Advertisement

Human Breast Milk: Bioactive Components, from Stem Cells to Health Outcomes

  • Flaminia BardanzelluEmail author
  • Diego Giampietro Peroni
  • Vassilios Fanos
HOT TOPIC

Abstract

Purpose of Review

Breast milk (BM) is a peculiar fluid owing unique properties and resulting the ideal food during early neonatal period. As widely known, it can improve the outcome of both neonate and lactating mother, influencing their whole life. BM is characterized by several beneficial components; among these, a great role is played by BM own and specific microbiome, deeply investigated in many studies. Moreover, the use of metabolomics in BM analysis allowed a better characterization of its metabolic pathways that vary according to lactation stage and neonatal gestational age. The aim of this review is to describe growth factors, cytokines, immunity mediators, and stem cells (SCs) contained in BM and investigate their functions and effects on neonatal outcome, especially focusing on immuno- and neurodevelopment.

Recent Findings

We evaluated recent and updated literature on this field. The article that we analyzed to write this review have been found in MEDLINE using breast milk-derived stem cells, biofactors, growth factors, breastfeeding-related outcomes, neurodevelopment, and neonatal immunological system as keywords. Discovering and characterizing BM components could result very useful to clarify the pathophysiology of their influence on neonatal growth and even to improve artificial formulations’ composition. Moreover, since SCs abilities and their involvement in the development of several diseases, they could help to discover specific targets for new therapies.

Summary

It could be useful to characterize BM-derived SC markers, properties, and variations during lactation stages, to understand their potential role in therapeutic applications, since they could be noninvasively isolated from BM. More studies will help to describe more in detail the characteristics of mother-to-child communication through breastfeeding and its potential role in the next future.

Keywords

Breastfeeding Colostrum Growth factors Stem cells Neonatal outcome Regenerative medicine 

Abbreviations

ALA

α-linolenic acid

AA

Arachidonic acid

ABPs

Antibacterial peptides

BDNF

Brain-derived neurotrophic factor

BM

Breast milk

BMDSCs

Breast milk-derived stem cells

BMI

Body mass index

BTN

Butyrophilin

BW

Birth weight

CLD

Chronic lung disease

CD

Cluster of differentiation

CK

Cytokeratin

CNS

Central nervous system

CRP

C-reactive protein

Cu

Copper

DHA

Docosahexaenoic acid

EGF

Epidermal growth factor

EGF

Epidermal growth factor

ELBW

Extremely low birth weight

EMT

Epithelial-mesenchymal transition

Fas

Fatty acids

FGF

Fibroblast growth factors

GA

Gestational age

G-CSF

Granulocyte-colony stimulating factor

GDNF

Glial cell line-derived neurotrophic factor

GFs

Growth factors

GLP-1

Glucagon-like peptide-1

HB-EGF

Heparin-binding epidermal growth factor

hESCs

Embryonic SCs

HGF

Hepatocyte growth factor

HMOs

Human milk oligosaccharides

Ig

Immunoglobulins

Il

Interleukins

IFN

Interferon

IGFs

Insulin growth factors

K

Potassium

LA

Linoleic acid

LF

Lactoferrin

MGFM

Milk fat globule membrane

miRNA

microRNA

MLNs

Mesenteric lymph nodes

MSCs

Mesenchymal stem cells

MUC1

Mucin 1

NANOG

Homeobox protein

NEC

Necrotizing enterocolitis

NICU

Neonatal intensive care unit

NK

Natural killers

NT-3

Neurotropin

OCT4

Octamer-binding transcription factor 4

ROP

Retinopathy of prematurity

SCs

Stem cells

SGA

Small for GA

SOD

Superoxido-dysmutase

SOX2

Sex determining region Y-box

SP

Side population

tdT+

tdTomato + cells

TGF

Transforming growth factor

TNF

Tumor necrosis factors

VEGF

Vascular endothelial growth factor

VLBW

Very low birth weight

XDH/XO or XOR

Xanthine oxidoreductase

Zn

Zinc

Notes

Authors’ Contributions

VF, DGP, and FB conceptualized the structure of the review. FB provided the literature update and wrote the initial version of the manuscript. VF and DGB critically revised, modified, and approved the work. Finally, all authors approved the final version of the manuscript.

