Current Nutrition Reports

, Volume 7, Issue 3, pp 139–149 | Cite as

The Role of Nutrition in Cognitive Function and Brain Ageing in the Elderly

  • Samantha L. Gardener
  • Stephanie R. Rainey-SmithEmail author
Neurological Disease and Cognitive Function (Y Gu, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Neurological Disease and Cognitive Function


Purpose of Review

The purposes of this review were to examine literature published over the last 5 years and to evaluate the role of nutrition in cognitive function and brain ageing, focussing on the Mediterranean diet (MeDi), Dietary Approaches to Stop Hypertension (DASH), and Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) diets.

Recent Findings

Results suggest that higher adherence to a healthy dietary pattern is associated with preservation of brain structure and function as well as slower cognitive decline, with the MIND diet substantially slowing cognitive decline, over and above the MeDi and DASH diets.


Whilst results to-date suggest adherence to a healthy diet, such as the MeDi, DASH, or MIND, is an important modifiable risk factor in the quest to develop strategies aimed at increasing likelihood of healthy brain ageing, further work is required to develop dietary guidelines with the greatest potential benefit for public health; a research topic of increasing importance as the world’s population ages.


Nutrition Diet Dietary patterns Mediterranean diet MeDi Dietary Approaches to Stop Hypertension diet DASH diet Mediterranean-DASH Intervention for Neurodegenerative Delay diet MIND diet Cognition Cognitive decline Magnetic resonance imaging MRI Brain volume Glucose metabolism Amyloid beta Ageing Alzheimer’s disease 


