Skip to main content

Advertisement

Log in

Kefir in the Prevention and Treatment of Obesity and Metabolic Disorders

  • Functional Foods (CM Whisner, Section Editor)
  • Published:
Current Nutrition Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review summarizes recent animal and human trials examining the potential for kefir to improve obesity, type 2 diabetes, dyslipidemia, and non-alcoholic fatty liver disease (NAFLD). Evidence for pathways affected and suggestions of possible mechanisms of action are also considered.

Recent Findings

Human trials examining the ability of kefir to recapitulate metabolic health benefits previously observed in rodent models have found mixed results.

Summary

Kefir has long been associated with improvements in health including obesity, diabetes, NAFLD, and dyslipidemia in preventative animal trials. While recent evidence from human trials supports a positive role of kefir in modulating diabetes-related markers, the impact of kefir consumption on markers of dyslipidemia, NAFLD, and body composition has been for the most part contradictory to animal findings. Variability in organisms for kefir fermentation poses a significant challenge in making meaningful comparisons. Recommendations for future well-controlled animal and human research are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• Afshin A, Forouzanfar MH, Reitsma MB, Sur P, Estep K, Lee A, et al. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017;377:13–27 An extremely comprehensive review of obesity and overweight rates worldwide and their impact on health.

    Article  PubMed  Google Scholar 

  2. •• OECD Health statistic. Obesity Update 2017. Diabetologe. 2017;13:331–41. Available from: www.oecd.org/health/obesity-update.html. This is the most recent report from the OECD regarding obesity rates in the OECD countries.

  3. Li L, Liu DW, Yan HY, Wang ZY, Zhao SH, Wang B. Obesity is an independent risk factor for non-alcoholic fatty liver disease: evidence from a meta-analysis of 21 cohort studies. Obes Rev. 2016;17:510–9.

    Article  CAS  PubMed  Google Scholar 

  4. Ghouri N, Clifton P, Craigie AM, Anderson AS, Christensen P, Waters L, et al. Consequences and comorbidities associated with obesity. In: Hankey C, Whelan K, editors. Adv Nutr Diet Obes. John Wiley & Sons, Ltd; 2017. p. 39–84.

  5. Grundy SM. Metabolic syndrome update. Trends Cardiovasc Med Elsevier. 2016;26:364–73. Available from:. https://doi.org/10.1016/j.tcm.2015.10.004.

    Article  Google Scholar 

  6. Cancer WCRF and AI for. Diet, Nutrition, Physical Activity and Cancer: a Global Perspective. 2018.

  7. • Pimenta FS, Luaces-Regueira M, Ton AMM, Campagnaro BP, Campos-Toimil M, Pereira TMC, et al. Mechanisms of action of kefir in chronic cardiovascular and metabolic diseases. Cell Physiol Biochem. 2018;48:1901–14 The most recent review specifically examining observed and proposed mechanisms for kefir in the context of metabolic dysfunction and disease.

    Article  CAS  PubMed  Google Scholar 

  8. Bourrie BCT, Willing BP, Cotter PD. The microbiota and health promoting characteristics of the fermented beverage kefir. Front Microbiol. 2016;7:1–17.

    Article  Google Scholar 

  9. Choi J-W, Kang HW, Lim W-C, Kim M-K, Lee I-Y, Cho H-Y. Kefir prevented excess fat accumulation in diet-induced obese mice. Biosci Biotechnol Biochem Taylor & Francis. 2017;8451:1–8. Available from:. https://doi.org/10.1080/09168451.2016.1258984.

    Article  CAS  Google Scholar 

  10. Ho JN, Choi JW, Lim WC, Kim MK, Lee IY, Cho HY. Kefir inhibits 3T3-L1 adipocyte differentiation through down-regulation of adipogenic transcription factor expression. J Sci Food Agric. 2013;93:485–90.

    Article  CAS  PubMed  Google Scholar 

  11. Chen H-L, Tung Y-T, Tsai C-L, Lai C-W, Lai Z-L, Tsai H-C, et al. Kefir improves fatty liver syndrome by inhibiting the lipogenesis pathway in leptin-deficient ob/ob knockout mice. Int J Obes. 2014;38:1172–9.

    Article  CAS  Google Scholar 

  12. Tung Y-T, Chen H-L, Wu H-S, Ho M-H, Chong K-Y, Chen C-M. Kefir peptides prevent hyperlipidemia and obesity in high fat diet-induced obese rats via lipid metabolism modulation. Mol Nutr Food Res. 2017;1700505. Available from:. https://doi.org/10.1002/mnfr.201700505.

  13. Gao J, Ding G, Li Q, Gong L, Huang J, Sang Y. Tibet kefir milk decreases fat deposition by regulating the gut microbiota and gene expression of Lpl and Angptl4 in high fat diet-fed rats. Food Res Int. 2019;121:278–87.

    Article  CAS  PubMed  Google Scholar 

  14. • Kim DH, Kim H, Jeong D, Kang IB, Chon JW, Kim HS, et al. Kefir alleviates obesity and hepatic steatosis in high-fat diet-fed mice by modulation of gut microbiota and mycobiota: targeted and untargeted community analysis with correlation of biomarkers. J Nutr Biochem. 2017;44:35–43. https://doi.org/10.1016/j.jnutbio.2017.02.014The most comprehensive analysis done with regard to microbiome alterations from kefir supplementation in metabolic disorders, also the only paper to analyze the mycobiome in this context.

    Article  CAS  PubMed  Google Scholar 

  15. Lim J, Kale M, Kim DH, Kim HS, Chon JW, Seo KH, et al. Antiobesity effect of exopolysaccharides isolated from kefir grains. J Agric Food Chem. 2017;65:10011–9.

    Article  CAS  PubMed  Google Scholar 

  16. Walsh AM, Crispie F, Kilcawley K, O’Sullivan O, O’Sullivan MG, Claesson MJ, et al. Microbial succession and flavor production in the fermented dairy beverage kefir. mSystems. 2016;1:e00052–16. Available from:. https://doi.org/10.1128/mSystems.00052-16.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Marsh AJ, O’Sullivan O, Hill C, Ross RP, Cotter PD. Sequencing-based analysis of the bacterial and fungal composition of kefir grains and milks from multiple sources. PLoS One. 2013;8:e69371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. • Bourrie BCT, Cotter PD, Willing BP. Traditional kefir reduces weight gain and improves plasma and liver lipid profiles more successfully than a commercial equivalent in a mouse model of obesity. J Funct Foods. 2018;46:29–37. https://doi.org/10.1016/j.jff.2018.04.039This is the only paper to examine multiple traditional kefir sources in the context of metabolic health.

    Article  CAS  Google Scholar 

  19. Rosa DD, Grześkowiak LM, Ferreira CLLF, Fonseca ACM, Reis SA, Dias MM, et al. Kefir reduces insulin resistance and inflammatory cytokine expression in an animal model of metabolic syndrome. Food Funct. 2016;7:3390–401.

    Article  CAS  PubMed  Google Scholar 

  20. Chen HL, Tsai TC, Tsai YC, Liao JW, Yen CC, Chen CM. Kefir peptides prevent high-fructose corn syrup-induced non-alcoholic fatty liver disease in a murine model by modulation of inflammation and the JAK2 signaling pathway. Nutr Diabetes. 2016;6:e237. Available from:. https://doi.org/10.1038/nutd.2016.49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Al-Shemmari IGM, Altaee RAK, Hassan AH. Evaluation of antidiabetic and antihyperlipidimic activity of kefir in alloxan induced diabetes mellitus rats. Sci J Med Res. 2018;2:83–6.

    Google Scholar 

  22. Sunarti N, Tyas ASA, Kristian SD, Prasetyastuti. The influence of goat milk and soybean milk kefir on IL-6 and CRP levels in diabetic rats. Rom J Diabetes, Nutr Metab Dis. 2015;22:261–7.

    Article  CAS  Google Scholar 

  23. Nurliyani, Harmayani E, Sunarti. Antidiabetic potential of kefir combination from goat milk and soy milk in rats induced with streptozotocin-nicotinamide. Korean J Food Sci Anim Resour. 2015;35:847–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. •• Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M, et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. 2018;15:11–20. https://doi.org/10.1038/nrgastro.2017.109A very good review on NAFLD and NASH with commentary on future considerations regarding the diseases.

    Article  PubMed  Google Scholar 

  25. Liu Q, Bengmark S, Qu S. The role of hepatic fat accumulation in pathogenesis of non-alcoholic fatty liver disease (NAFLD). Lipids Health Dis. 2010;9:1–9.

    Article  CAS  Google Scholar 

  26. Pessayre D. Role of mitochondria in non-alcoholic fatty liver disease. J Gastroenterol Hepatol. 2007;22:S20–7.

    Article  CAS  PubMed  Google Scholar 

  27. Kopin L, Lowenstein CJ. Dyslipidemia. Ann Intern Med. 2017;167:ITC81–96.

    Article  PubMed  Google Scholar 

  28. Katsiki N, Mikhailidis DP, Mantzoros CS. Non-alcoholic fatty liver disease and dyslipidemia: an update. Metabolism. 2016;65:1109–23. https://doi.org/10.1016/j.metabol.2016.05.003.

    Article  CAS  PubMed  Google Scholar 

  29. Lambert JE, Ramos-Roman MA, Browning JD, Parks EJ. Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology. 2014;146:726–35. Available from:. https://doi.org/10.1053/j.gastro.2013.11.049.

    Article  CAS  PubMed  Google Scholar 

  30. •• Gross B, Pawlak M, Lefebvre P, Staels B. PPARs in obesity-induced T2DM, dyslipidaemia and NAFLD. Nat Rev Endocrinol. 2017;13:36–49 The most comprehensive review to date on the role of PPARs in obesity-associated metabolic disorders.

    Article  CAS  PubMed  Google Scholar 

  31. Tilg H, Moschen AR, Roden M. NAFLD and diabetes mellitus. Nat Rev Gastroenterol Hepatol. 2017;14:32–42.

    Article  CAS  PubMed  Google Scholar 

  32. Francque S, Verrijken A, Caron S, Prawitt J, Paumelle R, Derudas B, et al. PPARα gene expression correlates with severity and histological treatment response in patients with non-alcoholic steatohepatitis. J Hepatol. 2015;63:164–73. Available from:. https://doi.org/10.1016/j.jhep.2015.02.019.

    Article  CAS  PubMed  Google Scholar 

  33. Pettinelli P, Videla LA. Up-regulation of PPAR-γ mRNA expression in the liver of obese patients: an additional reinforcing lipogenic mechanism to SREBP-1c induction. J Clin Endocrinol Metab. 2011;96:1424–30.

    Article  CAS  PubMed  Google Scholar 

  34. Koyama Y, Brenner DA. Liver inflammation and fibrosis. J Clin Invest. 2017;127:55–64.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Smith U, Kahn BB. Adipose tissue regulates insulin sensitivity: role of adipogenesis, de novo lipogenesis and novel lipids. J Intern Med. 2016;280:465–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Saltiel AR, Olefsky JM. Inflammatory mechanisms linking obesity and metabolic disease. J Clin Invest. 2017;127:1–4.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mridha AR, Wree A, Robertson AAB, Yeh MM, Johnson CD, Van Rooyen DM, et al. NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice. J Hepatol. 2017;66:1037–46. Available from:. https://doi.org/10.1016/j.jhep.2017.01.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Guo H, Callaway JB, Ting JP-Y. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med. 2015;21:677–87. Available from:. https://doi.org/10.1038/nm.3893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sze MA, Schloss PD. Looking for a signal in the noise: revisiting obesity and the microbiome. MBio. 2016;7:1–10.

    Article  Google Scholar 

  40. Shin NR, Lee JC, Lee HY, Kim MS, Whon TW, Lee MS, et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut. 2014;63:727–35.

    Article  CAS  PubMed  Google Scholar 

  41. Depommier C, Everard A, Druart C, Plovier H, Van Hul M, Vieira-Silva S, et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat Med Springer US. 2019;25:1096–103. Available from:. https://doi.org/10.1038/s41591-019-0495-2.

    Article  CAS  Google Scholar 

  42. • Stephens RW, Arhire L, Covasa M. Gut microbiota: from microorganisms to metabolic organ influencing obesity. Obesity. 2018;26:801–9 A good review summarizing current findings regarding potential relationships between the gut microbiota and obesity.

    Article  PubMed  Google Scholar 

  43. Hamet MF, Medrano M, Perez PF, Abraham AG. Oral administration of kefiran exerts a bifidogenic effect on BALB/c mice intestinal microbiota. Benef Microbes. 2016;7(2):237–46.

    Article  CAS  PubMed  Google Scholar 

  44. Ostadrahimi A, Taghizadeh A, Mobasseri M, Farrin N, Payahoo L, Beyramalipoor Gheshlaghi Z, et al. Effect of probiotic fermented milk (kefir) on glycemic control and lipid profile in type 2 diabetic patients: a randomized double-blind placebo-controlled clinical trial. Iran J Public Health. 2015;44:228–37 Available from: http://www.ncbi.nlm.nih.gov/pubmed/25905057 .