Compliance with Ethical Standards

Conflict of Interest

Flaminia Bardanzellu, Diego Giampietro Peroni, and Vassilios Fanos declare they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Reali A, Puddu M, Pintus MC, Marcialis MA, Pichiri G, Coni P, et al. Multipotent stem cells of mother’s milk. JPNIM. 2016;5:e50103.  https://doi.org/10.7363/050103.CrossRefGoogle Scholar
  2. 2.
    Hassiotou F, Heath B, Ocal O, Filgueira L, Geddes D, Hartmann P, et al. Breastmilk stem cell transfer from mother to neonatal organs. FASEB J. 2014;28:216.4.Google Scholar
  3. 3.
    Sakaguchi K, Koyanagi A, Kamachi F, Harauma A, Chiba A, Hisata K, et al. Breast-feeding regulates immune system development via transforming growth factor- beta in mice pups. Pediatr Int. 2018;60:224–31.  https://doi.org/10.1111/ped.13507.CrossRefPubMedGoogle Scholar
  4. 4.
    Brenmoehl J, Ohde D, Wirthgen E, Hoeflic A. Cytokines in milk and the role of TGF-beta. Best Pract Res Clin Endocrinol Metab. 2018;32:47–56.  https://doi.org/10.1016/j.beem.2018.01.006.CrossRefPubMedGoogle Scholar
  5. 5.
    Garofalo R. Cytokines in human milk. J Pediatr. 2010;156:S36e40.  https://doi.org/10.1016/j.jpeds.2009.11.019.CrossRefGoogle Scholar
  6. 6.
    Fanos V, Pintus R, Reali A, Dessì A. Miracles and mysteries of breast milk: from Egyptians to the 3 M’s (metabolomics, microbiomics, multipotent stem cells). JPNIM. 2017;6:e060204.  https://doi.org/10.7363/060204.CrossRefGoogle Scholar
  7. 7.
    Demmelmair H, Prell C, Timby N, Lonnerdal B. Benefits of lactoferrin, osteopontin and milk fat globule membranes for infants. Nutrients. 2017;9:E817.  https://doi.org/10.3390/nu9080817.CrossRefPubMedGoogle Scholar
  8. 8.
    AAP. Breastfeeding and maternal and infant health outcomes in developed countries. AAP Grand Rounds. 2007;18:15–6.CrossRefGoogle Scholar
  9. 9.
    Fanos V. Metabolomics, milk-oriented microbiota (MOM) and multipotent stem cells: the future of research on breast milk. JPNIM. 2015;4:e040115.  https://doi.org/10.7363/040115.CrossRefGoogle Scholar
  10. 10.
    German BJ, Smilowitz JT, Lebrilla CB. Metabolomics and milk: the development of the microbiota in breastfed infants. In: Kochhar S, Martin F-P, editors. Metabonomics and gut microbiota in nutrition and disease (Molecular and integrative toxicology). London: Humana press (Springer); 2015. p. 147–67.CrossRefGoogle Scholar
  11. 11.
    Anatolitou F. Human milk benefits and breastfeeding. JPNIM. 2012;1:11–8.  https://doi.org/10.7363/010113.CrossRefGoogle Scholar
  12. 12.
    Yang T, Zhang L, Bao W, Rong S. Nutritional composition of breast milk in Chinese women: a systematic review. Asia Pac J Clin Nutr. 2018;27:491–502.  https://doi.org/10.6133/apjcn.042017.13.CrossRefPubMedGoogle Scholar
  13. 13.
    •• Bardanzellu F, Fanos V, Strigini FAL, Artini PG, Peroni DG. Human breast milk: exploring the linking ring among emerging components. Front Pediatr. 2018;6:215.  https://doi.org/10.3389/fped.2018.00215Paper summarizing the last evidence regarding metabolomics and microbiomics in human breast milk.
  14. 14.
    Pecoraro L, Agostoni C, Pepaj O, Pietrobelli A. Behind human milk and breastfeeding: not only food. Int J Food Sci Nutr. 2018;69:641–6.  https://doi.org/10.1080/09637486.2017.1416459.CrossRefPubMedGoogle Scholar
  15. 15.
    Cesare Marincola F, Dessì A, Corbu S, Reali A, Fanos V. Clinical impact of human breast milk metabolomics. Clin Chim Acta. 2015;451:103–6.  https://doi.org/10.1016/j.cca.2015.02.021.CrossRefPubMedGoogle Scholar
  16. 16.
    Kaingade P, Somasundaram I, Nikam A, Behera P, Kulkarni S, Patel J. Breast milk cell components and its beneficial effects on neonates: need for breast milk cell banking. JPNIM. 2017;6:060115.  https://doi.org/10.7363/060115.CrossRefGoogle Scholar
  17. 17.
    Garwolińska D, Namieśnik J, Kot-Wasik A, Hewelt-Belka W. Chemistry of human breast milk. A comprehensive review of the composition and role of milk metabolites in child development. J Agric Food Chem. 2018;66:11881–96.  https://doi.org/10.1021/acs.jafc.8b04031.CrossRefPubMedGoogle Scholar
  18. 18.
    Bardanzellu F, Faa G, Fanni D, Fanos V, Marcialis MA. Regenerating the womb: the good, bad and ugly potential of the endometrial stem cells. Curr Reg Med. 2017;7:33–45.  https://doi.org/10.2174/2468424408666180705125036.CrossRefGoogle Scholar
  19. 19.
    Witkowska-Zimny M, Kaminska-El-Hassan E. Cells of human breast milk. Cell Mol Biol Lett. 2017;22:11.  https://doi.org/10.1186/s11658-017-0042-4.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Baudesson de Chanville A, Brevaut-Malaty V, Garbi A, Tosello B, Baumstarck K, Gire C. Analgesic effect of maternal human milk odor on premature neonates: a randomized controlled trial. J Hum Lact. 2017;33:300–8.  https://doi.org/10.1177/0890334417693225.CrossRefPubMedGoogle Scholar
