Current Dermatology Reports

, Volume 3, Issue 1, pp 61–78

Genetic Epidemiology of Psoriasis

Epidemiology (A Armstrong, Section Editor)


Psoriasis is a chronic, inflammatory, immune-mediated skin condition with a prevalence of 0–11.8 % across the world. It is associated with a number of cardiovascular, metabolic, and autoimmune disease comorbidities. Psoriasis is a multifactorial disorder, influenced by both genetic and environmental factors. Its genetic basis has long been established through twin studies and familial clustering. The association of psoriasis with the HLA-Cw6 allele has been shown in many studies. Recent genome-wide association studies have identified a large number of other genes associated with psoriasis. Many of these genes regulate the innate and adaptive immune system. These findings indicate that a dysregulated immune system may play a major role in the pathogenesis of psoriasis. In this article, we review the clinical and genetic epidemiology of psoriasis with a brief description of the pathogenesis of disease.


Psoriasis Genetic Prevalence Epidemiology Pathogenesis 


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Koo J. Population-based epidemiologic study of psoriasis with emphasis on quality of life assessment. Dermatol Clin. 1996;14(3):485–96.PubMedGoogle Scholar
  2. 2.
    Nestle FO, Kaplan DH, Barker J. Psoriasis. N Engl J Med. 2009;361(5):496–509. doi:10.1056/NEJMra0804595.PubMedGoogle Scholar
  3. 3.
    Stern RS, Nijsten T, Feldman SR, Margolis DJ, Rolstad T. Psoriasis is common, carries a substantial burden even when not extensive, and is associated with widespread treatment dissatisfaction. J Investig Dermatol Symp Proc. 2004;9(2):136–9. doi:10.1046/j.1087-0024.2003.09102.x.PubMedGoogle Scholar
  4. 4.
    Chandran V, Raychaudhuri SP. Geoepidemiology and environmental factors of psoriasis and psoriatic arthritis. J Autoimmun. 2010;34(3):J314–21. doi:10.1016/j.jaut.2009.12.001.PubMedGoogle Scholar
  5. 5.
    Christophers E. Psoriasis–epidemiology and clinical spectrum. Clin Exp Dermatol. 2001;26(4):314–20.PubMedGoogle Scholar
  6. 6.
    de Cid R, Riveira-Munoz E, Zeeuwen PL, Robarge J, Liao W, Dannhauser EN, et al. Deletion of the late cornified envelope LCE3B and LCE3C genes as a susceptibility factor for psoriasis. Nat Genet. 2009;41(2):211–5. doi:10.1038/ng.313.PubMedCentralPubMedGoogle Scholar
  7. 7.
    Ellinghaus D, Ellinghaus E, Nair RP, Stuart PE, Esko T, Metspalu A, et al. Combined analysis of genome-wide association studies for Crohn disease and psoriasis identifies seven shared susceptibility loci. Am J Human Genet. 2012;90(4):636–47. doi:10.1016/j.ajhg.2012.02.020.Google Scholar
  8. 8.
    Ellinghaus E, Ellinghaus D, Stuart PE, Nair RP, Debrus S, Raelson JV, et al. Genome-wide association study identifies a psoriasis susceptibility locus at TRAF3IP2. Nat Genet. 2010;42(11):991–5. doi:10.1038/ng.689.PubMedCentralPubMedGoogle Scholar
  9. 9.
    Nair RP, Duffin KC, Helms C, Ding J, Stuart PE, Goldgar D, et al. Genome-wide scan reveals association of psoriasis with IL-23 and NF-kappaB pathways. Nat Genet. 2009;41(2):199–204. doi:10.1038/ng.311.PubMedCentralPubMedGoogle Scholar
  10. 10.
    Genetic Analysis of Psoriasis C, the Wellcome Trust Case Control C, Strange A, Capon F, Spencer CC, Knight J, et al. A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1. Nat Genet. 2010;42(11):985–90. doi:10.1038/ng.694.PubMedCentralPubMedGoogle Scholar
  11. 11.
    Stuart PE, Nair RP, Ellinghaus E, Ding J, Tejasvi T, Gudjonsson JE, et al. Genome-wide association analysis identifies three psoriasis susceptibility loci. Nat Genet. 2010;42(11):1000–4. doi:10.1038/ng.693.PubMedCentralPubMedGoogle Scholar
  12. 12.
    Sun LD, Cheng H, Wang ZX, Zhang AP, Wang PG, Xu JH, et al. Association analyses identify six new psoriasis susceptibility loci in the Chinese population. Nat Genet. 2010;42(11):1005–9. doi:10.1038/ng.690.PubMedCentralPubMedGoogle Scholar
  13. 13.••
    Tsoi LC, Spain SL, Knight J, Ellinghaus E, Stuart PE, Capon F, et al. Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity. Nat Genet. 2012;44(12):1341–8. doi:10.1038/ng.2467. An article that performed meta-analysis of GWAS studies and two datasets genotyped on immunochip and presented a list of 36 genetic loci, including 15 new, associated with psoriasis.PubMedCentralPubMedGoogle Scholar
  14. 14.
    Zhang XJ, Huang W, Yang S, Sun LD, Zhang FY, Zhu QX et al. Psoriasis genome-wide association study identifies susceptibility variants within LCE gene cluster at 1q21. Nat Genet. 2009;41(2):205–10. doi:10.1038/ng.310.Google Scholar
  15. 15.
    Henseler T, Christophers E. Psoriasis of early and late onset: characterization of two types of psoriasis vulgaris. J Am Acad Dermatol. 1985;13(3):450–6.PubMedGoogle Scholar
  16. 16.
    Christophers E, Henseler T. Patient subgroups and the inflammatory pattern in psoriasis. Acta Derm Venereol Suppl. 1989;151:88–92. discussion 106–10.Google Scholar
  17. 17.
    Ferrandiz C, Pujol RM, Garcia-Patos V, Bordas X, Smandia JA. Psoriasis of early and late onset: a clinical and epidemiologic study from Spain. J Am Acad Dermatol. 2002;46(6):867–73.PubMedGoogle Scholar
  18. 18.
    Kimball AB, Gladman D, Gelfand JM, Gordon K, Horn EJ, Korman NJ, et al. National Psoriasis Foundation clinical consensus on psoriasis comorbidities and recommendations for screening. J Am Acad Dermatol. 2008;58(6):1031–42. doi:10.1016/j.jaad.2008.01.006.PubMedCentralPubMedGoogle Scholar
  19. 19.
    Gelfand JM, Neimann AL, Shin DB, Wang X, Margolis DJ, Troxel AB. Risk of myocardial infarction in patients with psoriasis. JAMA. 2006;296(14):1735–41. doi:10.1001/jama.296.14.1735.PubMedGoogle Scholar
  20. 20.
    Brauchli YB, Jick SS, Miret M, Meier CR. Psoriasis and risk of incident myocardial infarction, stroke or transient ischaemic attack: an inception cohort study with a nested case-control analysis. Br J Dermatol. 2009;160(5):1048–56. doi:10.1111/j.1365-2133.2008.09020.x.PubMedGoogle Scholar
  21. 21.
