78. 78.
    Munoz-Planillo R, Franchi L, Miller LS, Nunez G. A critical role for hemolysins and bacterial lipoproteins in Staphylococcus aureus-induced activation of the Nlrp3 inflammasome. J Immunol. 2009;183(6):3942–8.  https://doi.org/10.4049/jimmunol.0900729.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Franchi L, Munoz-Planillo R, Nunez G. Sensing and reacting to microbes through the inflammasomes. Nat Immunol. 2012;13(4):325–32.  https://doi.org/10.1038/ni.2231.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Guo H, Callaway JB, Ting JP. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med. 2015;21(7):677–87.  https://doi.org/10.1038/nm.3893.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Schroder K, Tschopp J. The inflammasomes. Cell. 2010;140(6):821–32.  https://doi.org/10.1016/j.cell.2010.01.040.CrossRefPubMedGoogle Scholar
  82. 82.
    Craven RR, Gao X, Allen IC, Gris D, Bubeck Wardenburg J, McElvania-Tekippe E, et al. Staphylococcus aureus α-hemolysin activates the NLRP3-inflammasome in human and mouse monocytic cells. PLoS One. 2009;4(10):e7446.  https://doi.org/10.1371/journal.pone.0007446.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Franchi L, Kanneganti TD, Dubyak GR, Nunez G. Differential requirement of P2X7 receptor and intracellular K+ for caspase-1 activation induced by intracellular and extracellular bacteria. J Biol Chem. 2007;282(26):18810–8.  https://doi.org/10.1074/jbc.M610762200.CrossRefPubMedGoogle Scholar
  84. 84.
    Holzinger D, Gieldon L, Mysore V, Nippe N, Taxman DJ, Duncan JA, et al. Staphylococcus aureus Panton-Valentine leukocidin induces an inflammatory response in human phagocytes via the NLRP3 inflammasome. J Leukoc Biol. 2012;92(5):1069–81.  https://doi.org/10.1189/jlb.0112014.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Mariathasan S, Weiss DS, Newton K, McBride J, O’Rourke K, Roose-Girma M, et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature. 2006;440(7081):228–32.  https://doi.org/10.1038/nature04515.CrossRefPubMedGoogle Scholar
  86. 86.
    Shimada T, Park BG, Wolf AJ, Brikos C, Goodridge HS, Becker CA, et al. Staphylococcus aureus evades lysozyme-based peptidoglycan digestion that links phagocytosis, inflammasome activation, and IL-1β secretion. Cell Host Microbe. 2010;7(1):38–49.  https://doi.org/10.1016/j.chom.2009.12.008.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Niebuhr M, Baumert K, Heratizadeh A, Satzger I, Werfel T. Impaired NLRP3 inflammasome expression and function in atopic dermatitis due to Th2 milieu. Allergy. 2014;69(8):1058–67.  https://doi.org/10.1111/all.12428.CrossRefPubMedGoogle Scholar
  88. 88.
    Spaan AN, Surewaard BG, Nijland R, van Strijp JA. Neutrophils versus Staphylococcus aureus: a biological tug of war. Annu Rev Microbiol. 2013;67:629–50.  https://doi.org/10.1146/annurev-micro-092412-155746.CrossRefPubMedGoogle Scholar
  89. 89.
    Thammavongsa V, Kim HK, Missiakas D, Schneewind O. Staphylococcal manipulation of host immune responses. Nat Rev Microbiol. 2015;13(9):529–43.  https://doi.org/10.1038/nrmicro3521.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Aman MJ, Adhikari RP. Staphylococcal bicomponent pore-forming toxins: targets for prophylaxis and immunotherapy. Toxins (Basel). 2014;6(3):950–72.  https://doi.org/10.3390/toxins6030950.CrossRefGoogle Scholar
  91. 91.