    PubMed  PubMed Central  Google Scholar 

  45. • Alihosseini N, Moahboob SA, Farrin N, Mobasseri M, Taghizadeh A, Ostadrahimi AR. Effect of probiotic fermented milk (kefir) on serum level of insulin and homocysteine in type 2 diabetes patients. Acta Endocrinol (Copenh). 2017;13:431–6.

    CAS  Google Scholar 

  46. Judiono J, Hadisaputro S, Indranila KS, Cahyono B, Suzery M, Widiastuti Y, et al. Effects of clear kefir on biomolecular aspects of glycemic status of type 2 diabetes mellitus (T2DM) patients in Bandung, West Java [study on human blood glucose, c peptide and insulin]. Funct Foods Heal Dis. 2014;4:340.

    Article  Google Scholar 

  47. Bellikci-Koyu E, Sarer-Yurekli BP, Akyon Y, Aydin-Kose F, Karagozlu C, Ozgen AG, et al. Effects of regular kefir consumption on gut microbiota in patients with metabolic syndrome: a parallel-group, randomized, controlled study. Nutrients. 2019;11:1–23.

    Article  CAS  Google Scholar 

  48. • El-Bashiti TA, Zabut BM, Safia FFA. Effect of probiotic fermented milk (Kefir) on some blood biochemical parameters among newly diagnosed type 2 diabetic adult males in Gaza governorate. Curr Res Nutr Food Sci. 2019;7:568–75 A very well-controlled study examining the impacts of kefir consumption on type 2 diabetic patients.

    Article  Google Scholar 

  49. Abd-Alwahab WIA, Al-Dulaimi FKY. Effects of kefir as a probiotic on total lipid profile and activity of aspartate amino transferase and alanine amino transferase in serum of human. Biochem Cell Arch. 2018;18:411–4.

    Google Scholar 

  50. Fathi Y, Ghodrati N, Zibaeenezhad M-J, Faghih S. Kefir drink causes a significant yet similar improvement in serum lipid profile, compared with low-fat milk, in a dairy-rich diet in overweight or obese premenopausal women: a randomized controlled trial. J Clin Lipidol. 2017;11(1):136–46.

    Article  PubMed  Google Scholar 

  51. Fathi Y, Faghih S, Zibaeenezhad MJ, Tabatabaei SHR. Kefir drink leads to a similar weight loss, compared with milk, in a dairy-rich non-energy-restricted diet in overweight or obese premenopausal women: a randomized controlled trial. Eur J Nutr. 2016;55:295–304. Available from:. https://doi.org/10.1007/s00394-015-0846-9.

    Article  PubMed  Google Scholar 

  52. St-Onge M-P, Farnworth ER, Savard T, Chabot D, Mafu A, Jones PJH. Kefir consumption does not alter plasma lipid levels or cholesterol fractional synthesis rates relative to milk in hyperlipidemic men: a randomized controlled trial [ISRCTN10820810]. BMC Complement Altern Med. 2002;2:1.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Dao MC, Everard A, Aron-Wisnewsky J, Sokolovska N, Prifti E, Verger EO, et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut. 2016;65:426–36 Available from: http://www.ncbi.nlm.nih.gov/pubmed/26100928.

    Article  CAS  PubMed  Google Scholar 

  54. Plovier H, Everard A, Druart C, Depommier C, Van Hul M, Geurts L, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med Nature Publishing Group. 2017;23:107–13.

    Article  CAS  Google Scholar 

  55. •• Mcfarland LV, Evans CT, Goldstein EJC. Strain-specificity and disease-specificity of probiotic efficacy: a systematic review and meta-analysis. Front Med. 2018;5 A very thorough meta-analysis examining clinical probiotic trials and potential strain specificity of positive effects.

Download references

Funding

BPW and CR are supported by the Canada Research Chairs program. BCTB was supported by a Canadian Dairy Commission Graduate Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin P. Willing.

Ethics declarations

Human and Animal Rights

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Functional Foods

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bourrie, B.C.T., Richard, C. & Willing, B.P. Kefir in the Prevention and Treatment of Obesity and Metabolic Disorders. Curr Nutr Rep 9, 184–192 (2020). https://doi.org/10.1007/s13668-020-00315-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13668-020-00315-3

Keywords

Navigation