    Xiao J, Chen LH, Tu YT, Deng XH, Tao J. Prevalence of myocardial infarction in patients with psoriasis in central China. J Eur Acad Dermatol Venereol. 2009;23(11):1311–5. doi:10.1111/j.1468-3083.2009.03318.x.PubMedGoogle Scholar
  22. 22.••
    Ahlehoff O, Gislason GH, Charlot M, Jorgensen CH, Lindhardsen J, Olesen JB, et al. Psoriasis is associated with clinically significant cardiovascular risk: a Danish nationwide cohort study. J Intern Med. 2011;270(2):147–57. doi:10.1111/j.1365-2796.2010.02310.x. This study showed that patients with psoriasis had an increased risk of cardiovascular events and all-cause mortality and that these risks increased with disease severity.PubMedGoogle Scholar
  23. 23.••
    Yeung H, Takeshita J, Mehta NN, Kimmel SE, Ogdie A, Margolis DJ, et al. Psoriasis severity and the prevalence of major medical comorbidity: a population-based study. JAMA Dermatol. 2013. doi:10.1001/jamadermatol.2013.5015. This study linked disease severity with increased risk of several comorbidities, including COPD, diabetes mellitus, mild liver disease, myocardial infarction, peptic ulcer disease, peripheral vascular disease, renal disease, and rheumatologic disease.Google Scholar
  24. 24.••
    Wu JJ, Poon KY, Channual JC, Shen AY. Association between tumor necrosis factor inhibitor therapy and myocardial infarction risk in patients with psoriasis. Arch Dermatol. 2012;148(11):1244–50. doi:10.1001/archdermatol.2012.2502. This study showed that systemic treatments for psoriasis, including TNF inhibitors, oral medications, and even phototherapy, reduced the risk of cardiovascular events in patients with psoriasis.PubMedGoogle Scholar
  25. 25.
    Ahlehoff O, Skov L, Gislason G, Lindhardsen J, Kristensen SL, Iversen L, et al. Cardiovascular disease event rates in patients with severe psoriasis treated with systemic anti-inflammatory drugs: a Danish real-world cohort study. J Intern Med. 2013;273(2):197–204. doi:10.1111/j.1365-2796.2012.02593.x.PubMedGoogle Scholar
  26. 26.
    Han C, Lofland JH, Zhao N, Schenkel B. Increased prevalence of psychiatric disorders and health care-associated costs among patients with moderate-to-severe psoriasis. J Drugs Dermatol. 2011;10(8):843–50.PubMedGoogle Scholar
  27. 27.
    Fry L, Baker BS. Triggering psoriasis: the role of infections and medications. Clin Dermatol. 2007;25(6):606–15. doi:10.1016/j.clindermatol.2007.08.015.PubMedGoogle Scholar
  28. 28.
    Naldi L, Chatenoud L, Linder D, Belloni Fortina A, Peserico A, Virgili AR, et al. Cigarette smoking, body mass index, and stressful life events as risk factors for psoriasis: results from an Italian case-control study. J Invest Dermatol. 2005;125(1):61–7. doi:10.1111/j.0022-202X.2005.23681.x.PubMedGoogle Scholar
  29. 29.
    Verhoeven EW, Kraaimaat FW, de Jong EM, Schalkwijk J, van de Kerkhof PC, Evers AW. Individual differences in the effect of daily stressors on psoriasis: a prospective study. Br J Dermatol. 2009;161(2):295–9. doi:10.1111/j.1365-2133.2009.09194.x.PubMedGoogle Scholar
  30. 30.
    Verhoeven EW, Kraaimaat FW, Jong EM, Schalkwijk J, van de Kerkhof PC, Evers AW. Effect of daily stressors on psoriasis: a prospective study. J Invest Dermatol. 2009;129(8):2075–7. doi:10.1038/jid.2008.460.PubMedGoogle Scholar
  31. 31.
    Saint-Mezard P, Chavagnac C, Bosset S, Ionescu M, Peyron E, Kaiserlian D, et al. Psychological stress exerts an adjuvant effect on skin dendritic cell functions in vivo. J Immunol. 2003;171(8):4073–80.PubMedGoogle Scholar
  32. 32.
    Murray ML, Bergstresser PR, Adams-Huet B, Cohen JB. Relationship of psoriasis severity to obesity using same-gender siblings as controls for obesity. Clin Exp Dermatol. 2009;34(2):140–4. doi:10.1111/j.1365-2230.2008.02791.x.PubMedGoogle Scholar
  33. 33.
    Huang YH, Yang LC, Hui RY, Chang YC, Yang YW, Yang CH, et al. Relationships between obesity and the clinical severity of psoriasis in Taiwan. J Eur Acad Dermatol Venereol. 2010;24(9):1035–9. doi:10.1111/j.1468-3083.2010.03573.x.PubMedGoogle Scholar
  34. 34.
    Wolk K, Mallbris L, Larsson P, Rosenblad A, Vingard E, Stahle M. Excessive body weight and smoking associates with a high risk of onset of plaque psoriasis. Acta Derm Venereol. 2009;89(5):492–7. doi:10.2340/00015555-0711.PubMedGoogle Scholar
  35. 35.
    Duarte GV, Oliveira Mde F, Cardoso TM, Follador I, Silva TS, Cavalheiro CM, et al. Association between obesity measured by different parameters and severity of psoriasis. Int J Dermatol. 2013;52(2):177–81. doi:10.1111/j.1365-4632.2011.05270.x.PubMedGoogle Scholar
  36. 36.
    Kumar S, Han J, Li T, Qureshi AA. Obesity, waist circumference, weight change and the risk of psoriasis in US women. J Eur Acad Dermatol Venereol. 2012. doi:10.1111/jdv.12001.Google Scholar
  37. 37.
    Cassano N, Galluccio A, De Simone C, Loconsole F, Massimino SD, Plumari A, et al. Influence of body mass index, comorbidities and prior systemic therapies on the response of psoriasis to adalimumab: an exploratory analysis from the APHRODITE data. J Biol Regul Homeost Agents. 2008;22(4):233–7.PubMedGoogle Scholar
  38. 38.
    Naldi L, Addis A, Chimenti S, Giannetti A, Picardo M, Tomino C, et al. Impact of body mass index and obesity on clinical response to systemic treatment for psoriasis. Evidence from the Psocare project. Dermatology. 2008;217(4):365–73. doi:10.1159/000156599.PubMedGoogle Scholar
  39. 39.
    Gisondi P, Del Giglio M, Di Francesco V, Zamboni M, Girolomoni G. Weight loss improves the response of obese patients with moderate-to-severe chronic plaque psoriasis to low-dose cyclosporine therapy: a randomized, controlled, investigator-blinded clinical trial. Am J Clin Nutr. 2008;88(5):1242–7.PubMedGoogle Scholar
  40. 40.