Compliance with Ethical Standards

Conflict of Interest

Samantha L. Gardener and Stephanie R. Rainey-Smith declare they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Tucker-Drob EM, Reynolds CA, Finkel D, Pedersen NL. Shared and unique genetic and environmental influences on aging-related changes in multiple cognitive abilities. Dev Psychol. 2014;50(1):152–66.CrossRefPubMedGoogle Scholar
  2. 2.
    Cover KS, van Schijndel RA, van Dijk BW, Redolfi A, Knol DL, Frisoni GB, et al. Assessing the reproducibility of the SienaX and Siena brain atrophy measures using the ADNI back-to-back MP-RAGE MRI scans. Psychiatry Res. 2011;193(3):182–90.CrossRefPubMedGoogle Scholar
  3. 3.
    Raz N, Lindenberger U, Rodrigue KM, Kennedy KM, Head D, Williamson A, et al. Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cereb Cortex. 2005;15(11):1676–89.CrossRefPubMedGoogle Scholar
  4. 4.
    Jobst KA, Smith AD, Szatmari M, Molyneux A, Esiri ME, King E, et al. Detection in life of confirmed Alzheimer's disease using a simple measurement of medial temporal lobe atrophy by computed tomography. Lancet. 1992;340(8829):1179–83.CrossRefPubMedGoogle Scholar
  5. 5.
    Berti V, Mosconi L, Pupi A. Brain: normal variations and benign findings in fluorodeoxyglucose-PET/computed tomography imaging. PET Clin. 2014;9(2):129–40.CrossRefPubMedGoogle Scholar
  6. 6.
    Salmon E, Sadzot B, Maquet P, Degueldre C, Lemaire C, Rigo P, et al. Differential diagnosis of Alzheimer’s disease with PET. J Nucl Med. 1994;35(3):391–8.PubMedGoogle Scholar
  7. 7.
    Rowe CC, Villemagne VL. Brain amyloid imaging. J Nucl Med. 2011;52(11):1733–40.PubMedGoogle Scholar
  8. 8.
    Zheng H, Koo EH. Biology and pathophysiology of the amyloid precursor protein. Mol Neurodegener. 2011;6(1):27.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Gao X, Chen H, Fung TT, Logroscino G, Schwarzschild MA, Hu FB, et al. Prospective study of dietary pattern and risk of Parkinson disease. Am J Clin Nutr. 2007;86(5):1486–94.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Scarmeas N, Luchsinger JA, Mayeux R, Stern Y. Mediterranean diet and Alzheimer disease mortality. Neurology. 2007;69(11):1084–93.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Scarmeas N, Stern Y, Mayeux R, Luchsinger JA. Mediterranean diet, Alzheimer disease, and vascular mediation. Arch Neurol. 2006;63(12):1709–17.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Scarmeas N, Stern Y, Mayeux R, Manly JJ, Schupf N, Luchsinger JA. Mediterranean diet and mild cognitive impairment. Arch Neurol. 2009;66(2):216–25.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Scarmeas N, Stern Y, Tang MX, Mayeux R, Luchsinger JA. Mediterranean diet and risk for Alzheimer’s disease. Ann Neurol. 2006;59(6):912–21.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Trichopoulou A, Costacou T, Bamia C, Trichopoulos D. Adherence to a Mediterranean diet and survival in a Greek population. N Engl J Med. 2003;348(26):2599–608.CrossRefPubMedGoogle Scholar
  15. 15.
    Sofi F, Abbate R, Gensini GF, Casini A. Accruing evidence on benefits of adherence to the Mediterranean diet on health: an updated systematic review and meta-analysis. Am J Clin Nutr. 2010;92(5):1189–96.CrossRefPubMedGoogle Scholar
  16. 16.
    Sofi F, Cesari F, Abbate R, Gensini GF, Casini A. Adherence to Mediterranean diet and health status: meta-analysis. BMJ. 2008;337:a1344.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Appel LJ, Moore TJ, Obarzanek E, Vollmer WM, Svetkey LP, Sacks FM, et al. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N Engl J Med. 1997;336(16):1117–24.CrossRefPubMedGoogle Scholar
  18. 18.
    • Morris MC, Tangney CC, Wang Y, Sacks FM, Barnes LL, Bennett DA, et al. MIND diet slows cognitive decline with aging. Alzheimers Dement. 2015;11(9):1015–22. This study examined all three dietary patterns investigated in this review, and concluded that low MIND diet adherence is more predictive of cognitive decline than either low MeDi or DASH diet scores. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kesse-Guyot E, Andreeva VA, Lassale C, Ferry M, Jeandel C, Hercberg S, et al. Mediterranean diet and cognitive function: a French study. Am J Clin Nutr. 2013;97(2):369–76.CrossRefPubMedGoogle Scholar
  20. 20.
