Current Geriatrics Reports

, Volume 7, Issue 4, pp 228–237 | Cite as

The Impact of Sunlight on Skin Aging

  • Hisham Kaddurah
  • Taylor L. Braunberger
  • Gautham Vellaichamy
  • Amanda F. Nahhas
  • Henry W. Lim
  • Iltefat H. Hamzavi
Dermatology and Wound Care (C Sayed and D Culton, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Dermatology and Wound Care


Purpose of Review

In this review, we summarize and discuss the current literature on photoaging. We focus on the molecular effects of UV radiation, and the histological and clinical features of chronically sun-exposed skin.

Recent Findings

The expression of numerous proteins is altered in habitually sun-exposed skin, including sirtuins and hedgehog signaling proteins. Pharmacological manipulation of the levels of these proteins can potentially downregulate the photoaging process.


Mitochondrial and nuclear DNA damage, reactive oxygen species (ROS) production, and altered gene expression patterns are critical components of both photoaging and chronological aging. Chronic UVA and UVB exposure result in the photoaged phenotype through distinct molecular mechanisms, with UVA being primarily ROS-mediated and UVB being DNA damage-mediated. Molecular effects result in an altered dermal and epidermal environment that manifests as the photoaged phenotype. Importantly, skin phototype and environmental influences impact individual responses to chronic UV radiation.