    Basavaraj KH, Ashok NM, Rashmi R, Praveen TK. The role of drugs in the induction and/or exacerbation of psoriasis. Int J Dermatol. 2010;49(12):1351–61. doi:10.1111/j.1365-4632.2010.04570.x.PubMedGoogle Scholar
  41. 41.
    O’Brien M, Koo J. The mechanism of lithium and beta-blocking agents in inducing and exacerbating psoriasis. J Drugs Dermatol. 2006;5(5):426–32.PubMedGoogle Scholar
  42. 42.
    Balato N, Di Costanzo L, Patruno C, Patri A, Ayala F. Effect of weather and environmental factors on the clinical course of psoriasis. Occup Environ Med. 2013;70(8):600. doi:10.1136/oemed-2013-101505.PubMedGoogle Scholar
  43. 43.
    Hellgren L. Psoriasis: the prevalence in sex, age and occupational groups in total populations in Sweden; morphology, inheritance and assocation with other skin and rheumatic disease. Stockholm: Almqvist & Wiksell; 1967.Google Scholar
  44. 44.
    Lomholt G. Psoriasis: prevalence, spontaneous course, and genetics. Copenhagen: G.E.C. Gad; 1963.Google Scholar
  45. 45.
    Vasili E, Vargu M, Burazeri G, Hysa K, Cano E, Bezati B (2012). Psoriasis and Diabetes, Inflammatory Diseases - Immunopathology, Clinical and Pharmacological Bases, Dr Mahin Khatami (Ed.), ISBN: 978-953-307-911–0, InTech, doi:10.5772/25533. Available from:
  46. 46.
    Abele DC, Dobson RL, Graham JB. Heredity and psoriasis. Study of a large family. Arch Dermatol. 1963;88:38–47.PubMedGoogle Scholar
  47. 47.
    Rosbotham JL, Trembath RC, Glover M, Leigh I, Barker JN. An association between psoriasis and hereditary multiple exostoses. A clue for the mapping of a psoriasis susceptibility gene? Br J Dermatol. 1994;130(5):671–4.PubMedGoogle Scholar
  48. 48.
    Farber EMNL. Epidemiology: natural history and genetics. In: Roenigk JHM, editor. Psoriasis. New York: Dekker; 1998. p. 107–57.Google Scholar
  49. 49.
    Elder JT, Nair RP, Guo SW, Henseler T, Christophers E, Voorhees JJ. The genetics of psoriasis. Arch Dermatol. 1994;130(2):216–24.PubMedGoogle Scholar
  50. 50.
    Swanbeck G, Inerot A, Martinsson T, Wahlstrom J. A population genetic study of psoriasis. Acta Derm Venereol Suppl. 1994;186:7–8.Google Scholar
  51. 51.
    Brandrup F, Holm N, Grunnet N, Henningsen K, Hansen HE. Psoriasis in monozygotic twins: variations in expression in individuals with identical genetic constitution. Acta Derm Venereol. 1982;62(3):229–36.PubMedGoogle Scholar
  52. 52.
    Duffy DL, Spelman LS, Martin NG. Psoriasis in Australian twins. J Am Acad Dermatol. 1993;29(3):428–34.PubMedGoogle Scholar
  53. 53.
    Farber EM, Nall ML, Watson W. Natural history of psoriasis in 61 twin pairs. Arch Dermatol. 1974;109(2):207–11.PubMedGoogle Scholar
  54. 54.
    Vasilopoulos Y, Sagoo GS, Cork MJ, Walters K, Tazi-Ahnini R. HLA-C, CSTA and DS12346 susceptibility alleles confer over 100-fold increased risk of developing psoriasis: evidence of gene interaction. J Hum Genet. 2011;56(6):423–7. doi:10.1038/jhg.2011.33.PubMedGoogle Scholar
  55. 55.
    Capon F, Semprini S, Dallapiccola B, Novelli G. Evidence for interaction between psoriasis-susceptibility loci on chromosomes 6p21 and 1q21. Am J Hum Genet. 1999;65(6):1798–800. doi:10.1086/302653.PubMedCentralPubMedGoogle Scholar
  56. 56.
    Lee YA, Ruschendorf F, Windemuth C, Schmitt-Egenolf M, Stadelmann A, Nurnberg G, et al. Genomewide scan in german families reveals evidence for a novel psoriasis-susceptibility locus on chromosome 19p13. Am J Hum Genet. 2000;67(4):1020–4. doi:10.1086/303075.PubMedCentralPubMedGoogle Scholar
  57. 57.
    Matthews D, Fry L, Powles A, Weber J, McCarthy M, Fisher E, et al. Evidence that a locus for familial psoriasis maps to chromosome 4q. Nat Genet. 1996;14(2):231–3. doi:10.1038/ng1096-231.PubMedGoogle Scholar
  58. 58.
    Nair RP, Henseler T, Jenisch S, Stuart P, Bichakjian CK, Lenk W, et al. Evidence for two psoriasis susceptibility loci (HLA and 17q) and two novel candidate regions (16q and 20p) by genome-wide scan. Hum Mol Genet. 1997;6(8):1349–56.PubMedGoogle Scholar
  59. 59.
    Samuelsson L, Enlund F, Torinsson A, Yhr M, Inerot A, Enerback C, et al. A genome-wide search for genes predisposing to familial psoriasis by using a stratification approach. Hum Genet. 1999;105(6):523–9.PubMedGoogle Scholar
  60. 60.
    Trembath RC, Clough RL, Rosbotham JL, Jones AB, Camp RD, Frodsham A, et al. Identification of a major susceptibility locus on chromosome 6p and evidence for further disease loci revealed by a two stage genome-wide search in psoriasis. Hum Mol Genet. 1997;6(5):813–20.PubMedGoogle Scholar
  61. 61.
    Karason AK A, Frigge A, Snorradottir S, Nahimas J, Olafsdotir E, et al. A search for psoriasis genes in the Icelandic population. Am J Hum Genet. 2000;67:47.Google Scholar
  62. 62.
    Lesueur F, Lefevre C, Has C, Guilloud-Bataille M, Oudot T, Mahe E, et al. Confirmation of psoriasis susceptibility loci on chromosome 6p21 and 20p13 in French families. J Invest Dermatol. 2007;127(6):1403–9. doi:10.1038/sj.jid.5700749.PubMedGoogle Scholar
  63. 63.
    Oka A, Mabuchi T, Ozawa A, Inoko H. Current understanding of human geneBcs and geneBc analysis of psoriasis. J Dermatol. 2012;39(3):231–41. doi:10.1111/j.1346-8138.2012.01504.x.
  64. 64.
    Valdimarsson H. The genetic basis of psoriasis. Clin Dermatol. 2007;25(6):563–7. doi:10.1016/j.clindermatol.2007.08.010.PubMedGoogle Scholar
  65. 65.
    Nair RP, Stuart PE, Nistor I, Hiremagalore R, Chia NV, Jenisch S, et al. Sequence and haplotype analysis supports HLA-C as the psoriasis susceptibility 1 gene. Am J Hum Genet. 2006;78(5):827–51. doi:10.1086/503821.PubMedCentralPubMedGoogle Scholar
  66. 66.
    Mallon E, Newson R, Bunker CB. HLA-Cw6 and the genetic predisposition to psoriasis: a meta-analysis of published serologic studies. J Invest Dermatol. 1999;113(4):693–5. doi:10.1046/j.1523-1747.1999.00724.x.PubMedGoogle Scholar
  67. 67.
    Russell TJ, Schultes LM, Kuban DJ. Histocompatibility (HL-A) antigens associated with psoriasis. N Engl J Med. 1972;287(15):738–40. doi:10.1056/NEJM197210122871503.PubMedGoogle Scholar
  68. 68.
    Fan X, Yang S, Huang W, Wang ZM, Sun LD, Liang YH, et al. Fine mapping of the psoriasis susceptibility locus PSORS1 supports HLA-C as the susceptibility gene in the Han Chinese population. PLoS Genet. 2008;4(3):e1000038. doi:10.1371/journal.pgen.1000038.PubMedCentralPubMedGoogle Scholar
  69. 69.
    Chen H, Hayashi G, Lai OY, Dilthey A, Kuebler PJ, Wong TV, et al. Psoriasis patients are enriched for genetic variants that protect against HIV-1 disease. PLoS Genet. 2012;8(2):e1002514. doi:10.1371/journal.pgen.1002514.PubMedCentralPubMedGoogle Scholar
  70. 70.
    InternaBonal HapMap ConsorBum. The InternaBonal HapMap Project. Nature. 2003;426(6968):789–96.Google Scholar
  71. 71.
    Cargill M, Schrodi SJ, Chang M, Garcia VE, Brandon R, Callis KP, et al. A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. Am J Hum Genet. 2007;80(2):273–90. doi:10.1086/511051.PubMedCentralPubMedGoogle Scholar
  72. 72.
    Huffmeier U, Uebe S, Ekici AB, Bowes J, Giardina E, Korendowych E, et al. Common variants at TRAF3IP2 are associated with susceptibility to psoriatic arthritis and psoriasis. Nat Genet. 2010;42(11):996–9. doi:10.1038/ng.688.PubMedCentralPubMedGoogle Scholar
  73. 73.
    National Human Genome Research Institute. A Catalog of Genome-wide Association Studies [database on the Internet]. Available at: Accessed 16 Aug 2013.
  74. 74.••
    Jordan CT, Cao L, Roberson ED, Pierson KC, Yang CF, Joyce CE, et al. PSORS2 is due to mutations in CARD14. Am J Hum Genet. 2012;90(5):784–95. doi:10.1016/j.ajhg.2012.03.012. The study reports rare, highly penetrant mutations in caspase recruitment domain 14 (CARD14) that seggregated with psoriasis. The study highlights the role of rare variants in psoriasis.PubMedCentralPubMedGoogle Scholar
  75. 75.
    Onoufriadis A, Simpson MA, Pink AE, Di Meglio P, Smith CH, Pullabhatla V, et al. Mutations in IL36RN/IL1F5 are associated with the severe episodic inflammatory skin disease known as generalized pustular psoriasis. Am J Hum Genet. 2011;89(3):432–7. doi:10.1016/j.ajhg.2011.07.022.PubMedCentralPubMedGoogle Scholar
  76. 76.
    Li Y, Liao W, Cargill M, Chang M, Matsunami N, Feng BJ, et al. Carriers of rare missense variants in IFIH1 are protected from psoriasis. J Invest Dermatol. 2010;130(12):2768–72. doi:10.1038/jid.2010.214.PubMedCentralPubMedGoogle Scholar
  77. 77.
    Enerback C, Martinsson T, Inerot A, Wahlstrom J, Enlund F, Yhr M, et al. Evidence that HLA-Cw6 determines early onset of psoriasis, obtained using sequence-specific primers (PCR-SSP). Acta Derm Venereol. 1997;77(4):273–6.PubMedGoogle Scholar
  78. 78.
    Gudjonsson JE, Karason A, Antonsdottir A, Runarsdottir EH, Hauksson VB, Upmanyu R, et al. Psoriasis patients who are homozygous for the HLA-Cw*0602 allele have a 2.5-fold increased risk of developing psoriasis compared with Cw6 heterozygotes. Br J Dermatol. 2003;148(2):233–5.PubMedGoogle Scholar
  79. 79.
    Gudjonsson JE, Karason A, Antonsdottir AA, Runarsdottir EH, Gulcher JR, Stefansson K, et al. HLA-Cw6-positive and HLA-Cw6-negative patients with Psoriasis vulgaris have distinct clinical features. J Invest Dermatol. 2002;118(2):362–5. doi:10.1046/j.0022-202x.2001.01656.x.PubMedGoogle Scholar
  80. 80.
    Mallon E, Bunce M, Savoie H, Rowe A, Newson R, Gotch F, et al. HLA-C and guttate psoriasis. Br J Dermatol. 2000;143(6):1177–82.PubMedGoogle Scholar
  81. 81.
    Shaiq PA, Stuart PE, Latif A, Schmotzer C, Kazmi AH, Khan MS, et al. Genetic associations of psoriasis in a Pakistani population. Br J Dermatol. 2013;169(2):406–11. doi:10.1111/bjd.12313.PubMedGoogle Scholar
  82. 82.
    Capon F, Di Meglio P, Szaub J, Prescott NJ, Dunster C, Baumber L, et al. Sequence variants in the genes for the interleukin-23 receptor (IL23R) and its ligand (IL12B) confer protection against psoriasis. Hum Genet. 2007;122(2):201–6. doi:10.1007/s00439-007-0397-0.PubMedGoogle Scholar
  83. 83.
    Lee E, Trepicchio WL, Oestreicher JL, Pittman D, Wang F, Chamian F, et al. Increased expression of interleukin 23 p19 and p40 in lesional skin of patients with psoriasis vulgaris. J Exp Med. 2004;199(1):125–30. doi:10.1084/jem.20030451.PubMedCentralPubMedGoogle Scholar
  84. 84.
    Piskin G, Sylva-Steenland RM, Bos JD, Teunissen MB. In vitro and in situ expression of IL-23 by keratinocytes in healthy skin and psoriasis lesions: enhanced expression in psoriatic skin. J Immunol. 2006;176(3):1908–15.PubMedGoogle Scholar
  85. 85.
    Piskin G, Tursen U, Sylva-Steenland RM, Bos JD, Teunissen MB. Clinical improvement in chronic plaque-type psoriasis lesions after narrow-band UVB therapy is accompanied by a decrease in the expression of IFN-gamma inducers – IL-12, IL-18 and IL-23. Exp Dermatol. 2004;13(12):764–72. doi:10.1111/j.0906-6705.2004.00246.x.PubMedGoogle Scholar
  86. 86.
    Kimball AB, Gordon KB, Langley RG, Menter A, Chartash EK, Valdes J. Safety and efficacy of ABT-874, a fully human interleukin 12/23 monoclonal antibody, in the treatment of moderate to severe chronic plaque psoriasis: results of a randomized, placebo-controlled, phase 2 trial. Arch Dermatol. 2008;144(2):200–7. doi:10.1001/archdermatol.2007.63.PubMedGoogle Scholar
  87. 87.
    Krueger GG, Langley RG, Leonardi C, Yeilding N, Guzzo C, Wang Y, et al. A human interleukin-12/23 monoclonal antibody for the treatment of psoriasis. N Engl J Med. 2007;356(6):580–92. doi:10.1056/NEJMoa062382.PubMedGoogle Scholar
  88. 88.
    Tan JY, Li S, Yang K, Ma B, Chen W, Zha C, et al. Ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: a meta-analysis. J Dermatol Treat. 2011;22(6):323–36. doi:10.3109/09546634.2010.487890.Google Scholar
  89. 89.
    Di Meglio P, Di Cesare A, Laggner U, Chu CC, Napolitano L, Villanova F et al. The IL23R R381Q gene variant protects against immunemediated diseases by impairing IL‐23‐induced Th17 effector response in humans. PLoS One. 2011;6(2):e17160. doi:10.1371/journal.pone.0017160.
  90. 90.
    Di Meglio P, Villanova F, Napolitano L, Tosi I, Terranova Barberio M, Mak RK, et al. The IL23R A/Gln381 Allele Promotes IL-23 Unresponsiveness in Human Memory T-Helper 17 Cells and Impairs Th17 Responses in Psoriasis Patients. J Invest Dermatol. 2013;133(10):2381–9. doi:10.1038/jid.2013.170.PubMedCentralPubMedGoogle Scholar
  91. 91.
    Kastelein RA, Hunter CA, Cua DJ. Discovery and biology of IL-23 and IL-27: related but functionally distinct regulators of inflammation. Ann Rev Immunol. 2007;25:221–42. doi:10.1146/annurev.immunol.22.012703.104758.Google Scholar
  92. 92.
    Steinman L. A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage. Nat Med. 2007;13(2):139–45. doi:10.1038/nm1551.PubMedGoogle Scholar
  93. 93.
    Elloso MM, Gomez-Angelats M, Fourie AM. Targeting the Th17 pathway in psoriasis. J Leukoc Biol. 2012;92(6):1187–97. doi:10.1189/jlb.0212101.PubMedGoogle Scholar
  94. 94.••
    Martin DA, Towne JE, Kricorian G, Klekotka P, Gudjonsson JE, Krueger JG, et al. The emerging role of IL-17 in the pathogenesis of psoriasis: preclinical and clinical findings. J Invest Dermatol. 2013;133(1):17–26. doi:10.1038/jid.2012.194. Review of emerging role of IL-17 cytokine family in psoriasis. The review provides a comprehensive overview of the clinical and animal studies on the role of IL-17 in psoriasis. The review also presents a model of psoriasis pathogenesis, in which IL-17 plays a key role.PubMedCentralPubMedGoogle Scholar
  95. 95.
    Kagami S, Rizzo HL, Lee JJ, Koguchi Y, Blauvelt A. Circulating Th17, Th22, and Th1 cells are increased in psoriasis. J Invest Dermatol. 2010;130(5):1373–83. doi:10.1038/jid.2009.399.PubMedCentralPubMedGoogle Scholar
  96. 96.
    Lin AM, Rubin CJ, Khandpur R, Wang JY, Riblett M, Yalavarthi S, et al. Mast cells and neutrophils release IL-17 through extracellular trap formation in psoriasis. J Immunol. 2011;187(1):490–500. doi:10.4049/jimmunol.1100123.PubMedCentralPubMedGoogle Scholar
  97. 97.
    Lowes MA, Kikuchi T, Fuentes-Duculan J, Cardinale I, Zaba LC, Haider AS, et al. Psoriasis vulgaris lesions contain discrete populations of Th1 and Th17 T cells. J Invest Dermatol. 2008;128(5):1207–11. doi:10.1038/sj.jid.5701213.PubMedGoogle Scholar
  98. 98.
    Johansen C, Usher PA, Kjellerup RB, Lundsgaard D, Iversen L, Kragballe K. Characterization of the interleukin-17 isoforms and receptors in lesional psoriatic skin. Br J Dermatol. 2009;160(2):319–24. doi:10.1111/j.1365-2133.2008.08902.x.PubMedGoogle Scholar
  99. 99.
    Nakajima K, Kanda T, Takaishi M, Shiga T, Miyoshi K, Nakajima H, et al. Distinct roles of IL-23 and IL-17 in the development of psoriasis-like lesions in a mouse model. J Immunol. 2011;186(7):4481–9. doi:10.4049/jimmunol.1000148.PubMedGoogle Scholar
  100. 100.
    Austin LM, Ozawa M, Kikuchi T, Walters IB, Krueger JG. The majority of epidermal T cells in Psoriasis vulgaris lesions can produce type 1 cytokines, interferon-gamma, interleukin-2, and tumor necrosis factor-alpha, defining TC1 (cytotoxic T lymphocyte) and TH1 effector populations: a type 1 differentiation bias is also measured in circulating blood T cells in psoriatic patients. J Invest Dermatol. 1999;113(5):752–9. doi:10.1046/j.1523-1747.1999.00749.x.PubMedGoogle Scholar
  101. 101.
    Bos JD, Hulsebosch HJ, Krieg SR, Bakker PM, Cormane RH. Immunocompetent cells in psoriasis. In situ immunophenotyping by monoclonal antibodies. Arch Dermatol Res. 1983;275(3):181–9.PubMedGoogle Scholar
  102. 102.
    Nestle FO, Turka LA, Nickoloff BJ. Characterization of dermal dendritic cells in psoriasis. Autostimulation of T lymphocytes and induction of Th1 type cytokines. J Clin Invest. 1994;94(1):202–9.PubMedCentralPubMedGoogle Scholar
  103. 103.
    Nickoloff BJ. Skin innate immune system in psoriasis: friend or foe? J Clin Invest. 1999;104(9):1161–4. doi:10.1172/JCI8633.PubMedCentralPubMedGoogle Scholar
  104. 104.
    Ellis CN, Gorsulowsky DC, Hamilton TA, Billings JK, Brown MD, Headington JT, et al. Cyclosporine improves psoriasis in a double-blind study. JAMA. 1986;256(22):3110–6.PubMedGoogle Scholar
  105. 105.
    Prinz J, Braun-Falco O, Meurer M, Daddona P, Reiter C, Rieber P, et al. Chimaeric CD4 monoclonal antibody in treatment of generalised pustular psoriasis. Lancet. 1991;338(8762):320–1.PubMedGoogle Scholar
  106. 106.•
    Sweeney CM, Tobin AM, Kirby B. Innate immunity in the pathogenesis of psoriasis. Arch Dermatol Res. 2011;303(10):691–705. doi:10.1007/s00403-011-1169-1. This review provides evidence of the role of innate immune system in pathogenesis of psoriasis.PubMedGoogle Scholar
  107. 107.
    Bonish B, Jullien D, Dutronc Y, Huang BB, Modlin R, Spada FM, et al. Overexpression of CD1d by keratinocytes in psoriasis and CD1d-dependent IFN-gamma production by NK-T cells. J Immunol. 2000;165(7):4076–85.PubMedGoogle Scholar
  108. 108.
    Chowaniec O, Jablonska S, Beutner EH, Proniewska M, Jarzabek-Chorzelska M, Rzesa G. Earliest clinical and histological changes in psoriasis. Dermatologica. 1981;163(1):42–51.PubMedGoogle Scholar
  109. 109.
    Gillitzer R, Wolff K, Tong D, Muller C, Yoshimura T, Hartmann AA, et al. MCP-1 mRNA expression in basal keratinocytes of psoriatic lesions. J Invest Dermatol. 1993;101(2):127–31.PubMedGoogle Scholar
  110. 110.
    Ozdamar SO, Seckin D, Kandemir B, Turanli AY. Mast cells in psoriasis. Dermatology. 1996;192(2):190.PubMedGoogle Scholar
  111. 111.
    Mak RK, Hundhausen C, Nestle FO. Progress in understanding the immunopathogenesis of psoriasis. Actas Derm Sifiliograficas. 2009;100 Suppl 2:2–13.Google Scholar
  112. 112.
    Reich K. The concept of psoriasis as a systemic inflammation: implications for disease management. J Eur Acad Dermatol Venereol. 2012;26 Suppl 2:3–11. doi:10.1111/j.1468-3083.2011.04410.x.PubMedGoogle Scholar
  113. 113.
    Lande R, Gregorio J, Facchinetti V, Chatterjee B, Wang YH, Homey B, et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature. 2007;449(7162):564–9. doi:10.1038/nature06116.PubMedGoogle Scholar
  114. 114.
    Ganguly D, Chamilos G, Lande R, Gregorio J, Meller S, Facchinetti V, et al. Self-RNA-antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8. J Exp Med. 2009;206(9):1983–94. doi:10.1084/jem.20090480.PubMedCentralPubMedGoogle Scholar
  115. 115.
    Raychaudhuri SP, Farber EM. The prevalence of psoriasis in the world. J Eur Acad Dermatol Venereol. 2001;15(1):16–7.PubMedGoogle Scholar
  116. 116.
    Gelfand JM, Weinstein R, Porter SB, Neimann AL, Berlin JA, Margolis DJ. Prevalence and treatment of psoriasis in the United Kingdom: a population-based study. Arch Dermatol. 2005;141(12):1537–41. doi:10.1001/archderm.141.12.1537.PubMedGoogle Scholar
  117. 117.
    Parisi R, Symmons DP, Griffiths CE, Ashcroft DM, Identification, Management of P, et al. Global epidemiology of psoriasis: a systematic review of incidence and prevalence. J Invest Dermatol. 2013;133(2):377–85. doi:10.1038/jid.2012.339.PubMedGoogle Scholar
  118. 118.
    Ferrandiz C, Bordas X, Garcia-Patos V, Puig S, Pujol R, Smandia A. Prevalence of psoriasis in Spain (Epiderma Project: phase I). J Eur Acad Dermatol Venereol. 2001;15(1):20–3.PubMedGoogle Scholar
  119. 119.
    Braathen LR, Botten G, Bjerkedal T. Prevalence of psoriasis in Norway. Acta Derm Venereol Suppl. 1989;142:5–8.Google Scholar
  120. 120.
    Evans DM, Spencer CC, Pointon JJ, Su Z, Harvey D, Kochan G, et al. Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility. Nat Genet. 2011;43(8):761–7. doi:10.1038/ng.873.PubMedCentralPubMedGoogle Scholar
  121. 121.
    De Jager PL, Jia X, Wang J, de Bakker PI, Ottoboni L, Aggarwal NT, et al. Meta-analysis of genome scans and replication identify CD6, IRF8 and TNFRSF1A as new multiple sclerosis susceptibility loci. Nat Genet. 2009;41(7):776–82. doi:10.1038/ng.401.PubMedCentralPubMedGoogle Scholar
  122. 122.
    Patsopoulos NA, Esposito F, Reischl J, Lehr S, Bauer D, Heubach J, et al. Genome-wide meta-analysis identifies novel multiple sclerosis susceptibility loci. Ann Neurol. 2011;70(6):897–912. doi:10.1002/ana.22609.PubMedCentralPubMedGoogle Scholar
  123. 123.
    Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491(7422):119–24. doi:10.1038/nature11582.PubMedCentralPubMedGoogle Scholar
  124. 124.
    Popa OM, Popa L, Dutescu MI, Bojinca M, Bojinca V, Ciofu C, et al. HLA-C locus and genetic susceptibility to psoriatic arthritis in Romanian population. Tissue Antigens. 2011;77(4):325–8. doi:10.1111/j.1399-0039.2010.01624.x.PubMedGoogle Scholar
  125. 125.
    Wallace C, Smyth DJ, Maisuria-Armer M, Walker NM, Todd JA, Clayton DG. The imprinted DLK1-MEG3 gene region on chromosome 14q32.2 alters susceptibility to type 1 diabetes. Nat Genet. 2010;42(1):68–71.PubMedCentralPubMedGoogle Scholar
  126. 126.
    Plagnol V, Howson JM, Smyth DJ, Walker N, Hafler JP, Wallace C, et al. Genome-wide association analysis of autoantibody positivity in type 1 diabetes cases. PLoS Genet. 2011;7(8):e1002216. doi:10.1371/journal.pgen.1002216.PubMedCentralPubMedGoogle Scholar
  127. 127.
    Franke A, McGovern DP, Barrett JC, Wang K, Radford-Smith GL, Ahmad T, et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet. 2010;42(12):1118–25. doi:10.1038/ng.717.PubMedCentralPubMedGoogle Scholar
  128. 128.
    Yang W, Tang H, Zhang Y, Tang X, Zhang J, Sun L, et al. Meta-analysis followed by replication identifies loci in or near CDKN1B, TET3, CD80, DRAM1, and ARID5B as associated with systemic lupus erythematosus in Asians. Am J Hum Genet. 2013;92(1):41–51. doi:10.1016/j.ajhg.2012.11.018.PubMedCentralPubMedGoogle Scholar
  129. 129.
    Han JW, Zheng HF, Cui Y, Sun LD, Ye DQ, Hu Z, et al. Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nat Genet. 2009;41(11):1234–7. doi:10.1038/ng.472.PubMedGoogle Scholar
  130. 130.
    Allanore Y, Saad M, Dieude P, Avouac J, Distler JH, Amouyel P, et al. Genome-wide scan identifies TNIP1, PSORS1C1, and RHOB as novel risk loci for systemic sclerosis. PLoS Genet. 2011;7(7):e1002091. doi:10.1371/journal.pgen.1002091.PubMedCentralPubMedGoogle Scholar
  131. 131.
    Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH, Rioux JD, et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet. 2008;40(8):955–62. doi:10.1038/ng.175.PubMedCentralPubMedGoogle Scholar
  132. 132.
    McGovern DP, Jones MR, Taylor KD, Marciante K, Yan X, Dubinsky M, et al. Fucosyltransferase 2 (FUT2) non-secretor status is associated with Crohn’s disease. Hum Mol Genet. 2010;19(17):3468–76. doi:10.1093/hmg/ddq248.PubMedGoogle Scholar
  133. 133.
    Parkes M, Barrett JC, Prescott NJ, Tremelling M, Anderson CA, Fisher SA, et al. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn’s disease susceptibility. Nat Genet. 2007;39(7):830–2. doi:10.1038/ng2061.PubMedCentralPubMedGoogle Scholar
  134. 134.
    International Multiple Sclerosis Genetics C, Wellcome Trust Case Control C, Sawcer S, Hellenthal G, Pirinen M, Spencer CC, et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature. 2011;476(7359):214–9. doi:10.1038/nature10251.PubMedCentralPubMedGoogle Scholar
  135. 135.
    Anderson CA, Boucher G, Lees CW, Franke A, D’Amato M, Taylor KD, et al. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat Genet. 2011;43(3):246–52. doi:10.1038/ng.764.PubMedCentralPubMedGoogle Scholar
  136. 136.
    Tsunemi Y, Saeki H, Nakamura K, Sekiya T, Hirai K, Fujita H, et al. Interleukin-12 p40 gene (IL12B) 3′-untranslated region polymorphism is associated with susceptibility to atopic dermatitis and psoriasis vulgaris. J Dermatol Sci. 2002;30(2):161–6.PubMedGoogle Scholar
  137. 137.
    Reveille JD, Sims AM, Danoy P, Evans DM, Leo P, Pointon JJ, et al. Genome-wide association study of ankylosing spondylitis identifies non-MHC susceptibility loci. Nat Genet. 2010;42(2):123–7. doi:10.1038/ng.513.PubMedCentralPubMedGoogle Scholar
  138. 138.
    Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447(7145):661–78. doi:10.1038/nature05911.Google Scholar
  139. 139.
    Huang J, Ellinghaus D, Franke A, Howie B, Li Y. 1000 Genomes-based imputation identifies novel and refined associations for the Wellcome Trust Case Control Consortium phase 1 Data. Eur J Hum Genet. 2012;20(7):801–5. doi:10.1038/ejhg.2012.3.PubMedGoogle Scholar
  140. 140.
    Julia A, Domenech E, Ricart E, Tortosa R, Garcia-Sanchez V, Gisbert JP, et al. A genome-wide association study on a southern European population identifies a new Crohn’s disease susceptibility locus at RBX1-EP300. Gut. 2013;62(10):1440–5. doi:10.1136/gutjnl-2012-302865.PubMedGoogle Scholar
  141. 141.
    Kenny EE, Pe’er I, Karban A, Ozelius L, Mitchell AA, Ng SM, et al. A genome-wide scan of Ashkenazi Jewish Crohn’s disease suggests novel susceptibility loci. PLoS Genet. 2012;8(3):e1002559. doi:10.1371/journal.pgen.1002559.PubMedCentralPubMedGoogle Scholar
  142. 142.
    Rioux JD, Xavier RJ, Taylor KD, Silverberg MS, Goyette P, Huett A, et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet. 2007;39(5):596–604. doi:10.1038/ng2032.PubMedCentralPubMedGoogle Scholar
  143. 143.
    Raelson JV, Little RD, Ruether A, Fournier H, Paquin B, Van Eerdewegh P, et al. Genome-wide association study for Crohn’s disease in the Quebec Founder Population identifies multiple validated disease loci. Proc Natl Acad Sci U S A. 2007;104(37):14747–52. doi:10.1073/pnas.0706645104.PubMedCentralPubMedGoogle Scholar
  144. 144.
    Libioulle C, Louis E, Hansoul S, Sandor C, Farnir F, Franchimont D, et al. Novel Crohn disease locus identified by genome-wide association maps to a gene desert on 5p13.1 and modulates expression of PTGER4. PLoS Genet. 2007;3(4):e58.PubMedCentralPubMedGoogle Scholar
  145. 145.
    Kugathasan S, Baldassano RN, Bradfield JP, Sleiman PM, Imielinski M, Guthery SL, et al. Loci on 20q13 and 21q22 are associated with pediatric-onset inflammatory bowel disease. Nat Genet. 2008;40(10):1211–5. doi:10.1038/ng.203.PubMedCentralPubMedGoogle Scholar
  146. 146.
    Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, Daly MJ, et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science. 2006;314(5804):1461–3. doi:10.1126/science.1135245.PubMedGoogle Scholar
  147. 147.
    Silverberg MS, Cho JH, Rioux JD, McGovern DP, Wu J, Annese V, et al. Ulcerative colitis-risk loci on chromosomes 1p36 and 12q15 found by genome-wide association study. Nat Genet. 2009;41(2):216–20. doi:10.1038/ng.275.PubMedCentralPubMedGoogle Scholar
  148. 148.
    McGovern DP, Gardet A, Torkvist L, Goyette P, Essers J, Taylor KD, et al. Genome-wide association identifies multiple ulcerative colitis susceptibility loci. Nat Genet. 2010;42(4):332–7. doi:10.1038/ng.549.PubMedCentralPubMedGoogle Scholar
  149. 149.
    Remmers EF, Cosan F, Kirino Y, Ombrello MJ, Abaci N, Satorius C, et al. Genome-wide association study identifies variants in the MHC class I, IL10, and IL23R-IL12RB2 regions associated with Behcet’s disease. Nat Genet. 2010;42(8):698–702. doi:10.1038/ng.625.PubMedCentralPubMedGoogle Scholar
  150. 150.
    Mizuki N, Meguro A, Ota M, Ohno S, Shiota T, Kawagoe T, et al. Genome-wide association studies identify IL23R-IL12RB2 and IL10 as Behcet’s disease susceptibility loci. Nat Genet. 2010;42(8):703–6. doi:10.1038/ng.624.PubMedGoogle Scholar
  151. 151.
    Barrett JC, Clayton DG, Concannon P, Akolkar B, Cooper JD, Erlich HA, et al. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet. 2009;41(6):703–7. doi:10.1038/ng.381.PubMedCentralPubMedGoogle Scholar
  152. 152.
    Todd JA, Walker NM, Cooper JD, Smyth DJ, Downes K, Plagnol V, et al. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet. 2007;39(7):857–64. doi:10.1038/ng2068.PubMedCentralPubMedGoogle Scholar
  153. 153.
    Xu L, Li Y, Zhang X, Sun H, Sun D, Jia X, et al. Deletion of LCE3C and LCE3B genes is associated with psoriasis in a northern Chinese population. Br J Dermatol. 2011;165(4):882–7. doi:10.1111/j.1365-2133.2011.10485.x.PubMedGoogle Scholar
  154. 154.
    Kochi Y, Okada Y, Suzuki A, Ikari K, Terao C, Takahashi A, et al. A regulatory variant in CCR6 is associated with rheumatoid arthritis susceptibility. Nat Genet. 2010;42(6):515–9. doi:10.1038/ng.583.PubMedGoogle Scholar
  155. 155.
    Plenge RM, Cotsapas C, Davies L, Price AL, de Bakker PI, Maller J, et al. Two independent alleles at 6q23 associated with risk of rheumatoid arthritis. Nat Genet. 2007;39(12):1477–82. doi:10.1038/ng.2007.27.PubMedCentralPubMedGoogle Scholar
  156. 156.
    Dubois PC, Trynka G, Franke L, Hunt KA, Romanos J, Curtotti A, et al. Multiple common variants for celiac disease influencing immune gene expression. Nat Genet. 2010;42(4):295–302. doi:10.1038/ng.543.PubMedCentralPubMedGoogle Scholar
  157. 157.
    Graham RR, Cotsapas C, Davies L, Hackett R, Lessard CJ, Leon JM, et al. Genetic variants near TNFAIP3 on 6q23 are associated with systemic lupus erythematosus. Nat Genet. 2008;40(9):1059–61. doi:10.1038/ng.200.PubMedCentralPubMedGoogle Scholar
  158. 158.
    Kirino Y, Bertsias G, Ishigatsubo Y, Mizuki N, Tugal-Tutkun I, Seyahi E, et al. Genome-wide association analysis identifies new susceptibility loci for Behcet’s disease and epistasis between HLA-B*51 and ERAP1. Nat Genet. 2013;45(2):202–7. doi:10.1038/ng.2520.PubMedGoogle Scholar
  159. 159.
    Stahl EA, Raychaudhuri S, Remmers EF, Xie G, Eyre S, Thomson BP, et al. Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci. Nat Genet. 2010;42(6):508–14. doi:10.1038/ng.582.PubMedGoogle Scholar
  160. 160.
    Gregersen PK, Amos CI, Lee AT, Lu Y, Remmers EF, Kastner DL, et al. REL, encoding a member of the NF-kappaB family of transcription factors, is a newly defined risk locus for rheumatoid arthritis. Nat Genet. 2009;41(7):820–3. doi:10.1038/ng.395.PubMedCentralPubMedGoogle Scholar
  161. 161.
    Capon F, Bijlmakers MJ, Wolf N, Quaranta M, Huffmeier U, Allen M, et al. Identification of ZNF313/RNF114 as a novel psoriasis susceptibility gene. Hum Mol Genet. 2008;17(13):1938–45. doi:10.1093/hmg/ddn091.PubMedGoogle Scholar
  162. 162.
    Yamazaki K, Umeno J, Takahashi A, Hirano A, Johnson TA, Kumasaka N, et al. A genome-wide association study identifies 2 susceptibility Loci for Crohn’s disease in a Japanese population. Gastroenterology. 2013;144(4):781–8. doi:10.1053/j.gastro.2012.12.021.PubMedGoogle Scholar
  163. 163.
    Jakkula E, Leppa V, Sulonen AM, Varilo T, Kallio S, Kemppinen A, et al. Genome-wide association study in a high-risk isolate for multiple sclerosis reveals associated variants in STAT3 gene. Am J Hum Genet. 2010;86(2):285–91. doi:10.1016/j.ajhg.2010.01.017.PubMedCentralPubMedGoogle Scholar
  164. 164.
    Cooper JD, Smyth DJ, Smiles AM, Plagnol V, Walker NM, Allen JE, et al. Meta-analysis of genome-wide association study data identifies additional type 1 diabetes risk loci. Nat Genet. 2008;40(12):1399–401. doi:10.1038/ng.249.PubMedCentralPubMedGoogle Scholar
  165. 165.
    Chung SA, Taylor KE, Graham RR, Nititham J, Lee AT, Ortmann WA, et al. Differential genetic associations for systemic lupus erythematosus based on anti-dsDNA autoantibody production. PLoS Genet. 2011;7(3):e1001323. doi:10.1371/journal.pgen.1001323.PubMedCentralPubMedGoogle Scholar
  166. 166.
    Zhernakova A, Stahl EA, Trynka G, Raychaudhuri S, Festen EA, Franke L, et al. Meta-analysis of genome-wide association studies in celiac disease and rheumatoid arthritis identifies fourteen non-HLA shared loci. PLoS Genet. 2011;7(2):e1002004. doi:10.1371/journal.pgen.1002004.PubMedCentralPubMedGoogle Scholar
  167. 167.
    Yang W, Shen N, Ye DQ, Liu Q, Zhang Y, Qian XX, et al. Genome-wide association study in Asian populations identifies variants in ETS1 and WDFY4 associated with systemic lupus erythematosus. PLoS Genet. 2010;6(2):e1000841. doi:10.1371/journal.pgen.1000841.PubMedCentralPubMedGoogle Scholar
  168. 168.
    Hunt KA, Zhernakova A, Turner G, Heap GA, Franke L, Bruinenberg M, et al. Newly identified genetic risk variants for celiac disease related to the immune response. Nat Genet. 2008;40(4):395–402. doi:10.1038/ng.102.PubMedCentralPubMedGoogle Scholar
  169. 169.
    Festen EA, Goyette P, Green T, Boucher G, Beauchamp C, Trynka G, et al. A meta-analysis of genome-wide association scans identifies IL18RAP, PTPN2, TAGAP, and PUS10 as shared risk loci for Crohn’s disease and celiac disease. PLoS Genet. 2011;7(1):e1001283. doi:10.1371/journal.pgen.1001283.PubMedCentralPubMedGoogle Scholar
  170. 170.
    Maeda S, Osawa N, Hayashi T, Tsukada S, Kobayashi M, Kikkawa R. Genetic variations associated with diabetic nephropathy and type II diabetes in a Japanese population. Kidney Int Suppl. 2007;106:S43–8. doi:10.1038/ Scholar
  171. 171.
    Imielinski M, Baldassano RN, Griffiths A, Russell RK, Annese V, Dubinsky M, et al. Common variants at five new loci associated with early-onset inflammatory bowel disease. Nat Genet. 2009;41(12):1335–40. doi:10.1038/ng.489.PubMedCentralPubMedGoogle Scholar
  172. 172.
    Baranzini SE, Wang J, Gibson RA, Galwey N, Naegelin Y, Barkhof F, et al. Genome-wide association analysis of susceptibility and clinical phenotype in multiple sclerosis. Hum Mol Genet. 2009;18(4):767–78. doi:10.1093/hmg/ddn388.PubMedGoogle Scholar
  173. 173.
    Nograles KE, Davidovici B, Krueger JG. New insights in the immunologic basis of psoriasis. Sem Cutan Med Surg. 2010;29(1):3–9. doi:10.1016/j.sder.2010.03.001.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of DermatologyUniversity of California, San FranciscoSan FranciscoUSA
  2. 2.School of MedicineUniversity of California, IrvineIrvineUSA

Personalised recommendations