    Anderson AS, Miller AA, Donald RG, Scully IL, Nanra JS, Cooper D, et al. Development of a multicomponent Staphylococcus aureus vaccine designed to counter multiple bacterial virulence factors. Hum Vaccin Immunother. 2012;8(11):1585–94.  https://doi.org/10.4161/hv.21872.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Bagnoli F. Staphylococcus aureus toxin antibodies: good companions of antibiotics and vaccines. Virulence. 2017;8(7):1037–42.  https://doi.org/10.1080/21505594.2017.1295205.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Rouha H, Badarau A, Visram ZC, Battles MB, Prinz B, Magyarics Z, et al. Five birds, one stone: neutralization of α-hemolysin and 4 bi-component leukocidins of Staphylococcus aureus with a single human monoclonal antibody. MAbs. 2015;7(1):243–54.  https://doi.org/10.4161/19420862.2014.985132.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Milner JD, Brenchley JM, Laurence A, Freeman AF, Hill BJ, Elias KM, et al. Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature. 2008;452(7188):773–6.  https://doi.org/10.1038/nature06764.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Levy R, Okada S, Beziat V, Moriya K, Liu C, Chai LY, et al. Genetic, immunological, and clinical features of patients with bacterial and fungal infections due to inherited IL-17RA deficiency. Proc Natl Acad Sci U S A. 2016;113(51):E8277–E85.  https://doi.org/10.1073/pnas.1618300114.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Puel A, Cypowyj S, Bustamante J, Wright JF, Liu L, Lim HK, et al. Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science. 2011;332(6025):65–8.  https://doi.org/10.1126/science.1200439.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Graber CJ, Jacobson MA, Perdreau-Remington F, Chambers HF, Diep BA. Recurrence of skin and soft tissue infection caused by methicillin-resistant Staphylococcus aureus in a HIV primary care clinic. J Acquir Immune Defic Syndr. 2008;49(2):231–3.  https://doi.org/10.1097/QAI.0b013e318183a947.CrossRefPubMedGoogle Scholar
  98. 98.
    Vyas KJ, Shadyab AH, Lin CD, Crum-Cianflone NF. Trends and factors associated with initial and recurrent methicillin-resistant Staphylococcus aureus (MRSA) skin and soft-tissue infections among HIV-infected persons: an 18-year study. J Int Assoc Provid AIDS Care. 2014;13(3):206–13.  https://doi.org/10.1177/2325957412473780.CrossRefPubMedGoogle Scholar
  99. 99.
    Chan LC, Chaili S, Filler SG, Barr K, Wang H, Kupferwasser D, et al. Nonredundant roles of interleukin-17A (IL-17A) and IL-22 in murine host defense against cutaneous and hematogenous infection due to methicillin-resistant Staphylococcus aureus. Infect Immun. 2015;83(11):4427–37.  https://doi.org/10.1128/IAI.01061-15.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Cho JS, Pietras EM, Garcia NC, Ramos RI, Farzam DM, Monroe HR, et al. IL-17 is essential for host defense against cutaneous Staphylococcus aureus infection in mice. J Clin Invest. 2010;120(5):1762–73.  https://doi.org/10.1172/JCI40891.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Maher BM, Mulcahy ME, Murphy AG, Wilk M, O'Keeffe KM, Geoghegan JA, et al. Nlrp-3-driven interleukin 17 production by γδ T cells controls infection outcomes during Staphylococcus aureus surgical site infection. Infect Immun. 2013;81(12):4478–89.  https://doi.org/10.1128/IAI.01026-13.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Myles IA, Fontecilla NM, Valdez PA, Vithayathil PJ, Naik S, Belkaid Y, et al. Signaling via the IL-20 receptor inhibits cutaneous production of IL-1β and IL-17A to promote infection with methicillin-resistant Staphylococcus aureus. Nat Immunol. 2013;14(8):804–11.  https://doi.org/10.1038/ni.2637.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Tkaczyk C, Hamilton MM, Datta V, Yang XP, Hilliard JJ, Stephens GL, et al. Staphylococcus aureus alpha toxin suppresses effective innate and adaptive immune responses in a murine dermonecrosis model. PLoS One. 2013;8(10):e75103.  https://doi.org/10.1371/journal.pone.0075103.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Montgomery CP, Daniels M, Zhao F, Alegre ML, Chong AS, Daum RS. Protective immunity against recurrent Staphylococcus aureus skin infection requires antibody and interleukin-17A. Infect Immun. 2014;82(5):2125–34.  https://doi.org/10.1128/IAI.01491-14.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Ishigame H, Kakuta S, Nagai T, Kadoki M, Nambu A, Komiyama Y, et al. Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic responses. Immunity. 2009;30(1):108–19.  https://doi.org/10.1016/j.immuni.2008.11.009.CrossRefPubMedGoogle Scholar
  106. 106.