  21. 21.
    Badiee Z, Asghari M, Mohammadizadeh M. The calming effect of maternal breast milk odor on premature infants. Pediatr Neonatol. 2013;54:322–5.  https://doi.org/10.1016/j.pedneo.2013.04.004.CrossRefPubMedGoogle Scholar
  22. 22.
    Rioualen S, Durier V, Hervé D, Misery L. Cortical pain response of newborn infants to venepuncture: a randomised controlled trial comparing analgesic effects of sucrose versus breastfeeding. Clin J Pain. 2018;34:1.  https://doi.org/10.1097/AJP.0000000000000581.CrossRefGoogle Scholar
  23. 23.
    Sundekilde UK, Downey E, O’Mahony JA, O’Shea CA, Ryan CA, Kelly AL, et al. The effect of gestational and lactational age on the human milk metabolome. Nutrients. 2016;8:304.  https://doi.org/10.3390/nu8050304.CrossRefPubMedCentralGoogle Scholar
  24. 24.
    Hurst NM. The 3 M’s of breast-feeding the preterm infant. J Perinat Neonatal Nurs. 2007;21:234–9.CrossRefGoogle Scholar
  25. 25.
    Kobata R, Tsukahara H, Ohshima Y, Ohta N, Yokuriki S, Mayumi M. High levels of growth factors in human breast milk. Early Hum Dev. 2008;84:67–9.  https://doi.org/10.1016/j.earlhumdev.2007.07.005.CrossRefPubMedGoogle Scholar
  26. 26.
    Underwood MA. Human milk for the premature infant. Pediatr Clin N Am. 2013;60:189–207.  https://doi.org/10.1016/j.pcl.2012.09.008.CrossRefGoogle Scholar
  27. 27.
    Bhatia J. Human milk and the premature infant. Ann Nutr Metab. 2013;62:8–14.  https://doi.org/10.1159/000351537.CrossRefPubMedGoogle Scholar
  28. 28.
    Paul VK, Singh M, Srivastava LM, Arora NK, Deorari AK. Macronutrient and energy content of breast milk of mothers delivering prematurely. Indian J Pediatr. 1997;64:379–82.CrossRefGoogle Scholar
  29. 29.
    Bauer J, Gerss J. Longitudinal analysis of macronutrients and minerals in human milk produced by mothers of preterm infants. Clin Nutr. 2011;30:215–20.  https://doi.org/10.1016/j.clnu.2010.08.003.CrossRefPubMedGoogle Scholar
  30. 30.
    Bardanzellu F, Fanos V, Reali A. “Omics” in human colostrum and mature milk: looking to old data with new eyes. Nutrients. 2017;9:843.  https://doi.org/10.3390/nu9080843.CrossRefPubMedCentralGoogle Scholar
  31. 31.
    Yang M, Cao X, Wu R, Liu B, Ye W, Yue X, et al. Comparative proteomic exploration of whey proteins in human and bovine colostrum and mature milk using iTRAQ-coupled LC-MS/MS. Int J Food Sci Nutr. 2017;68:671–81.  https://doi.org/10.1080/09637486.2017.1279129.CrossRefPubMedGoogle Scholar
  32. 32.
    LeBouder E, Rey-Nores JE, Raby AC, Affoltern M, Vidal K, Thornton CA, et al. Modulation of neonatal microbial recognition: TLR-mediated innate immune responses are specifically and differentially modulated by human milk. J Immunol. 2006;176:3742–52.CrossRefGoogle Scholar
  33. 33.
    Levy O. Innate immunity of the newborn: basic mechanism and clinical correlates. Nat Rev Immunol. 2007;7:379–90.  https://doi.org/10.1038/nri2075.CrossRefPubMedGoogle Scholar
  34. 34.
    Cacho NT, Lawrence RM. Innate immunity and breast milk. Front Immunol. 2017;8:584.  https://doi.org/10.3389/fimmu.2017.00584.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Kaingade PM, Somasundaram I, Nikam AB, Sarang SA, Patel JS. Assessment of growth factors secreted by human breastmilk mesenchymal stem cells. Breastfeed Med. 2016;11:26–31.  https://doi.org/10.1089/bfm.2015.0124.CrossRefPubMedGoogle Scholar
  36. 36.
    Castellote C, Casillas R, Ramirez-Santana C, Perez-Cano FJ, Castell M, Moretones MG, et al. Premature delivery influences the immunological composition of colostrum and transitional and mature human milk. J Nutr. 2011;141:1181–7.  https://doi.org/10.3945/jn.110.133652.CrossRefGoogle Scholar
  37. 37.
    Hamosh M. Bioactive factors in human milk. Pediatr Clin N Am. 2001;48:69–86.CrossRefGoogle Scholar
  38. 38.
    Jones C, Mackay A, Grigoriadis A, Cossu A, Reis-Filho JS, Fulford L, et al. Expression profiling of purified normal human luminal and myoepithelial breast cells: identification of novel prognostic markers for breast cancer. Cancer Res. 2004;64:3037–45.CrossRefGoogle Scholar
  39. 39.
    Nikadi PO, Merrit TA, Pillers DA. An overview of pulmonary surfactant in the neonate: genetics, metabolism, and the role of surfactant in health and disease. Mol Genet Metab. 2009;97:95–101.  https://doi.org/10.1016/j.ymgme.2009.01.015.CrossRefGoogle Scholar
  40. 40.
    Jimenez-Gomez G, Benavente-Fernandez I, Matias-Vega M, Lechuga-Campoy JL, Saez-Benito A, Lechuga-Sancho AM, et al. Hepatocyte growth-factor as an indicator of neonatal maturity. J Pediatr Endocrinol Metab. 2013;26:709–14.  https://doi.org/10.1515/jpem-2012-0303.CrossRefPubMedGoogle Scholar
  41. 41.
    Ruiz L, Espinosa-Martos I, García-Carral C, Manzano S, McGuire MK, Meehan CL, et al. What’s normal? Immune profiling of human milk from healthy women living in different geographical and socioeconomic settings. Front Immunol. 2017;8:696.  https://doi.org/10.3389/fimmu.2017.00696.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Moles L, Manzano S, Fernández L, Montilla A, Corzo N, Ares S, et al. Bacteriological, biochemical and immunological properties of colostrum and mature milk from mothers extremely preterm infants. J Pediatr Gastroenterol Nutr. 2015;60:120–6.  https://doi.org/10.1097/MPG.0000000000000560.CrossRefPubMedGoogle Scholar
  43. 43.
    Schack-Nielsen L, Michaelsen KF. Breastfeeding and future health. Curr Opin Clin Nutr Metab Care. 2006;9:289–96.  https://doi.org/10.1097/01.mco.0000222114.84159.79.CrossRefPubMedGoogle Scholar
  44. 44.
    Patki S, Patki U, Patil R, Indumathi S, Kaingade P, Bulbule A, et al. Comparison of the levels of the growth factors in umbilical cord serum and human milk and its clinical significance. Cytokine. 2012;59:305–8.  https://doi.org/10.1016/j.cyto.2012.04.010.CrossRefPubMedGoogle Scholar
  45. 45.
    Zachary I. VEGF signaling: integration and multi-tasking in endothelial cell biology. Biochem Soc Trans. 2003;31:1171–7.  https://doi.org/10.1042/bst0311171.CrossRefPubMedGoogle Scholar
  46. 46.
    Siafakas C, Anatolitou F, Fusunyan RD, Walker WA, Sanderson IR. Vascular endothelial growth factor (VEGF) is present in human breast milk and its receptor is present on intestinal epithelial cells. Pediatr Res. 1999;45:652–7.  https://doi.org/10.1203/00006450-199905010-00007.CrossRefPubMedGoogle Scholar
  47. 47.
    Funakoshi H, Nakamura T. Hepatocyte growth factor: from diagnosis to clinical application. Clin Chim Acta. 2003;327:1–23.CrossRefGoogle Scholar
  48. 48.
    Collado MC, Santaella M, Mira-Pascual L, Martinez-Arias E, Khodayar-Pardo P, Ros G, et al. Longitudinal study of cytokine expression, lipid profile and neuronal growth factors in human breast milk from term and preterm. Nutrients. 2015;19:8577–91.  https://doi.org/10.3390/nu7105415.CrossRefGoogle Scholar
  49. 49.
    Peila C, Coscia A, Bertino E. Holder pasteurization affects S100B concentrations in human milk. J Matern Fetal Neonatal Med. 2017;28:1–5.  https://doi.org/10.1080/14767058.2017.1291618.CrossRefGoogle Scholar
  50. 50.
    Torres-Castro P, Abril-Gil M, Rodríguez-Lagunas MJ, Castell M, Perez-Cano FJ, Franch A. TGF-Beta 2, EGF, and FGF21 growth factors present in breast milk promote mesenteric lymph node lymphocytes maturation in suckling rats. Nutrients. 2018;10:E1171.  https://doi.org/10.3390/nu10091171.CrossRefPubMedGoogle Scholar
  51. 51.
    Young BE, Levek C, Reynolds RM, Rudolph MC, MacLean P, Hernandez PL, et al. Bioactive components in human milk are differentially associated with rates of lean and fat mass deposition in infants of mothers with normal vs. elevated BMI. Pediatr Obes. 2018;13:598–606.  https://doi.org/10.1111/ijpo.12394.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Murphy J, Pfeiffer RM, Lynn BCD, Caballero AI, Browne EP, Punska EC, et al. Pro-inflammatory cytokines and growth factors in human milk: an exploratory analysis of racial differences to inform breast cancer etiology. Breast Cancer Res Treat. 2018;172:209–19.  https://doi.org/10.1007/s10549-018-4907-7.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    • Sitarik AR, Bobbitt KR, Havstad SL, Fujimura KE, Levin AM, Zoratti EM, et al. Breast milk TGF beta is associated with neonatal gut microbial composition. J Pediatr Gastroenterol Nutr. 2018;65:e60–7.  https://doi.org/10.1097/MPG.0000000000001585Interesting study investigating the role of BM TGFβ1, TGFβ2, and IL-10 in shaping the neonatal gut microbiome in 52 mother-child couples, modulating neonatal outcome and including neonatal immune system development. CrossRefGoogle Scholar
  54. 54.
    Abstract from the Academy of breastfeeding medicine 20th Annual international meeting Los Angeles California. Breastfeed Med. 2015;10:1–20.  https://doi.org/10.1089/bfm.2015.29009.Abstracts.
  55. 55.
    MohanKumar K, Namachivayam K, Ho TT, Torres BA, Ohls RK. Cytokines and growth factors in the developing intestine and during necrotizing enterocolitis. Semin Perinatol. 2017;41:52–60.  https://doi.org/10.1053/j.semperi.2016.09.018.CrossRefPubMedGoogle Scholar
  56. 56.
    Munblit D, Abrol P, Sheth S, Chow LY, Khaleva E, Asmanov A, et al. Levels of growth factors and IgA in the colostrums of women from Burundi and Italy. Nutrients. 2018;10:E1216.  https://doi.org/10.3390/nu10091216.CrossRefPubMedGoogle Scholar
  57. 57.
    Kaingade P, Somasundaram I, Sharma A, Patel D, Marappagounder D. Cellular components, including stem-like cells, of preterm mother’s mature milk as compared with those in her colostrum: a pilot study. Breastfeed Med. 2017;12:446–9.  https://doi.org/10.1089/bfm.2017.0063.CrossRefPubMedGoogle Scholar
  58. 58.
    Lee H, Padhi E, Hasegawa Y, Larke J, Parenti M, Wang A, et al. Compositional dynamics of the milk fat globule and its role in infant development. Front Pediatr. 2018;6:313.  https://doi.org/10.3389/fped.2018.00313.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Khan MU, Pirzadeh M, Förster CY, Shityakov S, Shariati MA. Role of milk-derived antibacterial peptides in modern food biotechnology: their synthesis, applications and future perspectives. Biomolecules. 2018;8:E110.  https://doi.org/10.3390/biom8040110.CrossRefPubMedGoogle Scholar
  60. 60.
    Nunes M, da Silva CH, Bosa VL, Rombaldi Bernardi J, Ribas Werlang IC, Zubaran GM, et al. Could a remarkable decrease in leptin and insulin levels from colostrums to mature milk contribute to early growth catch-up of SGA infants? BMC Pregnancy Childbirth. 2017;17:410.  https://doi.org/10.1186/s12884-017-1593-0.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Whitaker KM, Marino RC, Haapala JL, Foster L, Smith KD, Teague AM, et al. Associations of maternal weight status before, during and after pregnancy with inflammatory markers in breast milk. Obesity. 2018;26:1659–60.  https://doi.org/10.1002/oby.22025.CrossRefPubMedGoogle Scholar
  62. 62.
    Twigger AJ, Küffer GK, Geddes DT, Filgueria L. Expression of granulisyn, perforin and granzymes in hum and milk over lactation and in the case of maternal infection. Nutrients. 2018;10:E1230.  https://doi.org/10.3390/nu10091230.CrossRefPubMedGoogle Scholar
  63. 63.
    Pichiri G, Lanzano D, Piras M, Dessì A, Reali A, Puddu M, et al. Human breast milk stem cells: a new challenge for perinatologists. JPNIM. 2016;5:050120.  https://doi.org/10.7363/050120.CrossRefGoogle Scholar
  64. 64.
    Hassiotou F, Geddes DT, Hartmann PE. Cells in human milk: state of the science. J Hum Lact. 2013;29:171–82.  https://doi.org/10.1177/0890334413477242.CrossRefPubMedGoogle Scholar
  65. 65.
    Ballard O, Morrow AL. Human milk composition: nutrients and bioactive factors. Pediatr Clin N Am. 2013;60:49–74.  https://doi.org/10.1016/j.pcl.2012.10.002.CrossRefGoogle Scholar
  66. 66.
    Cregan MD, Fan Y, Appelbee A, Brown ML, Klopcic B, Koppen J, et al. Identification of nestin-positive putative mammary stem cells in human breastmilk. Cell Tissue Res. 2007;329:129–36.  https://doi.org/10.1007/s00441-007-0390-x.CrossRefPubMedGoogle Scholar
  67. 67.
    Hosseini SM, Talaei-Khozani T, Sani M, Owrangi B. Differentiation of human breast-milk stem cells to neural stem cells and neurons. Neurol Res Int. 2014;807896.  https://doi.org/10.1155/2014/807896.CrossRefGoogle Scholar
  68. 68.
    Patki S, Kadam S, Chandra V, Bhonde R. Human breast milk is a rich source of multipotent mesenchymal stem cells. Hum Cell. 2010;23:35–40.  https://doi.org/10.1111/j.1749-0774.2010.00083.x.CrossRefPubMedGoogle Scholar
  69. 69.
    Hassiotou F, Beltran A, Chetwynd E, Stuebe AM, Twigger AJ, Metzger P, et al. Breastmilk is a novel source of stem cells with multilineage differentiation potential. Stem Cells. 2012;30:2164–74.  https://doi.org/10.1002/stem.1188.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Kakulas F, Jeddes DT, Hartmann PE. Breastmilk is unlikely to be a source of mesenchymal stem cells. Breastfed Med. 2016;11:150–1.  https://doi.org/10.1089/bfm.2016.0021.CrossRefGoogle Scholar
  71. 71.
    Twigger A, Hepworth AR, Lai CT, Chetwynd E, Stuebe AM, Blancafort P, et al. Gene expression in breastmilk cells is associated with maternal and infant characteristics. Sci Rep. 2015;5:12933.  https://doi.org/10.1038/srep12933.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Hennighausen L, Robinson GW. Signaling pathways in mammary gland development. Dev Cell. 2001;1:467–75.CrossRefGoogle Scholar
  73. 73.
    Wiseman BS, Werb Z. Stromal effects on mammary gland development and breast cancer. Science. 2002;296:1046–9.  https://doi.org/10.1126/science.1067431.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Russo J, Russo IH. Development of the human breast. Maturitas. 2004;49:2–15.  https://doi.org/10.1016/j.maturitas.2004.04.011.CrossRefPubMedGoogle Scholar
  75. 75.
    Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 2003;17:1253–70.  https://doi.org/10.1101/gad.1061803.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Fan Y, Chong YS, Choolani MA, Cregan MD, Chan JK. Unravelling the mystery of stem/progenitor cells in human breastmilk. PLoS One. 2010;5:14421.  https://doi.org/10.1371/journal.pone.0014421.CrossRefGoogle Scholar
  77. 77.
    Twigger AJ, Hodgetts S, Filgueira L, Hartmann PE, Hassiotou F. From breast milk to brains: the potential of stem cells in human milk. J Hum Lact. 2013;29:136–9.  https://doi.org/10.1177/0890334413475528.CrossRefPubMedGoogle Scholar
  78. 78.
    Esmailpour T, Huang T. TBX3 promotes embryonic stem cell proliferation and neuroepithelial differentiation in a differentiation stage-dependent manner. Stem Cells. 2012;30:2152–63.  https://doi.org/10.1002/stem.1187.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Faa G, Fanos V, Puddu M, Reali A, Dessì A, Pichiri G, et al. Breast milk stem cells: four questions looking for an answer. JPNIM. 2016;5:050203.  https://doi.org/10.7363/050203.CrossRefGoogle Scholar
  80. 80.
    Sani M, Hosseini SM, Salmannejad M, Aleahmad F, Ebrahimi S, Jahanshahi S, et al. Origins of the breast milk-derived cells; an endeavor to find the cell sources. Cell Biol Int. 2015;39:611–8.  https://doi.org/10.1002/cbin.10432.CrossRefPubMedGoogle Scholar
  81. 81.
    Indumathi S, Dhanasekaran M, Rajkumar JS, Sudarsanam D. Exploring the stem cell and non-stem cell constituents of human breast milk. Cytotechonology. 2013;65:385–93.  https://doi.org/10.1007/s10616-012-9492-8.CrossRefGoogle Scholar
  82. 82.
    Field CJ. The immunological components of human milk and their effect on immune development in infants. J Nutr. 2005;135:1–4.  https://doi.org/10.1093/jn/135.1.1.CrossRefPubMedGoogle Scholar
  83. 83.
    • Briere CE, McGrath JM, Jensen T. Breast milk stem cells. Paper presented at Pediatric Academic Society Baltimora. 2016. This article summarizes the current evidence regarding breast milk derived stem cells (BMDSCs), especially in relation to different stage of lactation, expressed markers and lineages. Google Scholar
  84. 84.
    Cairns J. Somatic stem cells and the kinetics of mutagenesis and carcinogenesis. Proc Natl Acad Sci U S A. 2002;99:10567–70.  https://doi.org/10.1073/pnas.162369899.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Hong Y, Stambrook PJ. Restoration of an absent G1 arrest and protection from apoptosis in embryonic stem cells after ionizing radiation. Proc Natl Acad Sci U S A. 2004;101:14443–8.  https://doi.org/10.1073/pnas.0401346101.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    •• Briere CE, Jensen T, Young EE MGJM, Finck C. Stem-like cell characteristics from breast milk of mothers with preterm infants as compared to mothers with term infants. Breast Feed Med. 2017;12:174–9.  https://doi.org/10.1089/bfm.2017.0002Study demonstrating that SCs content differs in BM from mothers delivering term and preterm neonates. Comparing samples from preterm neonates (born before than 37 weeks of GA) with full term samples, a different percentage and a variable expression of SCs ‘markers was highlighted. CrossRefGoogle Scholar
  87. 87.
    Walker TL, Kempermann G. One mouse, two cultures: isolation and culture of adult neural stem cells from the two neurogenic zones of individual mice. J Vis Exp. 2014;84:51225.  https://doi.org/10.3791/51225.CrossRefGoogle Scholar
  88. 88.
    McGregor JA, Rogo LJ. Breast milk: an unappreciated source of steam cells. J Hum Lact. 2006;22:270–1.  https://doi.org/10.1177/0890334406290222.CrossRefPubMedGoogle Scholar
  89. 89.
    Hassiotou F, Hartmann PE. At the dawn of a new discovery: the potential of breast milk stem cells. Adv Nutr. 2014;5:770–8.  https://doi.org/10.3945/an.114.006924.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Li CY, Wu XY, Tong JB, Yang XX, Zhao JL, Zheng QF, et al. Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy. Stem Cell Res Ther. 2015;6:55.  https://doi.org/10.1186/s13287-015-0066-5.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Burlacu A, Grigorescu G, Rosca A, Preda MB, Simionescu M. Factors secreted by mesenchymal stem cells and endothelial progenitor cells have complementary effects on angiogenesis in vitro. Stem Cells Dev. 2013;22:643–53.  https://doi.org/10.1089/scd.2012.0273.CrossRefPubMedGoogle Scholar
  92. 92.
    Schneider N, Garcia-Rodenas CL. Early nutritional interventions for brain and cognitive development in preterm infants: a review of the literature. Nutrients. 2017;9:E187.  https://doi.org/10.3390/nu9030187.CrossRefPubMedGoogle Scholar
  93. 93.
    González HF, Visentin S. Micronutrients and neurodevelopment: an update. Arch Argent Pediatr. 2016;114:570–5.  https://doi.org/10.5546/aap.2016.eng.570.CrossRefPubMedGoogle Scholar
  94. 94.
    Hernell O, Timby N, Domellöf M. Clinical benefits of milk fat globule membranes for infants and children. J Pediatr. 2016;173:60–5.  https://doi.org/10.1016/j.jpeds.2016.02.077.CrossRefGoogle Scholar
  95. 95.
    González HF, Visentin S. Nutrients and neurodevelopment: lipids. Arch Argent Pediatr. 2016;114:472–6.  https://doi.org/10.5546/aap.2016.eng.472.CrossRefPubMedGoogle Scholar
  96. 96.
    Bertino E, Di Nicola P, Giuliani F, Peila C, Cester E, Vassia C, et al. Benefits of human milk in preterm infant feeding. J Pediatr Neonatal Individ Med. 2012;1:19–24.  https://doi.org/10.7363/010102.CrossRefGoogle Scholar
  97. 97.
    Furman L, Taylor G, Minich N, Hack M. The effect of maternal milk on neonatal morbidity of very low-birth-weight infants. Arch Pediatr Adolesc Med. 2003;157:66–71.CrossRefGoogle Scholar
  98. 98.
    Meinzen-Deer J, Poindexter B, Wrage L, Morrow AL, Stoll B, Donovan EF. Role of human milk in extremely low birth weight infants risk of necrotizing enterocolitis or death. J Perinatol. 2009;29:57–62.  https://doi.org/10.1038/jp.2008.117.CrossRefGoogle Scholar
  99. 99.
    American Academy of Pediatrics. Section on breastfeeding. Breastfeeding and the use of human milk. 2012;129:827–41.  https://doi.org/10.1542/peds.2011-3552.CrossRefGoogle Scholar
  100. 100.
    •• Jimènez BC, Parada YA, Marin AV, de Pipaon Marcos MS. Beneficios a corto, medio y largo plazo de la ingesta de leche humana en recien nacidos de muy bajo peso. Short, medium and long term benefits of human milk intake in very low birth weight infants. Nutr Hosp. 2017;34:5.  https://doi.org/10.20960/nh.1014Study demonstrating a better neurodevelopmental outcome at two years and a better score in the global and verbal cognitive area at five years of age in a population of 152 very low birth weight (VLBW) neonates assuming BM since the first weeks of life.
  101. 101.
    Belfort MB, Ehrenkranz RA. Neurodevelopmental outcomes and nutritional strategies in very low birth weight infants. Semin Fetal Neonatal Med. 2017;22:42–8.  https://doi.org/10.1016/j.siny.2016.09.001.CrossRefPubMedGoogle Scholar
  102. 102.
    Colaizy TT, Carlson S, Saftlas AF, Morriss FH Jr. Growth in VLBW infants fed predominantly fortified maternal and donor human milk diets: a retrospective cohort study. BMC Pediatr. 2012;12:124.  https://doi.org/10.1186/1471-2431-12-124.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Roze JC, Darmaun D, Boquien CY, Flamant C, Picaud JC, Savagner C, et al. The apparent breastfeeding paradox in very preterm infants: relationship between breast feeding, early weight gain and neurodevelopment based on results from two cohorts. EPIPAGE and LIFT. BMJ Open. 2012;2:e000834.  https://doi.org/10.1136/bmjopen-2012-000834.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Koo W, Tank S, Martin S, Shi R. Human milk and neurodevelopment in children with very low birth weight: a systematic review. Nutr J. 2014;13:94.  https://doi.org/10.1186/1475-2891-13-94.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Vohr BR, Poindexter BB, Dusick AM, McKinley LT, Higgins RD, Langer JC, et al. Persistent beneficial effects of breast milk ingested in the neonatal intensive care unit on outcomes of extremely low birth weight infants at 30 months of age. Pediatrics. 2007;120:e953–9.  https://doi.org/10.1542/peds.2006-3227.CrossRefPubMedGoogle Scholar
  106. 106.
    Smith MM, Durkin M, Hinton VJ, Bellinger D, Kuhn L. Influence of breastfeeding on cognitive outcomes at age 6–8 years: follow-up of very low birth weight infants. Am J Epidemiol. 2003;158:1075–82.CrossRefGoogle Scholar
  107. 107.
    Belfort MB, Anderson PJ, Nowak V, Lee KJ, Molesworth C, Thompson DK, et al. A breast milk feeding, brain development, and neurocognitive outcomes: a 7-year longitudinal study in infants born at less than 30 weeks' gestation. J Pediatr. 2016;177:133–139e1.  https://doi.org/10.1016/j.jpeds.2016.06.045.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Patra K, Hamilton M, Johnson TJ, Greene M, Dabrowski E, Meier PP, et al. NICU human milk dose and 20 month neurodevelopmental outcome in very low birth weight infants. Neonatology. 2017;112:330–6.  https://doi.org/10.1159/000475834.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Perrin MT, Pawlak R, Dean LL. A cross-sectional study of fatty acids and brain derived neurotrophic factor (BDNF) in human milk from lactating women following vegan, vegetarian, and omnivore diets. Eur J Nutr. 2018;58:1–10.  https://doi.org/10.1007/s00394-018-1793-z.CrossRefGoogle Scholar
  110. 110.
    Wang B. Molecular determinants of milk lactoferrin as a bioactive compound in early neurodevelopment and cognition. J Pediatr. 2016;173:S29–36.  https://doi.org/10.1016/j.jpeds.2016.02.073.CrossRefPubMedGoogle Scholar
  111. 111.
    Jacobi-Polishook T, Collins CT, Sullivan TR, Simmer K, Gillman MW, Gibson RA, et al. Human milk intake in preterm infants and neurodevelopment at 18 months corrected age. Pediatr Res. 2016;80:486–92.  https://doi.org/10.1038/pr.2016.114.CrossRefPubMedGoogle Scholar