Ultraviolet radiation Sunlight Carcinogenesis Geriatrics 


Compliance with Ethical Guidelines

Conflict of Interest

Taylor Braunberger is a sub-investigator for Bayer, Estee Lauder, Unigen, and Ferndale. Amanda Nahhas is a sub-investigator for Bayer, Estee Lauder, Unigen, and Ferndale. Iltefat Hamzavi is an investigator for Incyte Corporation, Bayer, Estee Lauder, Unigen, and Ferndale. Henry Lim is a co-investigator for Allergen, Estee Lauder, Incyte, and Ferndale. Hisham Kaddurah and Gautham Vellaichamy state no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Poon F, Kang S, Chien AL. Mechanisms and treatments of photoaging. Photodermatol Photoimmunol Photomed. 2015;31(2):65–74.PubMedGoogle Scholar
  2. 2.
    Gilchrest BA. Photoaging. J Investig Dermatol. 2013;133(E1):E2–6.PubMedGoogle Scholar
  3. 3.
    Sklar LR, Almutawa F, Lim HW, Hamzavi I. Effects of ultraviolet radiation, visible light, and infrared radiation on erythema and pigmentation: a review. Photochem Photobiol Sci. 2013;12(1):54–64.PubMedGoogle Scholar
  4. 4.
    •• Battie C, Jitsukawa S, Bernerd F, del Bino S, Marionnet C, Verschoore M. New insights in photoaging, UVA induced damage and skin types. Exp Dermatol. 2014;23(Suppl 1):7–12 Article provides a thorough description of the mechanisms of UVA-induced photodamage. PubMedGoogle Scholar
  5. 5.
    D’Orazio J, Jarrett S, Amaro-Ortiz A, Scott T. UV radiation and the skin. Int J Mol Sci. 2013;14(6):12222–48.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Tobin DJ. Introduction to skin aging. J Tissue Viability. 2017;26(1):37–46.PubMedGoogle Scholar
  7. 7.
    Han A, Chien AL, Kang S. Photoaging. Dermatol Clin. 2014;32(3):291–9 vii.PubMedGoogle Scholar
  8. 8.
    Young AR, Claveau J, Rossi AB. Ultraviolet radiation and the skin: photobiology and sunscreen photoprotection. J Am Acad Dermatol. 2017;76(3s1):S100–s109.PubMedGoogle Scholar
  9. 9.
    Kohli I, Chaowattanapanit S, Mohammad TF, Nicholson CL, Fatima S, Jacobsen G, et al. Synergistic effects of long-wavelength ultraviolet A1 and visible light on pigmentation and erythema. Br J Dermatol. 2018;178(5):1173–80.PubMedGoogle Scholar
  10. 10.
    Noonan FP, Zaidi MR, Wolnicka-Glubisz A, Anver MR, Bahn J, Wielgus A, et al. Melanoma induction by ultraviolet A but not ultraviolet B radiation requires melanin pigment. Nat Commun. 2012;3:884.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Yaar M, Gilchrest BA. Photoageing: mechanism, prevention and therapy. Br J Dermatol. 2007;157(5):874–87.PubMedGoogle Scholar
  12. 12.
    Sabziparvar AA, Shine KP, Forster PMDF. A model-derived global climatology of UV irradiation at the earth’s surface. Photochem Photobiol. 1999;69(2):193–202.PubMedGoogle Scholar
  13. 13.
    Grigalavicius M, Moan J, Dahlback A, Juzeniene A. Daily, seasonal, and latitudinal variations in solar ultraviolet A and B radiation in relation to vitamin D production and risk for skin cancer. Int J Dermatol. 2016;55(1):e23–8.PubMedGoogle Scholar
  14. 14.
    Almutawa F, Vandal R, Wang, SQ, Lim HW. Current status of photoprotection. Photodermatol Photoimmunol Photomed. 2013;29:65–72.Google Scholar
  15. 15.
    • Cavinato M, Jansen-Durr P. Molecular mechanisms of UVB-induced senescence of dermal fibroblasts and its relevance for photoaging of the human skin. Exp Gerontol. 2017;94:78–82 Relevant molecular information about the senescence endpoint of photoaging due to chronic UVB. PubMedGoogle Scholar
  16. 16.
    Krutmann J, Schroeder P. Role of mitochondria in photoaging of human skin: the defective powerhouse model. J Investig Dermatol Symp Proc. 2009;14(1):44–9.PubMedGoogle Scholar
  17. 17.
    Yaar M, Gilchrest BA. Studies of photoaging. Boston: Springer; 1990.Google Scholar
  18. 18.
    •• Naidoo K, Hanna R, Birch-Machin MA. What is the role of mitochondrial dysfunction in skin photoaging? Exp Dermatol. 2018;27(2):124–8 Important information on the mechanism and effects of mtDNA mutations due to UVR in photoaging. PubMedGoogle Scholar
  19. 19.
    Gange RW. Comparison of pigment responses in human skin to UVB and UVA radiation. Prog Clin Biol Res. 1988;256:475–85.PubMedGoogle Scholar