    • Archer NK, Adappa ND, Palmer JN, Cohen NA, Harro JM, Lee SK, et al. Interleukin-17A (IL-17A) and IL-17F are critical for antimicrobial peptide production and clearance of Staphylococcus aureus nasal colonization. Infect Immun. 2016;84(12):3575–83.  https://doi.org/10.1128/IAI.00596-16 This paper demonstrates that IL-17 responses promote antimicrobial peptide production and neutrophil recruitment to promote clearance of S. aureus nasal colonization. CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Archer NK, Harro JM, Shirtliff ME. Clearance of Staphylococcus aureus nasal carriage is T cell dependent and mediated through interleukin-17A expression and neutrophil influx. Infect Immun. 2013;81(6):2070–5.  https://doi.org/10.1128/IAI.00084-13.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Patel DD, Kuchroo VK. Th17 cell pathway in human immunity: lessons from genetics and therapeutic interventions. Immunity. 2015;43(6):1040–51.  https://doi.org/10.1016/j.immuni.2015.12.003.CrossRefPubMedGoogle Scholar
  109. 109.
    •• Utay NS, Roque A, Timmer JK, Morcock DR, DeLeage C, Somasunderam A, et al. MRSA infections in HIV-infected people are associated with decreased MRSA-specific Th1 immunity. PLoS Pathog. 2016;12(4):e1005580.  https://doi.org/10.1371/journal.ppat.1005580 This study demonstrated that protection against S. aureus skin infections in patients with HIV disease were more dependent upon IFNγ than IL-17 responses, providing key evidence in humans that durable protection against S. aureus skin infections involves T cell cytokines other than IL-17. CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Barin JG, Talor MV, Schaub JA, Diny NL, Hou X, Hoyer M, et al. Collaborative interferon-γ and interleukin-17 signaling protects the oral mucosa from Staphylococcus aureus. Am J Pathol. 2016;186(9):2337–52.  https://doi.org/10.1016/j.ajpath.2016.07.001.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    •• Dillen CA, Pinsker BL, Marusina AI, Merleev AA, Farber ON, Liu H, et al. Clonally expanded γδ T cells protect against Staphylococcus aureus skin reinfection. J Clin Invest. 2018;128(3):1026–42.  https://doi.org/10.1172/JCI96481 This paper was the first to demonstrate that a clonal population of γδ T cells expanded following an initial S. aureus skin infection and provided a long-term immunological memory response against a secondary S. aureus skin infection via production of IFNγ and TNF that enhanced neutrophil recruitment to the skin. CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Laouini D, Kawamoto S, Yalcindag A, Bryce P, Mizoguchi E, Oettgen H, et al. Epicutaneous sensitization with superantigen induces allergic skin inflammation. J Allergy Clin Immunol. 2003;112(5):981–7.  https://doi.org/10.1016/j.jaci.2003.07.007.CrossRefPubMedGoogle Scholar
  113. 113.