  112. 112.
    Pinelli J, Saigal S, Atkinson SA. Effect of breastmilk consumption on neurodevelopmental outcomes at 6 and 12 months of age in VLBW infants. Adv Neonatal Care. 2003;3:76–87.CrossRefGoogle Scholar
  113. 113.
    Wang Q, Cui Q, Yan C. The effect of supplementation of long-chain polyunsaturated fatty acids during lactation on neurodevelopmental outcomes of preterm infant from infancy to school age: a systematic review and meta-analysis. Pediatr Neurol. 2016;59:54–61.  https://doi.org/10.1016/j.pediatrneurol.2016.02.017.CrossRefPubMedGoogle Scholar
  114. 114.
    Sammallahti S, Kajantie E, Matinolli HM. Nutrition after preterm birth and adult neurocognitive outcomes. PLoS One. 2017;12:e0185632.  https://doi.org/10.1371/journal.pone.0185632.CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Lucas A, Fewtrell MS, Morley R, Lucas PJ, Baker BA, Lister G, et al. Randomized outcome trial of human milk fortification and developmental outcome in preterm infants. Am J Clin Nutr. 1996;64:142–51.  https://doi.org/10.1093/ajcn/64.2.142.CrossRefPubMedGoogle Scholar
  116. 116.
    O’Connor DL, Jacobs J, Hall R, Adamkin D, Auestad N, Castillo M, et al. Growth and development of premature infants fed predominantly human milk, predominantly premature infant formula, or a combination of human milk and premature formula. J Pediatr Gastroenterol Nutr. 2003;37:437–46.CrossRefGoogle Scholar
  117. 117.
    Wendy A. On mammary stem cells. J Cell Sci. 2005;118:3585–94.  https://doi.org/10.1242/jcs.02532.CrossRefGoogle Scholar
  118. 118.
    Shipitsin M, Campbell LL, Argani P, Weremowicz S, Bloushtain-Qimron N, Yao J, et al. Molecular definition of breast tumor heterogeneity. Cancer Cell. 2007;11:259–73.  https://doi.org/10.1016/j.ccr.2007.01.013.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Park SY, Jeong AJ, Kim GY, Jo A, Lee JE, Leem SH, et al. Lactoferrin protects human mesenchymal stem cells from oxidative stress-induced senescence and apoptosis. Microb Biotechnol. 2017;27:1877–84.  https://doi.org/10.4014/jmb.1707.07040.CrossRefGoogle Scholar
  120. 120.
    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.CrossRefGoogle Scholar
  121. 121.
    Caporali A, Emanueli C. MicroRNA regulation in angiogenesis. Vasc Pharmacol. 2011;55:79–86.  https://doi.org/10.1016/j.vph.2011.06.006.CrossRefGoogle Scholar
  122. 122.
    International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature. 2004;431:931–45.  https://doi.org/10.1038/nature03001.CrossRefGoogle Scholar
  123. 123.
    Ventura A, Young AG, Winslow MM, Lintault L, Meissner A, Erkeland SJ, et al. Targeted deletion reveals essential and overlapping functions of the miR-17-92 family of mRNA clusters. Cell. 2008;132:875–86.  https://doi.org/10.1016/j.cell.2008.02.019.CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Kosaka N, Izumi H, Seckine K, Ochiya T. MicroRNA as a new immune-regulatory agent in breast milk. Silence. 2010;1:7.  https://doi.org/10.1186/1758-907X-1-7.CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Zhou Q, Li M, Wang X, Li Q, Wang T, Zhu Q, et al. Immune-related microRNAs are abundant in breast milk exosomes. Int J Biol Sci. 2012;8:118–23.CrossRefGoogle Scholar
  126. 126.
    Alsaweed M, Hartmann P, Geddes D, Foteini K. MicroRNAs in breastmilk and the lactating breast: potential immunoprotectors and developmental regulators for the infant and the mother. Int J Environ Res Public Health. 2015;12:13981–4020.  https://doi.org/10.3390/ijerph12111398.CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Valadi H, Ekstrom K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs is a novel mechanism of genetic exchange between cells. Nat Cells Biol. 2007;9:654–9.  https://doi.org/10.1038/ncb1596.CrossRefGoogle Scholar
  128. 128.
    Gu Y, Li M, Wang T, Liang Y, Zhong Z, Wang X, et al. Lactation-related microRNA expression profiles of porcine breast milk exosomes. PLoS One. 2012;7:e43591.  https://doi.org/10.1371/journal.pone.0043691.CrossRefGoogle Scholar
  129. 129.
    Admyre C, Johansson SM, Qazi KR, Filén JJ, Lahesmaa R, Norman M, et al. Exosomes with immune modulatory features are present in human breast milk. J Immun. 2007;179:1969–78.  https://doi.org/10.4049/jimmunol.179.3.1969.CrossRefPubMedGoogle Scholar
  130. 130.
    Piskorska-Jasiulewicz MM, Witkowska-Zimny M. Non-nutritional use of breast milk. Postepy Hig Med Dosw (Online). 2017;71:860–6.  https://doi.org/10.5604/01.3001.0010.5049.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Neonatal Intensive Care UnitAOU University of CagliariMonserratoItaly
  2. 2.Clinical and Experimental Medicine Department, section of PediatricsUniversity of PisaPisaItaly

Personalised recommendations