  20. 20.
    Ou-Yang H, Stamatas G, Saliou C, Kollias N. A chemiluminescence study of UVA-induced oxidative stress in human skin in vivo. J Investig Dermatol. 2004;122(4):1020–9.PubMedGoogle Scholar
  21. 21.
    Berneburg M, Plettenberg H, Krutmann J. Photoaging of human skin. Photodermatol Photoimmunol Photomed. 2000;16(6):239–44.PubMedGoogle Scholar
  22. 22.
    Fisher GJ, Kang S, Varani J, Bata-Csorgo Z, Wan Y, Datta S, et al. Mechanisms of photoaging and chronological skin aging. Arch Dermatol. 2002;138(11):1462–70.PubMedGoogle Scholar
  23. 23.
    Bosch R, Philips N, Suárez-Pérez J, Juarranz A, Devmurari A, Chalensouk-Khaosaat J, et al. Mechanisms of photoaging and cutaneous photocarcinogenesis, and photoprotective strategies with phytochemicals. Antioxidants (Basel). 2015;4(2):248–68.Google Scholar
  24. 24.
    Douki T, Reynaud-Angelin A, Cadet J, Sage E. Bipyrimidine photoproducts rather than oxidative lesions are the main type of DNA damage involved in the genotoxic effect of solar UVA radiation. Biochemistry. 2003;42(30):9221–6.PubMedGoogle Scholar
  25. 25.
    Borodkina A, Shatrova A, Abushik P, Nikolsky N, Burova E. Interaction between ROS dependent DNA damage, mitochondria and p38 MAPK underlies senescence of human adult stem cells. Aging (Albany NY). 2014;6(6):481–95.Google Scholar
  26. 26.
    Cadet J, Grand A, Douki T. Solar UV radiation-induced DNA bipyrimidine photoproducts: formation and mechanistic insights. Top Curr Chem. 2015;356:249–75.PubMedGoogle Scholar
  27. 27.
    Khan AQ, Travers JB, Kemp MG. Roles of UVA radiation and DNA damage responses in melanoma pathogenesis. Environ Mol Mutagen. 2018.Google Scholar
  28. 28.
    Quan T, He T, Kang S, Voorhees JJ, Fisher GJ. Solar ultraviolet irradiation reduces collagen in photoaged human skin by blocking transforming growth factor-beta type II receptor/Smad signaling. Am J Pathol. 2004;165(3):741–51.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Quan T, He T, Voorhees JJ, Fisher GJ. Ultraviolet irradiation induces Smad7 via induction of transcription factor AP-1 in human skin fibroblasts. J Biol Chem. 2005;280(9):8079–85.PubMedGoogle Scholar
  30. 30.
    Shosuke I, Kazumasa W, Tadeusz S. Photodegradation of eumelanin and pheomelanin and its pathophysiological implications. Photochem Photobiol. 2018;94(3):409–20.Google Scholar
  31. 31.
    Brenner M, Hearing VJ. The protective role of melanin against UV damage in human skin. Photochem Photobiol. 2008;84(3):539–49.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Takeuchi H, Runger TM. Longwave UV light induces the aging-associated progerin. J Investig Dermatol. 2013;133(7):1857–62.PubMedGoogle Scholar
  33. 33.
    Skoczyńska A, Budzisz E, Dana A, Rotsztejn H. New look at the role of progerin in skin aging. Prz Menopauzalny. 2015;14(1):53–8.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Moan J, Baturaite Z, Porojnicu AC, Dahlback A, Juzeniene A. UVA, UVB and incidence of cutaneous malignant melanoma in Norway and Sweden. Photochem Photobiol Sci. 2012;11(1):191–8.PubMedGoogle Scholar
  35. 35.
    Le Clair MZ, Cockburn MG. Tanning bed use and melanoma: Establishing risk and improving prevention interventions. Prev Med Rep. 2016;3:139–44.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Boniol M, Autier P, Boyle P, Gandini S. Cutaneous melanoma attributable to sunbed use: systematic review and meta-analysis. BMJ. 2012;345:e4757.PubMedPubMedCentralGoogle Scholar
  37. 37.
    • Murray HC, Maltby VE, Smith DW, Bowden NA. Nucleotide excision repair deficiency in melanoma in response to UVA. Exp Hematol Oncol. 2016;5:6 This study provides information on the molecular mechanisms of melanoma formation due to ultraviolet radiation. PubMedPubMedCentralGoogle Scholar
  38. 38.
    Agar N, Young AR. Melanogenesis: a photoprotective response to DNA damage? Mutat Res. 2005;571(1–2):121–32.PubMedGoogle Scholar
  39. 39.
    Osakabe A, Tachiwana H, Kagawa W, Horikoshi N, Matsumoto S, Hasegawa M, et al. Structural basis of pyrimidine-pyrimidone (6–4) photoproduct recognition by UV-DDB in the nucleosome. Sci Report. 2015;5:16330.Google Scholar
  40. 40.