    •• Liu H, Archer NK, Dillen CA, Wang Y, Ashbaugh AG, Ortines RV, et al. Staphylococcus aureus epicutaneous exposure drives skin inflammation via IL-36-mediated T cell responses. Cell Host Microbe. 2017;22(5):653–66 e5.  https://doi.org/10.1016/j.chom.2017.10.006 References 113 and 114 were the first to demonstrate that S. aureus epicutaneous exposure induced IL-36α production by keratinocytes that stimulated T cells to produce IL-17 to promote skin inflammation. This represents a previously unrecognized mechanism by which S. aureus promotes cutaneous inflammation that likely relates to disease flares of atopic dermatitis and potentially other inflammatory skin diseases. CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    •• Nakagawa S, Matsumoto M, Katayama Y, Oguma R, Wakabayashi S, Nygaard T, et al. Staphylococcus aureus virulent PSMα peptides induce keratinocyte alarmin release to orchestrate IL-17-dependent skin inflammation. Cell Host Microbe. 2017;22(5):667–77 e5.  https://doi.org/10.1016/j.chom.2017.10.008 References 113 and 114 were the first to demonstrate that S. aureus epicutaneous exposure induced IL-36α production by keratinocytes that stimulated T cells to produce IL-17 to promote skin inflammation. This represents a previously unrecognized mechanism by which S. aureus promotes cutaneous inflammation that likely relates to disease flares of atopic dermatitis and potentially other inflammatory skin diseases. CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    • Suarez-Farinas M, Ungar B, Correa da Rosa J, Ewald DA, Rozenblit M, Gonzalez J, et al. RNA sequencing atopic dermatitis transcriptome profiling provides insights into novel disease mechanisms with potential therapeutic implications. J Allergy Clin Immunol. 2015;135(5):1218–27.  https://doi.org/10.1016/j.jaci.2015.03.003 This manuscript demonstrated by RNA-sequencing that transcripts for IL-36α and IL-36γ are increased in the affected skin from atopic dermatitis patients, providing evidence that IL-36 responses are involved in the pathogenesis of atopic dermatitis in humans. CrossRefPubMedGoogle Scholar
  116. 116.
    Koga C, Kabashima K, Shiraishi N, Kobayashi M, Tokura Y. Possible pathogenic role of Th17 cells for atopic dermatitis. J Invest Dermatol. 2008;128(11):2625–30.  https://doi.org/10.1038/jid.2008.111.CrossRefPubMedGoogle Scholar
  117. 117.
    Toda M, Leung DY, Molet S, Boguniewicz M, Taha R, Christodoulopoulos P, et al. Polarized in vivo expression of IL-11 and IL-17 between acute and chronic skin lesions. J Allergy Clin Immunol. 2003;111(4):875–81.CrossRefGoogle Scholar
  118. 118.
    Marrakchi S, Guigue P, Renshaw BR, Puel A, Pei XY, Fraitag S, et al. Interleukin-36-receptor antagonist deficiency and generalized pustular psoriasis. N Engl J Med. 2011;365(7):620–8.  https://doi.org/10.1056/NEJMoa1013068.CrossRefPubMedGoogle Scholar
  119. 119.
    Johnston A, Xing X, Wolterink L, Barnes DH, Yin Z, Reingold L, et al. IL-1 and IL-36 are dominant cytokines in generalized pustular psoriasis. J Allergy Clin Immunol. 2017;140(1):109–20.  https://doi.org/10.1016/j.jaci.2016.08.056.CrossRefPubMedGoogle Scholar
  120. 120.
    Williams MR, Nakatsuji T, Gallo RL. Staphylococcus aureus: master manipulator of the skin. Cell Host Microbe. 2017;22(5):579–81.  https://doi.org/10.1016/j.chom.2017.10.015.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of DermatologyJohns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Department of Medicine, Division of Infectious DiseasesJohns Hopkins University School of MedicineBaltimoreUSA
  3. 3.Department of Orthopaedic SurgeryJohns Hopkins University School of MedicineBaltimoreUSA
  4. 4.Department of Materials Science and EngineeringJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations