Skip to main content
Log in

The Efficacy of Quercetin in Cardiovascular Health

  • Cardiovascular Disease (JHY Wu, Section Editor)
  • Published:
Current Nutrition Reports Aims and scope Submit manuscript

Abstract

Cardiovascular disease is a major cause of death worldwide despite the majority of its risk factors being preventable and treatable. The results of numerous epidemiological studies suggest that a diet rich in fruits and vegetables affords protection against CVD, and this may be attributed, in part, to the flavonoid quercetin. The aims of this review are to summarise the current knowledge on the bioavailability and metabolism of quercetin as well as discuss the current evidence behind the potential mechanisms by which quercetin exerts its cardioprotective effects. This review summarises key human studies administering quercetin that have been published to date. Although interesting results have been seen in animal and cell culture studies, in general, these have not been replicated in human trials. Several studies have, however, shown that quercetin can reduce blood pressure in hypertensive patients. The exact mechanisms are yet to be elucidated. Further studies are required to investigate the use of quercetin as a cardioprotective treatment, in particular long-term and dose–response studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Mendis S, Puska P, Norrving B. Global atlas on cardiovascular disease prevention and control. World Health Organization; 2011.

  2. Kannel WB. Risk stratification in hypertension: new insights from the Framingham Study. Am J Hypertens. 2000;13(1):S3–S10.

    Google Scholar 

  3. Kannel WB, Dawber TR. Atherosclerosis as a pediatric problem. J Pediatr. 1972;80(4):544–54.

    CAS  PubMed  Google Scholar 

  4. Appel LJ, Moore TJ, Obarzanek E, Vollmer WM, Svetkey LP, Sacks FM, et al. A clinical trial of the effects of dietary patterns on blood pressure. N Engl J Med. 1997;336(16):1117–24.

    CAS  PubMed  Google Scholar 

  5. Joshipura KJ, Ascherio A, Manson JE, Stampfer MJ, Rimm EB, Speizer FE, et al. Fruit and vegetable intake in relation to risk of ischemic stroke. JAMA. 1999;282(13):1233–9.

    CAS  PubMed  Google Scholar 

  6. Joshipura KJ, Hu FB, Manson JE, Stampfer MJ, Rimm EB, Speizer FE, et al. The effect of fruit and vegetable intake on risk for coronary heart disease. Ann Inter Med. 2001;134(12):1106–14.

    CAS  Google Scholar 

  7. Knekt P, Kumpulainen J, Järvinen R, Rissanen H, Heliövaara M, Reunanen A, et al. Flavonoid intake and risk of chronic diseases. Am J Clin Nutr. 2002;76(3):560–8.

    CAS  PubMed  Google Scholar 

  8. Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr. 2004;79(5):727–47.

    CAS  PubMed  Google Scholar 

  9. Howitz KT, Sinclair DA. Xenohormesis: sensing the chemical cues of other species. Cell. 2008;133(3):387–91.

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Geleijnse JM, Hollman PC. Flavonoids and cardiovascular health: which compounds, what mechanisms? Am J Clin Nutr. 2008;88(1):12–3.

    CAS  PubMed  Google Scholar 

  11. Samson L, Rimm E, Hollman PC, de Vries JH, Katan MB. Flavonol and flavone intakes in US health professionals. J Am Diet Assoc. 2002;102(10):1414–20.

    Google Scholar 

  12. Macheix J-J, Fleuriet A. Fruit phenolics. Boca Raton: CRC; 1990.

    Google Scholar 

  13. Larson AJ, Symons JD, Jalili T. Quercetin: a treatment for hypertension?—a review of efficacy and mechanisms. Pharmaceuticals. 2010;3(1):237–50.

    PubMed Central  CAS  Google Scholar 

  14. Donovan JL, Manach C, Faulks RM, Kroon PA. Absorption and metabolism of dietary plant secondary metabolites. Oxford: Blackwell; 2006.

    Google Scholar 

  15. Németh K, Plumb GW, Berrin J-G, Juge N, Jacob R, Naim HY, et al. Deglycosylation by small intestinal epithelial cell β-glucosidases is a critical step in the absorption and metabolism of dietary flavonoid glycosides in humans. Eur J Nutr. 2003;42(1):29–42.

    PubMed  Google Scholar 

  16. Walgren RA, Walle UK, Walle T. Transport of quercetin and its glucosides across human intestinal epithelial Caco-2 cells. Biochem Pharmacol. 1998;55(10):1721–7.

    CAS  PubMed  Google Scholar 

  17. Erlund I, Kosonen T, Alfthan G, Mäenpää J, Perttunen K, Kenraali J, et al. Pharmacokinetics of quercetin from quercetin aglycone and rutin in healthy volunteers. Eur J Clin Pharmacol. 2000;56(8):545–53.

    CAS  PubMed  Google Scholar 

  18. Wittig J, Herderich M, Graefe EU, Veit M. Identification of quercetin glucuronides in human plasma by high-performance liquid chromatography–tandem mass spectrometry. J Chromatogr B. 2001;753(2):237–43.

    CAS  Google Scholar 

  19. Mullen W, Edwards CA, Crozier A. Absorption, excretion and metabolite profiling of methyl-, glucuronyl-, glucosyl- and sulpho-conjugates of quercetin in human plasma and urine after ingestion of onions. Br J Nutr. 2006;96(01):107–16.

    CAS  PubMed  Google Scholar 

  20. Del Rio D, Rodriguez-Mateos A, Spencer JP, Tognolini M, Borges G, Crozier A. Dietary (poly) phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Sig. 2013;18(14):1818–92.

    Google Scholar 

  21. DuPont MS, Mondin Z, Williamson G, Price KR. Effect of variety, processing, and storage on the flavonoid glycoside content and composition of lettuce and endive. J Agric Food Chem. 2000;48(9):3957–64.

    CAS  PubMed  Google Scholar 

  22. Winterbone MS, Tribolo S, Needs PW, Kroon PA, Hughes DA. Physiologically relevant metabolites of quercetin have no effect on adhesion molecule or chemokine expression in human vascular smooth muscle cells. Atherosclerosis. 2009;202(2):431–8.

    CAS  PubMed  Google Scholar 

  23. Lodi F, Jimenez R, Moreno L, Kroon PA, Needs PW, Hughes DA, et al. Glucuronidated and sulfated metabolites of the flavonoid quercetin prevent endothelial dysfunction but lack direct vasorelaxant effects in rat aorta. Atherosclerosis. 2009;204(1):34–9.

    CAS  PubMed  Google Scholar 

  24. Perez‐Vizcaino F, Duarte J, Santos‐Buelga C. The flavonoid paradox: conjugation and deconjugation as key steps for the biological activity of flavonoids. J Sci Food Agr. 2012;92(9):1822–5.

    Google Scholar 

  25. Harwood M, Danielewska-Nikiel B, Borzelleca J, Flamm G, Williams G, Lines T. A critical review of the data related to the safety of quercetin and lack of evidence of in vivo toxicity, including lack of genotoxic/carcinogenic properties. Food Chem Toxicol. 2007;45(11):2179–205.

    CAS  PubMed  Google Scholar 

  26. Knab AM, Shanely RA, Henson DA, Jin F, Heinz SA, Austin MD, et al. Influence of quercetin supplementation on disease risk factors in community-dwelling adults. J Am Diet Assoc. 2011;111(4):542–9.

    CAS  PubMed  Google Scholar 

  27. Choi J-S, Piao Y-J, Kang KW. Effects of quercetin on the bioavailability of doxorubicin in rats: role of CYP3A4 and P-gp inhibition by quercetin. Arch Pharm Res. 2011;34(4):607–13.

    CAS  PubMed  Google Scholar 

  28. Ivey KL, Hodgson JM, Croft KD, Lewis JR, Prince RL. Flavonoid intake and all-cause mortality. Am J Clin Nutr. 2015;101(5):1012–20. Using 2 comprehensive food composition databases, this paper provides evidence that high consumption of flavonoids is associated with reduced risk of mortality in elderly women.

    CAS  PubMed  Google Scholar 

  29. Ivey KL, Lewis JR, Prince RL, Hodgson JM. Tea and non-tea flavonol intakes in relation to atherosclerotic vascular disease mortality in older women. Br J Nutr. 2013;110(09):1648–55.

    CAS  PubMed  Google Scholar 

  30. Loke WM, Jenner AM, Proudfoot JM, McKinley AJ, Hodgson JM, Halliwell B, et al. A metabolite profiling approach to identify biomarkers of flavonoid intake in humans. J Nutr. 2009;139(12):2309–14.

    CAS  PubMed  Google Scholar 

  31. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo Jr JL, et al. The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report. JAMA. 2003;289(19):2560–71.

    CAS  PubMed  Google Scholar 

  32. Hooper L, Kroon PA, Rimm EB, Cohn JS, Harvey I, Le Cornu KA, et al. Flavonoids, flavonoid-rich foods, and cardiovascular risk: a meta-analysis of randomized controlled trials. Am J Clin Nutr. 2008;88(1):38–50.

    CAS  PubMed  Google Scholar 

  33. Larson A, Bruno R, Guo Y, Gale D, Tanner J, Jalili T, et al. Acute quercetin supplementation does not lower blood pressure or ACE activity in normotensive males. J Am Diet Assoc. 2009;109(9):A16.

    Google Scholar 

  34. Egert S, Bosy-Westphal A, Seiberl J, Kürbitz C, Settler U, Plachta-Danielzik S, et al. Quercetin reduces systolic blood pressure and plasma oxidised low-density lipoprotein concentrations in overweight subjects with a high-cardiovascular disease risk phenotype: a double-blinded, placebo-controlled cross-over study. Br J Nutr. 2009;102(07):1065–74.

    CAS  PubMed  Google Scholar 

  35. Edwards RL, Lyon T, Litwin SE, Rabovsky A, Symons JD, Jalili T. Quercetin reduces blood pressure in hypertensive subjects. J Nutr. 2007;137(11):2405–11.

    CAS  PubMed  Google Scholar 

  36. Dower JI, Geleijnse JM, Gijsbers L, Zock PL, Kromhout D, Hollman PC. Effects of the pure flavonoids epicatechin and quercetin on vascular function and cardiometabolic health: a randomized, double-blind, placebo-controlled, crossover trial. Am J Clin Nutr. 2015;101(5):914–21. Four weeks of quercetin supplementation had no effect on blood pressure, arterial stiffness, insulin resistance, nitric oxide, endothelin-1 or blood lipid profile.

    CAS  PubMed  Google Scholar 

  37. Larson A, Witman MAH, Guo Y, Ives S, Richardson RS, Bruno RS, et al. Acute, quercetin-induced reductions in blood pressure in hypertensive individuals are not secondary to lower plasma angiotensin-converting enzyme activity or endothelin-1: nitric oxide. Nutr Res. 2012;32(8):557–64.

    CAS  PubMed  Google Scholar 

  38. Perez A, Gonzalez-Manzano S, Jimenez R, Perez-Abud R, Haro JM, Osuna A, et al. The flavonoid quercetin induces acute vasodilator effects in healthy volunteers: correlation with beta-glucuronidase activity. Pharmacol Res. 2014;89:11–8. Results from this study show that quercetin exerts acute vasodilator effects in vivo in normotensive, normocholesterolemic human subjects, but has no effect on blood pressure. These findings correlate with β-glucuronidase activity.

    CAS  PubMed  Google Scholar 

  39. Conquer J, Maiani G, Azzini E, Raguzzini A, Holub B. Supplementation with quercetin markedly increases plasma quercetin concentration without effect on selected risk factors for heart disease in healthy subjects. J Nutr. 1998;128(3):593–7.

    CAS  PubMed  Google Scholar 

  40. Nakayama H, Tsuge N, Sawada H, Higashi Y. Chronic intake of onion extract containing quercetin improved postprandial endothelial dysfunction in healthy men. J Am Coll Nutr. 2013;32(3):160–4. Supplementation with onion extract for 4 weeks did not significantly affect fasting FMD but significantly improved post prandial FMD.

    CAS  PubMed  Google Scholar 

  41. Egert S, Boesch-Saadatmandi C, Wolffram S, Rimbach G, Müller MJ. Serum lipid and blood pressure responses to quercetin vary in overweight patients by apolipoprotein E genotype. J Nutr. 2010;140(2):278–84.

    CAS  PubMed  Google Scholar 

  42. BPLT Trialists’ Collaboration. Effects of different blood-pressure-lowering regimens on major cardiovascular events: results of prospectively-designed overviews of randomised trials. Lancet. 2003;362(9395):1527–35.

    Google Scholar 

  43. Widlansky ME, Gokce N, Keaney Jr JF, Vita JA. The clinical implications of endothelial dysfunction. J Am Coll Nutr. 2003;42(7):1149–60.

    CAS  Google Scholar 

  44. Herrmann J, Lerman A. The endothelium—the cardiovascular health barometer. Herz. 2008;33(5):343–53.

    PubMed  Google Scholar 

  45. Cooke JP, Tsao PS. Is NO an endogenous antiatherogenic molecule? Arterioscler Thromb Vasc Biol. 1994;14(5):653–5.

    CAS  Google Scholar 

  46. Halcox JP, Schenke WH, Zalos G, Mincemoyer R, Prasad A, Waclawiw MA, et al. Prognostic value of coronary vascular endothelial dysfunction. Circ J. 2002;106(6):653–8.

    Google Scholar 

  47. Cosentino F, Volpe M. Hypertension, stroke, and endothelium. Curr Hypertens Rep. 2005;7(1):68–71.

    CAS  PubMed  Google Scholar 

  48. Yang Z, Ming X-F. Recent advances in understanding endothelial dysfunction in atherosclerosis. J Clin Med Res. 2006;4(1):53–65.

    Google Scholar 

  49. Celermajer DS, Sorensen K, Gooch V, Sullivan I, Lloyd J, Deanfield J, et al. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet. 1992;340(8828):1111–5.

    CAS  PubMed  Google Scholar 

  50. Böhm F, Pernow J. The importance of endothelin-1 for vascular dysfunction in cardiovascular disease. Cardiovasc Res. 2007;76(1):8–18.

    PubMed  Google Scholar 

  51. Bondonno CP, Yang X, Croft KD, Considine MJ, Ward NC, Rich L, et al. Flavonoid-rich apples and nitrate-rich spinach augment nitric oxide status and improve endothelial function in healthy men and women: a randomized controlled trial. Free Radic Biol Med. 2012;52(1):95–102.

    CAS  PubMed  Google Scholar 

  52. Palmer RMJ, Ashton DS, Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature. 1988;333(6174):664–6.

    CAS  PubMed  Google Scholar 

  53. Shen Y, Croft KD, Hodgson JM, Kyle R, Lee I, Ling E, et al. Quercetin and its metabolites improve vessel function by inducing eNOS activity via phosphorylation of AMPK. Biochem Pharmacol. 2012;84(8):1036–44.

    CAS  PubMed  Google Scholar 

  54. Romero M, Jiménez R, Sánchez M, López-Sepúlveda R, Zarzuelo MJ, O’Valle F, et al. Quercetin inhibits vascular superoxide production induced by endothelin-1: role of NADPH oxidase, uncoupled eNOS and PKC. Atherosclerosis. 2009;202(1):58–67.

    CAS  PubMed  Google Scholar 

  55. Khoo NK, White CR, Pozzo-Miller L, Zhou F, Constance C, Inoue T, et al. Dietary flavonoid quercetin stimulates vasorelaxation in aortic vessels. Free Radic Biol Med. 2010;49(3):339–47.

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Loke WM, Hodgson JM, Proudfoot JM, McKinley AJ, Puddey IB, Croft KD, et al. Pure dietary flavonoids quercetin and (−)-epicatechin augment nitric oxide products and reduce endothelin-1 acutely in healthy men. Am J Clin Nutr. 2008;88(4):1018–25.

    CAS  PubMed  Google Scholar 

  57. Granger DL, Taintor RR, Boockvar KS, Hibbs Jr JB. Measurement of nitrate and nitrite in biological samples using nitrate reductase and Griess reaction. Methods Enzymol. 1996;268:142–51.

    CAS  PubMed  Google Scholar 

  58. Nicholson SK, Tucker GA, Brameld JM. Effects of dietary polyphenols on gene expression in human vascular endothelial cells. Proc Nutr Soc. 2008;67(01):42–7.

    CAS  PubMed  Google Scholar 

  59. Pérez-Vizcaíno F, Ibarra M, Cogolludo AL, Duarte J, Zaragozá-Arnáez F, Moreno L, et al. Endothelium-independent vasodilator effects of the flavonoid quercetin and its methylated metabolites in rat conductance and resistance arteries. J Pharmacol Exp Ther. 2002;302(1):66–72.

    PubMed  Google Scholar 

  60. Chen CK, Pace-Asciak CR. Vasorelaxing activity of resveratrol and quercetin in isolated rat aorta. Gen Pharmacol. 1996;27(2):363–6.

    CAS  PubMed  Google Scholar 

  61. Rendig SV, Symons DJ, Longhurst JC, Amsterdam EA. Effects of red wine, alcohol, and quercetin on coronary resistance and conductance arteries. J Cardiovasc Pharmacol. 2001;38(2):219–27.

    CAS  PubMed  Google Scholar 

  62. Hou X, Liu Y, Niu L, Cui L, Zhang M. Enhancement of voltage-gated K+ channels and depression of voltage-gated Ca2+ channels are involved in quercetin-induced vasorelaxation in rat coronary artery. Planta Med. 2014;80(6):465.

    CAS  PubMed  Google Scholar 

  63. Curtiss C, Cohn J, Vrobel T, Franciosa JA. Role of the renin-angiotensin system in the systemic vasoconstriction of chronic congestive heart failure. Circulation. 1978;58(5):763–70.

    CAS  PubMed  Google Scholar 

  64. Häckl L, Cuttle G, Sanches Dovichi S, Lima-Landman M, Nicolau M. Inhibition of angiotensin-converting enzyme by quercetin alters the vascular response to bradykinin and angiotensin I. Pharmacology. 2002;65(4):182–6.

    PubMed  Google Scholar 

  65. Mackraj I, Govender T, Ramesar S. The antihypertensive effects of quercetin in a salt-sensitive model of hypertension. J Cardiovasc Pharmacol. 2008;51(3):239–45.

    CAS  PubMed  Google Scholar 

  66. Oh H, Kang D-G, Kwon J-W, Kwon T-O, Lee S-Y, Lee D-B, et al. Isolation of angiotensin converting enzyme (ACE) inhibitory flavonoids from Sedum sarmentosum. Biol Pharm Bull. 2004;27(12):2035–7.

    CAS  PubMed  Google Scholar 

  67. Loizzo MR, Said A, Tundis R, Rashed K, Statti GA, Hufner A, et al. Inhibition of angiotensin converting enzyme (ACE) by flavonoids isolated from Ailanthus excelsa (Roxb) (Simaroubaceae). Phytother Res. 2007;21(1):32–6.

    CAS  PubMed  Google Scholar 

  68. Kiss A, Kowalski J, Melzig M. Compounds from Epilobium angustifolium inhibit the specific metallopeptidases ACE. NEP and APN Planta Medica. 2004;70(10):919–23.

    CAS  PubMed  Google Scholar 

  69. Ross R. Atherosclerosis—an inflammatory disease. N Engl J Med. 1999;340(2):115.

    CAS  PubMed  Google Scholar 

  70. Shimokawa H, Aarhus LL, Vanhoutte PM. Porcine coronary arteries with regenerated endothelium have a reduced endothelium-dependent responsiveness to aggregating platelets and serotonin. Circ Res. 1987;61(2):256–70.

    CAS  PubMed  Google Scholar 

  71. Tschudi MR, Barton M, Bersinger NA, Moreau P, Cosentino F, Noll G, et al. Effect of age on kinetics of nitric oxide release in rat aorta and pulmonary artery. J Clin Invest. 1996;98(4):899.

    PubMed Central  CAS  PubMed  Google Scholar 

  72. Kennedy S, Fournet-Bourguignon M-P, Breugnot C, Castedo-Delrieu M, Lesage L, Reure H, et al. Cells derived from regenerated endothelium of the porcine coronary artery contain more oxidized forms of apolipoprotein-B-100 without a modification in the uptake of oxidized LDL. J Vasc Res. 2003;40(4):389–98.

    CAS  PubMed  Google Scholar 

  73. Kleemann R, Verschuren L, Morrison M, Zadelaar S, van Erk MJ, Wielinga PY, et al. Anti-inflammatory, anti-proliferative and anti-atherosclerotic effects of quercetin in human in vitro and in vivo models. Atherosclerosis. 2011;218(1):44–52.

    CAS  PubMed  Google Scholar 

  74. JuŸwiak S, Wójcicki J, Mokrzycki K, Marchlewicz M, Białecka M, Wenda-Różewicka L, et al. Effect of quercetin on experimental hyperlipidemia and atherosclerosis in rabbits. Pharmacol Rep. 2005;57(57):604–9.

    Google Scholar 

  75. Kawai Y, Nishikawa T, Shiba Y, Saito S, Murota K, Shibata N, et al. Macrophage as a target of quercetin glucuronides in human atherosclerotic arteries implication in the anti-atherosclerotic mechanism of dietary flavonoids. J Biol Chem. 2008;283(14):9424–34.

    CAS  PubMed  Google Scholar 

  76. Ishisaka A, Kawabata K, Miki S, Shiba Y, Minekawa S, Nishikawa T, et al. Mitochondrial dysfunction leads to deconjugation of quercetin glucuronides in inflammatory macrophages. PLoS One. 2013;8(11):e80843.