    Brash DE. Roles of the transcription factor p53 in keratinocyte carcinomas. Br J Dermatol. 2006;154(Suppl 1):8–10.PubMedGoogle Scholar
  41. 41.
    Burke KE. Mechanisms of aging and development—a new understanding of environmental damage to the skin and prevention with topical antioxidants. Mech Ageing Dev. 2017;172:123–30.PubMedGoogle Scholar
  42. 42.
    Niu T, Tian Y, Ren Q, Wei L, Li X, Cai Q. Red light interferes in UVA-induced photoaging of human skin fibroblast cells. Photochem Photobiol. 2014;90(6):1349–58.PubMedGoogle Scholar
  43. 43.
    Gandini S, Sera F, Cattaruzza MS, Pasquini P, Picconi O, Boyle P, et al. Meta-analysis of risk factors for cutaneous melanoma: II. Sun exposure. Eur J Cancer. 2005;41(1):45–60.PubMedGoogle Scholar
  44. 44.
    Kim C, Ryu HC, Kim JH. Low-dose UVB irradiation stimulates matrix metalloproteinase-1 expression via a BLT2-linked pathway in HaCaT cells. Exp Mol Med. 2010;42(12):833–41.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Garcia-Peterson LM, Wilking-Busch MJ, Ndiaye MA, Philippe CGA, Setaluri V, Ahmad N. Sirtuins in skin and skin cancers. Skin Pharmacol Physiol. 2017;30(4):216–24.PubMedPubMedCentralGoogle Scholar
  46. 46.
    • Wahedi HM, Lee TH, Moon EY, Kim SY. Juglone up-regulates sirt1 in skin cells under normal and UVB irradiated conditions. J Dermatol Sci. 2016;81(3):210–2 Sirtuins have been identified as important players in photoaging. This study provides important information on compounds that may be protective against UV by upregulating sirtuin. PubMedGoogle Scholar
  47. 47.
    • Kim W, Kim EG, Yang HJ, Kwon TW, Han SY, Lee S, et al. Inhibition of hedgehog signalling attenuates UVB-induced skin photoageing. Exp Dermatol. 2015;24(8):611–7 Study provides new information about molecular mechanisms of UVB in causing photoaging. PubMedGoogle Scholar
  48. 48.
    Yaar, M., ed. Clinical and histological features of intrinsic versus extrinsic skin aging. 2006. 9–21.Google Scholar
  49. 49.
    Gilchrest BA. Skin aging 2003: recent advances and current concepts. Cutis. 2003;72(3 Suppl):5–10 discussion 10.PubMedGoogle Scholar
  50. 50.
    Kaidbey KH, Agin PP, Sayre RM, Kligman AM. Photoprotection by melanin—a comparison of black and Caucasian skin. J Am Acad Dermatol. 1979;1(3):249–60.PubMedGoogle Scholar
  51. 51.
    Ito S, Wakamatsu K, Ozeki H. Chemical analysis of melanins and its application to the study of the regulation of melanogenesis. Pigment Cell Res. 2000;13(Suppl 8):103–9.PubMedGoogle Scholar
  52. 52.
    Bradford PT. Skin cancer in skin of color. Dermatol Nurs. 2009;21(4):170–7 206; quiz 178.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Schmid FF, Groeber-Becker F, Schwab S, Thude S, Walles H, Hansmann J. A standardized method based on pigmented epidermal models evaluates sensitivity against UV-irradiation. ALTEX. 2018;35(3):390–6.PubMedGoogle Scholar
  54. 54.
    Vashi NA, Buainain De Castro Maymone M, Kundu RV. Aging differences in ethnic skin. J Clin Aesthet Dermatol. 2016;9(1):31–8.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Makrantonaki E, Bekou V, Zouboulis CC. Genetics and skin aging. Dermatoendocrinology. 2012;4(3):280–4.Google Scholar
  56. 56.
    Tschachler E, Morizot F. Ethnic differences in skin aging. In: Gilchrest BA, Krutmann J, editors. Skin Aging. Berlin: Springer; 2006. p. 23–31.Google Scholar
  57. 57.
    Bosset S, Bonnet-Duquennoy M, Barre P, Chalon A, Lazou K, Kurfurst R, et al. Decreased expression of keratinocyte beta1 integrins in chronically sun-exposed skin in vivo. Br J Dermatol. 2003;148(4):770–8.PubMedGoogle Scholar
  58. 58.
    Kwon OS, Yoo HG, Han JH, Lee SR, Chung JH, Eun HC. Photoaging-associated changes in epidermal proliferative cell fractions in vivo. Arch Dermatol Res. 2008;300(1):47–52.PubMedGoogle Scholar
  59. 59.
    • Olivier E, Dutot M, Regazzetti A, Dargère D, Auzeil N, Laprévote O, et al. Lipid deregulation in UV irradiated skin cells: role of 25-hydroxycholesterol in keratinocyte differentiation during photoaging. J Steroid Biochem Mol Biol. 2017;169:189–97 Study elucidating an important component of epidermal changes in photoaging. PubMedGoogle Scholar