    Samieri C, Sun Q, Townsend MK, Chiuve SE, Okereke OI, Willett WC, et al. The association between dietary patterns at midlife and health in aging: an observational study. Ann Intern Med. 2013;159(9):584–91.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Samieri C, Okereke OI, E ED, Grodstein F. Long-term adherence to the Mediterranean diet is associated with overall cognitive status, but not cognitive decline, in women. J Nutr. 2013;143(4):493–9.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Katsiardanis K, Diamantaras AA, Dessypris N, Michelakos T, Anastasiou A, Katsiardani KP, et al. Cognitive impairment and dietary habits among elders: the Velestino study. J Med Food. 2013;16(4):343–50.CrossRefPubMedGoogle Scholar
  23. 23.
    Martinez-Lapiscina EH, Clavero P, Toledo E, Estruch R, Salas-Salvado J, San Julian B, et al. Mediterranean diet improves cognition: the PREDIMED-NAVARRA randomised trial. J Neurol Neurosurg Psychiatry. 2013;84(12):1318–25.CrossRefPubMedGoogle Scholar
  24. 24.
    Martinez-Lapiscina EH, Clavero P, Toledo E, San Julian B, Sanchez-Tainta A, Corella D, et al. Virgin olive oil supplementation and long-term cognition: the PREDIMED-NAVARRA randomized, trial. J Nutr Health Aging. 2013;17(6):544–52.CrossRefPubMedGoogle Scholar
  25. 25.
    Tsivgoulis G, Judd S, Letter AJ, Alexandrov AV, Howard G, Nahab F, et al. Adherence to a Mediterranean diet and risk of incident cognitive impairment. Neurology. 2013;80(18):1684–92.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Tangney CC, Li H, Wang Y, Barnes L, Schneider JA, Bennett DA, et al. Relation of DASH- and Mediterranean-like dietary patterns to cognitive decline in older persons. Neurology. 2014;83(16):1410–6.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Gardener SL, Rainey-Smith SR, Barnes MB, Sohrabi HR, Weinborn M, Lim YY, et al. Dietary patterns and cognitive decline in an Australian study of ageing. Mol Psychiatry. 2014;Google Scholar
  28. 28.
    •• Valls-Pedret C, Sala-Vila A, Serra-Mir M, Corella D, de la Torre R, Martinez-Gonzalez MA, et al. Mediterranean diet and age-related cognitive decline: a randomized clinical trial. JAMA Int Med. 2015;175(7):1094–103. This is the first MeDi intervention trial, with analysis of cognitive performance both pre- and post- intervention, demonstrating a positive effect of MeDi consumption, supplemented with both nuts and extra virgin olive oil, on cognition. Intervention trials are required to establish a causal relationship between diet and cognitive performance. CrossRefGoogle Scholar
  29. 29.
    McEvoy CT, Guyer H, Langa KM, Yaffe K. Neuroprotective diets are associated with better cognitive function: the health and retirement study. J Am Geriatr Soc. 2017;65(8):1857–62.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Mosconi L, Murray J, Tsui WH, Li Y, Davies M, Williams S, et al. Mediterranean diet and magnetic resonance imaging-assessed brain atrophy in cognitively normal individuals at risk for Alzheimer’s disease. J Prev Alzheimers Dis. 2014;1(1):23–32.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Gu Y, Brickman AM, Stern Y, Habeck CG, Razlighi QR, Luchsinger JA, et al. Mediterranean diet and brain structure in a multiethnic elderly cohort. Neurology. 2015;85(20):1744–51.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Staubo SC, Aakre JA, Vemuri P, Syrjanen JA, Mielke MM, Geda YE, et al. Mediterranean diet, micronutrients and macronutrients, and MRI measures of cortical thickness. Alzheimer's & dementia : the journal of the Alzheimer's Association. 2017;13(2):168–77.CrossRefGoogle Scholar
  33. 33.
    Titova OE, Ax E, Brooks SJ, Sjogren P, Cederholm T, Kilander L, et al. Mediterranean diet habits in older individuals: associations with cognitive functioning and brain volumes. Exp Gerontol. 2013;48(12):1443–8.CrossRefPubMedGoogle Scholar
  34. 34.
    Pelletier A, Barul C, Feart C, Helmer C, Bernard C, Periot O, et al. Mediterranean diet and preserved brain structural connectivity in older subjects. Alzheimer's & dementia : the journal of the Alzheimer's Association. 2015;11(9):1023–31.CrossRefGoogle Scholar
  35. 35.