    PubMed Central  PubMed  Google Scholar 

  77. Kawabata K, Mukai R, Ishisaka A. Quercetin and related polyphenols: new insights and implications for their bioactivity and bioavailability. Food Funct. 2015;6(5):1399–417.

    CAS  PubMed  Google Scholar 

  78. Stocker R, Keaney Jr JF. Role of oxidative modifications in atherosclerosis. Physiol Rev. 2004;84(4):1381–478.

    CAS  PubMed  Google Scholar 

  79. Nickel T, Hanssen H, Sisic Z, Pfeiler S, Summo C, Schmauss D, et al. Immunoregulatory effects of the flavonol quercetin in vitro and in vivo. Eur J Clin Nutr. 2011;50(3):163–72.

    CAS  Google Scholar 

  80. Döring Y, Zernecke A. Plasmacytoid dendritic cells in atherosclerosis. Front Physiol. 2012;3.

  81. Boots AW, Haenen GR, Bast A. Health effects of quercetin: from antioxidant to nutraceutical. Eur J Clin Pharmacol. 2008;585(2):325–37.

    CAS  Google Scholar 

  82. Williams RJ, Spencer JP, Rice-Evans C. Flavonoids: antioxidants or signalling molecules? Free Rad Biol Med. 2004;36(7):838–49.

    CAS  PubMed  Google Scholar 

  83. Arts MJ, Sebastiaan Dallinga J, Voss H-P, Haenen GR, Bast A. A new approach to assess the total antioxidant capacity using the TEAC assay. Food Chem. 2004;88(4):567–70.

    CAS  Google Scholar 

  84. Forman HJ, Davies KJ, Ursini F. How do nutritional antioxidants really work: nucleophilic tone and para-hormesis versus free radical scavenging in vivo. Free Rad Biol Med. 2014;66:24–35. Polyphenols exert their antioxidant effects by being oxidised to electrophilic hydroquinones and quinones during their reaction with free radicals, activaing Nrf2 which induces the transcription of protective enzymes.

    CAS  PubMed  Google Scholar 

  85. Shanely RA, Knab AM, Nieman DC, Jin F, McAnulty SR, Landram MJ. Quercetin supplementation does not alter antioxidant status in humans. Free Rad Res. 2010;44(2):224–31.

    CAS  Google Scholar 

  86. Cialdella-Kam L, Nieman DC, Sha W, Meaney MP, Knab AM, Shanely RA. Dose–response to 3 months of quercetin-containing supplements on metabolite and quercetin conjugate profile in adults. Br J Nutr. 2013;109(11):1923–33.

    CAS  PubMed  Google Scholar 

  87. Egert S, Wolffram S, Bosy-Westphal A, Boesch-Saadatmandi C, Wagner AE, Frank J, et al. Daily quercetin supplementation dose-dependently increases plasma quercetin concentrations in healthy humans. J Nutr. 2008;138(9):1615–21.

    CAS  PubMed  Google Scholar 

  88. Pfeuffer M, Auinger A, Bley U, Kraus-Stojanowic I, Laue C, Winkler P, et al. Effect of quercetin on traits of the metabolic syndrome, endothelial function and inflammation in men with different APOE isoforms. Nutr Metab Cardiovasc Dis. 2013;23(5):403–9. Quercetin supplementation decreased postprandial systolic blood pressure and triglycerides and increased HDL-cholesterol and TNF-α. Genotype-dependent effects were seen only on waist circumference and BMI.

    CAS  PubMed  Google Scholar 

  89. Larson AJ, Symons JD, Jalili T. Therapeutic potential of quercetin to decrease blood pressure: review of efficacy and mechanisms. Adv Nutr. 2012;3(1):39–46.

    PubMed Central  CAS  PubMed  Google Scholar 

  90. Boyle S, Dobson V, Duthie S, Hinselwood D, Kyle J, Collins A. Bioavailability and efficiency of rutin as an antioxidant: a human supplementation study. Eur J Clin Nutr. 2000;54(10):774–82.

    CAS  PubMed  Google Scholar 

  91. Touyz R, Schiffrin E. Reactive oxygen species in vascular biology: implications in hypertension. Histochem Cell Biol. 2004;122(4):339–52.

    CAS  PubMed  Google Scholar 

  92. Taniyama Y, Griendling KK. Reactive oxygen species in the vasculature molecular and cellular mechanisms. Hypertension. 2003;42(6):1075–81.

    CAS  PubMed  Google Scholar 

  93. Musiek ES, Yin H, Milne GL, Morrow JD. Recent advances in the biochemistry and clinical relevance of the isoprostane pathway. Lipids. 2005;40(10):987–94.