  60. 60.
    • Jin S-P, Han SB, Kim YK, Park EE, Doh EJ, Kim KH, et al. Changes in tight junction protein expression in intrinsic aging and photoaging in human skin in vivo. J Dermatol Sci. 2016;84(1):99–101 Changes in claudin-1, an important component of tight junctions and the epidermal barrier, seen in photoaging. PubMedGoogle Scholar
  61. 61.
    Alaluf S, Atkins D, Barrett K, Blount M, Carter N, Heath A. Ethnic variation in melanin content and composition in photoexposed and photoprotected human skin. Pigment Cell Res. 2002;15(2):112–8.PubMedGoogle Scholar
  62. 62.
    Yaar M, Gilchrest BA. Ageing and photoageing of keratinocytes and melanocytes. Clin Exp Dermatol. 2001;26(7):583–91.PubMedGoogle Scholar
  63. 63.
    Dumay O, Karam A, Vian L, Moyal D, Hourseau C, Stoebner P, et al. Ultraviolet AI exposure of human skin results in Langerhans cell depletion and reduction of epidermal antigen-presenting cell function: partial protection by a broad-spectrum sunscreen. Br J Dermatol. 2001;144(6):1161–8.PubMedGoogle Scholar
  64. 64.
    Ouhtit A, Nakazawa H, Yamasaki H, Armstrong BK, Kricker A, Tan E, et al. UV-radiation-specific p53 mutation frequency in normal skin as a predictor of risk of basal cell carcinoma. J Natl Cancer Inst. 1998;90(7):523–31.PubMedGoogle Scholar
  65. 65.
    Rittie L, Fisher GJ. Natural and sun-induced aging of human skin. Cold Spring Harb Perspect Med. 2015;5(1):a015370.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Fisher GJ, Voorhees JJ. Molecular mechanisms of photoaging and its prevention by retinoic acid: ultraviolet irradiation induces MAP kinase signal transduction cascades that induce Ap-1-regulated matrix metalloproteinases that degrade human skin in vivo. J Investig Dermatol Symp Proc. 1998;3(1):61–8.PubMedGoogle Scholar
  67. 67.
    Mora Huertas AC, Schmelzer CE, Hoehenwarter W, Heyroth F, Heinz A. Molecular-level insights into aging processes of skin elastin. Biochimie. 2016;128–129:163–73.PubMedGoogle Scholar
  68. 68.
    Makrantonaki E, Zouboulis CC. Molecular mechanisms of skin aging: state of the art. Ann N Y Acad Sci. 2007;1119:40–50.PubMedGoogle Scholar
  69. 69.
    Shin J, Kim JH, Kim EK. Repeated exposure of human fibroblasts to UVR induces secretion of stem cell factor and senescence. J Eur Acad Dermatol Venereol. 2012;26(12):1577–80.PubMedGoogle Scholar
  70. 70.
    Coppe JP, Desprez PY, Krtolica A, Campisi J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol. 2010;5:99–118.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Freund A, Patil CK, Campisi J. p38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype. EMBO J. 2011;30(8):1536–48.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Passarino G, De Rango F, Montesanto A. Human longevity: genetics or lifestyle? It takes two to tango. Immun Ageing. 2016;13:12.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Dreesen O, Stewart CL. Accelerated aging syndromes, are they relevant to normal human aging? Aging (Albany). 2011;3(9):889–95.Google Scholar
  74. 74.
    Moriwaki S. Human DNA repair disorders in dermatology: a historical perspective, current concepts and new insight. J Dermatol Sci. 2016;81(2):77–84.PubMedGoogle Scholar
  75. 75.
    Musich PR, Zou Y. Genomic instability and DNA damage responses in progeria arising from defective maturation of prelamin A. Aging (Albany). 2009;1(1):28–37.Google Scholar
  76. 76.
    Phipps SM, Berletch JB, Andrews LG, Tollefsbol TO. Aging cell culture: methods and observations. Methods Mol Biol. 2007;371:9–19.PubMedPubMedCentralGoogle Scholar
  77. 77.
    von Zglinicki T, Saretzki G, Ladhoff J, d’Adda di Fagagna F, Jackson SP. Human cell senescence as a DNA damage response. Mech Ageing Dev. 2005;126(1):111–7.Google Scholar
  78. 78.
    Choi M, Lee C. Immortalization of primary keratinocytes and its application to skin research. Biomol Ther (Seoul). 2015;23(5):391–9.Google Scholar
  79. 79.
    Yokoo S, Furumoto K, Hiyama E, Miwa N. Slow-down of age-dependent telomere shortening is executed in human skin keratinocytes by hormesis-like-effects of trace hydrogen peroxide or by anti-oxidative effects of pro-vitamin C in common concurrently with reduction of intracellular oxidative stress. J Cell Biochem. 2004;93(3):588–97.PubMedGoogle Scholar