    • Gu Y, Scarmeas N, Stern Y, Manly J, Schupf N, Mayeux R, et al. Mediterranean diet is associated with slower rates of hippocampal atrophy: a longitudinal study in cognitively normal older adults. Alzheimers Dement. 2016;12(7):193–4. One of the few longitudinal studies investigating MeDi adherence and brain atrophy in a relatively large cohort of cognitively normal participants. Higher MeDi adherence was associated with slower rate of hippocampal atrophy. CrossRefGoogle Scholar
  36. 36.
    Luciano M, Corley J, Cox SR, Valdes Hernandez MC, Craig LC, Dickie DA, et al. Mediterranean-type diet and brain structural change from 73 to 76 years in a Scottish cohort. Neurology. 2017;88(5):449–55.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Matthews DC, Davies M, Murray J, Williams S, Tsui WH, Li Y, et al. Physical activity, Mediterranean diet and biomarkers-assessed risk of Alzheimer’s: a multi-modality brain imaging study. Adv J Mol Imaging. 2014;4(4):43–57.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Merrill DA, Siddarth P, Raji CA, Emerson ND, Rueda F, Ercoli LM, et al. Modifiable risk factors and brain positron emission tomography measures of amyloid and tau in nondemented adults with memory complaints. Am J Geriatr Psychiatry. 2016;24(9):729–37.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    •• Rainey-Smith SR, Gu Y, Gardener SL, Doecke JD, Villemagne VL, Brown BM, et al. Mediterranean diet adherence and rate of cerebral Aβ-amyloid accumulation: data from the Australian Imaging, Biomarkers and Lifestyle Study of Ageing. Transl Psychiatry. 2018; This is the only study to-date investigating MeDi adherence and accumulation of cerebral Aβ longitudinally, conducted in individuals on the pathway to Alzheimer's disease. Higher MeDi adherence was associated with significantly less Aβ accumulation over three years. Google Scholar
  40. 40.
    Mecocci P. Oxidative stress in mild cognitive impairment and Alzheimer disease: a continuum. J Alzheimers Dis. 2004;6(2):159–63.CrossRefPubMedGoogle Scholar
  41. 41.
    Galimberti D, Scarpini E. Inflammation and oxidative damage in Alzheimer’s disease: friend or foe. Front Biosci. 2011;3:252–66.CrossRefGoogle Scholar
  42. 42.
    Devore EE, Kang JH, Breteler MM, Grodstein F. Dietary intakes of berries and flavonoids in relation to cognitive decline. Ann Neurol. 2012;72(1):135–43.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Andres-Lacueva C, Shukitt-Hale B, Galli RL, Jauregui O, Lamuela-Raventos RM, Joseph JA. Anthocyanins in aged blueberry-fed rats are found centrally and may enhance memory. Nutr Neurosci. 2005;8(2):111–20.CrossRefPubMedGoogle Scholar
  44. 44.
    Joseph JA, Shukitt-Hale B, Willis LM. Grape juice, berries, and walnuts affect brain aging and behavior. J Nutr. 2009;139(9):1813S–7S.CrossRefPubMedGoogle Scholar
  45. 45.
    Bakhtiari M, Panahi Y, Ameli J, Darvishi B. Protective effects of flavonoids against Alzheimer's disease-related neural dysfunctions. Biomed Pharmacother. 2017;93:218–29.CrossRefPubMedGoogle Scholar
  46. 46.
    Urpi-Sarda M, Casas R, Chiva-Blanch G, Romero-Mamani ES, Valderas-Martinez P, Arranz S, et al. Virgin olive oil and nuts as key foods of the Mediterranean diet effects on inflammatory biomakers related to atherosclerosis. Pharmacol Res. 2012;65(6):577–83.CrossRefPubMedGoogle Scholar
  47. 47.
    Estruch R, Martinez-Gonzalez MA, Corella D, Salas-Salvado J, Ruiz-Gutierrez V, Covas MI, et al. Effects of a Mediterranean-style diet on cardiovascular risk factors: a randomized trial. Ann Intern Med. 2006;145(1):1–11.CrossRefPubMedGoogle Scholar
  48. 48.
    Vassiliou EK, Gonzalez A, Garcia C, Tadros JH, Chakraborty G, Toney JH. Oleic acid and peanut oil high in oleic acid reverse the inhibitory effect of insulin production of the inflammatory cytokine TNF-alpha both in vitro and in vivo systems. Lipids Health Dis. 2009;8:25.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Fung TT, Chiuve SE, McCullough ML, Rexrode KM, Logroscino G, Hu FB. Adherence to a DASH-style diet and risk of coronary heart disease and stroke in women. Arch Intern Med. 2008;168(7):713–20.CrossRefPubMedGoogle Scholar
  50. 50.
    Mena MP, Sacanella E, Vazquez-Agell M, Morales M, Fito M, Escoda R, et al. Inhibition of circulating immune cell activation: a molecular antiinflammatory effect of the Mediterranean diet. Am J Clin Nutr. 2009;89(1):248–56.CrossRefPubMedGoogle Scholar
  51. 51.
    Chrysohoou C, Panagiotakos DB, Pitsavos C, Das UN, Stefanadis C. Adherence to the Mediterranean diet attenuates inflammation and coagulation process in healthy adults: The ATTICA Study. J Am Coll Cardiol. 2004;44(1):152–8.CrossRefPubMedGoogle Scholar
  52. 52.
    Abuznait AH, Qosa H, Busnena BA, El Sayed KA, Kaddoumi A. Olive-oil-derived oleocanthal enhances beta-amyloid clearance as a potential neuroprotective mechanism against Alzheimer’s disease: in vitro and in vivo studies. ACS Chem Neurosci. 2013;4(6):973–82.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Del Rio D, Rodriguez-Mateos A, Spencer JP, Tognolini M, Borges G, Crozier A. Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal. 2013;18(14):1818–92.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Dyall SC. Long-chain omega-3 fatty acids and the brain: a review of the independent and shared effects of EPA, DPA and DHA. Front Aging Neurosci. 2015;7:52.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Calder P. Omega-3 polyunsaturated fatty acids and inflammatory processes: nutrition of pharmacology. Br J Clin Pharmacol. 2012;75(3):645–62.CrossRefGoogle Scholar
  56. 56.
    Erlinger TP, Miller ER 3rd, Charleston J, Appel LJ. Inflammation modifies the effects of a reduced-fat low-cholesterol diet on lipids: results from the DASH-sodium trial. Circulation. 2003;108(2):150–4.CrossRefPubMedGoogle Scholar
  57. 57.
    Miller ER 3rd, Erlinger TP, Sacks FM, Svetkey LP, Charleston J, Lin PH, et al. A dietary pattern that lowers oxidative stress increases antibodies to oxidized LDL: results from a randomized controlled feeding study. Atherosclerosis. 2005;183(1):175–82.CrossRefPubMedGoogle Scholar
  58. 58.
    Blumenthal JA, Babyak MA, Hinderliter A, Watkins LL, Craighead L, Lin PH, et al. Effects of the DASH diet alone and in combination with exercise and weight loss on blood pressure and cardiovascular biomarkers in men and women with high blood pressure: the ENCORE study. Arch Intern Med. 2010;170(2):126–35.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Azadbakht L, Surkan PJ, Esmaillzadeh A, Willett WC. The Dietary Approaches to Stop Hypertension eating plan affects C-reactive protein, coagulation abnormalities, and hepatic function tests among type 2 diabetic patients. J Nutr. 2011;141(6):1083–8.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Casas R, Sacanella E, Urpi-Sarda M, Chiva-Blanch G, Ros E, Martinez-Gonzalez MA, et al. The effects of the mediterranean diet on biomarkers of vascular wall inflammation and plaque vulnerability in subjects with high risk for cardiovascular disease. A randomized trial. PLoS One. 2014;9(6):e100084.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Romaguera D, Norat T, Mouw T, May AM, Bamia C, Slimani N, et al. Adherence to the Mediterranean diet is associated with lower abdominal adiposity in European men and women. J Nutr. 2009;139(9):1728–37.CrossRefPubMedGoogle Scholar
  62. 62.
    Estruch R, Ros E, Salas-Salvado J, Covas MI, Corella D, Aros F, et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med. 2013;368(14):1279–90.CrossRefPubMedGoogle Scholar
  63. 63.
    Domenech M, Roman P, Lapetra J, Garcia de la Corte FJ, Sala-Vila A, de la Torre R, et al. Mediterranean diet reduces 24-hour ambulatory blood pressure, blood glucose, and lipids: one-year randomized, clinical trial. Hypertension. 2014;64(1):69–76.CrossRefPubMedGoogle Scholar
  64. 64.
    Asemi Z, Tabassi Z, Samimi M, Fahiminejad T, Esmaillzadeh A. Favourable effects of the Dietary Approaches to Stop Hypertension diet on glucose tolerance and lipid profiles in gestational diabetes: a randomised clinical trial. Br J Nutr. 2013;109(11):2024–30.CrossRefPubMedGoogle Scholar
  65. 65.
    Moore TJ, Alsabeeh N, Apovian CM, Murphy MC, Coffman GA, Cullum-Dugan D, et al. Weight, blood pressure, and dietary benefits after 12 months of a web-based nutrition education program (DASH for health): longitudinal observational study. J Med Internet Res. 2008;10(4):e52.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Samantha L. Gardener
    • 1
    • 2
  • Stephanie R. Rainey-Smith
    • 1
    • 2
    Email author
  1. 1.Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health SciencesEdith Cowan UniversityJoondalupAustralia
  2. 2.Australian Alzheimer’s Research Foundation (Hollywood Private Hospital)PerthAustralia

Personalised recommendations