    CAS  PubMed  Google Scholar 

  94. Del Rio D, Stewart AJ, Pellegrini N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis. 2005;15(4):316–28.

    PubMed  Google Scholar 

  95. Shen Y, Ward NC, Hodgson JM, Puddey IB, Wang Y, Zhang D, et al. Dietary quercetin attenuates oxidant-induced endothelial dysfunction and atherosclerosis in apolipoprotein E knockout mice fed a high-fat diet: a critical role for heme oxygenase-1. Free Rad Biol Med. 2013;65:908–15.

    CAS  PubMed  Google Scholar 

  96. Boots AW, Drent M, de Boer VC, Bast A, Haenen GR. Quercetin reduces markers of oxidative stress and inflammation in sarcoidosis. Clin Nutr. 2011;30(4):506–12.

    CAS  PubMed  Google Scholar 

  97. Quindry JC, McAnulty SR, Hudson MB, Hosick P, Dumke C, McAnulty LS, et al. Oral quercetin supplementation and blood oxidative capacity in response to ultramarathon competition. Int J Sport NutrExerc Metab. 2008;18:601.

    CAS  Google Scholar 

  98. Jalili T, Beisinger S, Quadros A, Rabovsky A. A mixture of grape seed and skin extract, green tea extract, resveratrol, and quercetin reduces blood pressure in hypertensive subjects with metabolic syndrome. FASEB J. 2012;26:385.2.

    Google Scholar 

  99. Holvoet P. Relations between metabolic syndrome, oxidative stress and inflammation and cardiovascular disease. Verhandelingen-Koninklijke Academie voor Geneeskunde van Belgie. 2007;70(3):193–219.

    Google Scholar 

  100. Wang Z, Nicholls SJ, Rodriguez ER, Kummu O, Hörkkö S, Barnard J, et al. Protein carbamylation links inflammation, smoking, uremia and atherogenesis. Nat Med. 2007;13(10):1176–84.

    CAS  PubMed  Google Scholar 

  101. Loke WM, Proudfoot JM, Mckinley AJ, Needs PW, Kroon PA, Hodgson JM, et al. Quercetin and its in vivo metabolites inhibit neutrophil-mediated low-density lipoprotein oxidation. J Agric Food Chem. 2008;56(10):3609–15.

    CAS  PubMed  Google Scholar 

  102. Mackness M, Mackness B. Paraoxonase 1 and atherosclerosis: is the gene or the protein more important? Free Rad Biol Med. 2004;37(9):1317–23.

    CAS  PubMed  Google Scholar 

  103. Aviram M, Rosenblat M. Paraoxonases 1, 2, and 3, oxidative stress, and macrophage foam cell formation during atherosclerosis development. Free Rad Biol Med. 2004;37(9):1304–16.

    CAS  PubMed  Google Scholar 

  104. Jaiswal N, Rizvi SI. Onion extract (Allium cepa L.), quercetin and catechin up‐regulate paraoxonase 1 activity with concomitant protection against low‐density lipoprotein oxidation in male Wistar rats subjected to oxidative stress. J Sci Food Agr. 2014;94(13):2752–7.

    CAS  Google Scholar 

  105. Chopra M, Fitzsimons PE, Strain JJ, Thurnham DI, Howard AN. Nonalcoholic red wine extract and quercetin inhibit LDL oxidation without affecting plasma antioxidant vitamin and carotenoid concentrations. Clin Chem. 2000;46(8):1162–70.

    CAS  PubMed  Google Scholar 

  106. McAnlis G, McEneny J, Pearce J, Young I. Absorption and antioxidant effects of quercetin from onions, in man. Eur J Clin Nutr. 1999;53(2):92–6.

    CAS  PubMed  Google Scholar 

  107. Odbayar T-O, Badamhand D, Kimura T, Takahashi Y, Tsushida T, Ide T. Comparative studies of some phenolic compounds (quercetin, rutin, and ferulic acid) affecting hepatic fatty acid synthesis in mice. J Agric Food Chem. 2006;54(21):8261–5.

    CAS  PubMed  Google Scholar 

  108. Mbikay M, Sirois F, Simoes S, Mayne J, Chrétien M. Quercetin-3-glucoside increases low-density lipoprotein receptor (LDLR) expression, attenuates proprotein convertase subtilisin/kexin 9 (PCSK9) secretion, and stimulates LDL uptake by Huh7 human hepatocytes in culture. FEBS open bio. 2014;4:755–62.