  80. 80.
    Buckingham EM, Klingelhutz AJ. The role of telomeres in the ageing of human skin. Exp Dermatol. 2011;20(4):297–302.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Kosmadaki MG, Gilchrest BA. The role of telomeres in skin aging/photoaging. Micron. 2004;35(3):155–9.PubMedGoogle Scholar
  82. 82.
    Counter CM. The roles of telomeres and telomerase in cell life span. Mutat Res. 1996;366(1):45–63.PubMedGoogle Scholar
  83. 83.
    Marrone A, Walne A, Dokal I. Dyskeratosis congenita: telomerase, telomeres and anticipation. Curr Opin Genet Dev. 2005;15(3):249–57.PubMedGoogle Scholar
  84. 84.
    Shay JW. Role of Telomeres and Telomerase in Aging and Cancer. Cancer Discov. 2016;6(6):584–93.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Holbek S, Bendtsen KM, Juul J. Moderate stem-cell telomere shortening rate postpones cancer onset in a stochastic model. Phys Rev E Stat Nonlinear Soft Matter Phys. 2013;88(4):042706.Google Scholar
  86. 86.
    Coluzzi E, Colamartino M, Cozzi R, Leone S, Meneghini C, O’Callaghan N, et al. Oxidative stress induces persistent telomeric DNA damage responsible for nuclear morphology change in mammalian cells. PLoS One. 2014;9(10):e110963.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Rochette PJ, Brash DE. Human telomeres are hypersensitive to UV-induced DNA damage and refractory to repair. PLoS Genet. 2010;6(4):e1000926.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Stout GJ, Blasco MA. Telomere length and telomerase activity impact the UV sensitivity syndrome xeroderma pigmentosum C. Cancer Res. 2013;73(6):1844–54.PubMedGoogle Scholar
  89. 89.
    Li T, Kon N, Jiang L, Tan M, Ludwig T, Zhao Y, et al. Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell. 2012;149(6):1269–83.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Lu J, Guo JH, Tu XL, Zhang C, Zhao M, Zhang QW, et al. Tiron inhibits UVB-induced AP-1 binding sites transcriptional activation on MMP-1 and MMP-3 promoters by MAPK signaling pathway in human dermal fibroblasts. PLoS One. 2016;11(8):e0159998.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Quan T, Fisher GJ. Role of age-associated alterations of the dermal extracellular matrix microenvironment in human skin aging: a mini-review. Gerontology. 2015;61(5):427–34.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Velarde MC, Demaria M. Targeting senescent cells: possible implications for delaying skin aging: a mini-review. Gerontology. 2016;62(5):513–8.PubMedGoogle Scholar
  93. 93.
    Rinnerthaler M, Bischof J, Streubel M, Trost A, Richter K. Oxidative stress in aging human skin. Biomolecules. 2015;5(2):545–89.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Bo H, Jiang N, Ji LL, Zhang Y. Mitochondrial redox metabolism in aging: effect of exercise interventions. J Sport Health Sci. 2013;2(2):67–74.Google Scholar
  95. 95.
    Krutmann J, Bouloc A, Sore G, Bernard BA, Passeron T. The skin aging exposome. J Dermatol Sci. 2017;85(3):152–61.PubMedGoogle Scholar
  96. 96.
    Puri P, Nandar SK, Kathuria S, Ramesh V. Effects of air pollution on the skin: a review. Indian J Dermatol Venereol Leprol. 2017;83(4):415–23.PubMedGoogle Scholar
  97. 97.
    Burke K, Wei H. Synergistic damage by UVA radiation and pollutants. Toxicol Ind Health. 2009;25(4–5):219–24.PubMedGoogle Scholar
  98. 98.
    Ushio H, Nohara K, Fujimaki H. Effect of environmental pollutants on the production of pro-inflammatory cytokines by normal human dermal keratinocytes. Toxicol Lett. 1999;105(1):17–24.PubMedGoogle Scholar
  99. 99.
    Drakaki E, Dessinioti C, Antoniou CV. Air pollution and the skin. Front Environ Sci. 2014;2(11).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Hisham Kaddurah
    • 1
  • Taylor L. Braunberger
    • 2
  • Gautham Vellaichamy
    • 1
    • 2
  • Amanda F. Nahhas
    • 2
  • Henry W. Lim
    • 2
  • Iltefat H. Hamzavi
    • 2
  1. 1.Wayne State University School of MedicineDetroitUSA
  2. 2.Department of DermatologyHenry Ford HospitalDetroitUSA

Personalised recommendations