    PubMed Central  CAS  PubMed  Google Scholar 

  109. Datla SR, Dusting GJ, Mori TA, Taylor CJ, Croft KD, Jiang F. Induction of heme oxygenase-1 in vivo suppresses NADPH oxidase-derived oxidative stress. Hypertension. 2007;50(4):636–42.

    CAS  PubMed  Google Scholar 

  110. Calay D, Mason JC. The multifunctional role and therapeutic potential of HO-1 in the vascular endothelium. Antioxid Redox Sig. 2014;20(11):1789–809. This review presents evidence for the potential therapeutic significance of HO-1 and its products, highlighting their beneficial effects on the endothelium in vascular diseases.

    CAS  Google Scholar 

  111. Dulak J, Loboda A, Jozkowicz A. Effect of heme oxygenase-1 on vascular function and disease. Curr Opin Lipidol. 2008;19(5):505–12.

    CAS  PubMed  Google Scholar 

  112. Wu BJ, Kathir K, Witting PK, Beck K, Choy K, Li C, et al. Antioxidants protect from atherosclerosis by a heme oxygenase-1 pathway that is independent of free radical scavenging. J Exp Med. 2006;203(4):1117–27.

    PubMed Central  CAS  PubMed  Google Scholar 

  113. Wu M-L, Ho Y-C, Yet S-F. A central role of heme oxygenase-1 in cardiovascular protection. Antioxid Redox Sig. 2011;15(7):1835–46.

    CAS  Google Scholar 

  114. Stocker R, Huang A, Jeranian E, Hou JY, Wu TT, Thomas SR, et al. Hypochlorous acid impairs endothelium-derived nitric oxide bioactivity through a superoxide-dependent mechanism. Arterioscler Thromb Vasc Biol. 2004;24(11):2028–33.

    CAS  PubMed  Google Scholar 

  115. Loke WM, Proudfoot JM, Hodgson JM, McKinley AJ, Hime N, Magat M, et al. Specific dietary polyphenols attenuate atherosclerosis in apolipoprotein E-knockout mice by alleviating inflammation and endothelial dysfunction. Arterioscler Thromb Vasc Biol. 2010;30(4):749–57.

    CAS  PubMed  Google Scholar 

  116. Chow J-M, Shen S-C, Huan SK, Lin H-Y, Chen Y-C. Quercetin, but not rutin and quercitrin, prevention of H2O2-induced apoptosis via anti-oxidant activity and heme oxygenase 1 gene expression in macrophages. Biochem Pharmacol. 2005;69(12):1839–51.

    CAS  PubMed  Google Scholar 

  117. Yao P, Nussler A, Liu L, Hao L, Song F, Schirmeier A, et al. Quercetin protects human hepatocytes from ethanol-derived oxidative stress by inducing heme oxygenase-1 via the MAPK/Nrf2 pathways. J Hepatol. 2007;47(2):253–61.

    CAS  PubMed  Google Scholar 

  118. Wang L-J, Lee T-S, Lee F-Y, Pai R-C, Chau L-Y. Expression of heme oxygenase-1 in atherosclerotic lesions. Am J Pathol. 1998;152(3):711.

    PubMed Central  CAS  PubMed  Google Scholar 

  119. Boots AW, Wilms LC, Swennen EL, Kleinjans J, Bast A, Haenen GR. In vitro and ex vivo anti-inflammatory activity of quercetin in healthy volunteers. Nutrition. 2008;24(7):703–10.

    CAS  PubMed  Google Scholar 

  120. Graefe EU, Wittig J, Mueller S, Riethling AK, Uehleke B, Drewelow B, et al. Pharmacokinetics and bioavailability of quercetin glycosides in humans. J Clin Pharmacol. 2001;41(5):492–9.

    CAS  PubMed  Google Scholar 

  121. Scalbert A, Williamson G. Dietary intake and bioavailability of polyphenols. J Nutr. 2000;130(8):2073S–85S.

    CAS  PubMed  Google Scholar 

  122. Spencer JP, Abd El Mohsen MM, Minihane A-M, Mathers JC. Biomarkers of the intake of dietary polyphenols: strengths, limitations and application in nutrition research. Br J Nutr. 2008;99(01):12–22.

    CAS  PubMed  Google Scholar 

  123. Katske F, Shoskes D, Sender M, Poliakin R, Gagliano K, Rajfer J. Treatment of interstitial cystitis with a quercetin supplement. Tech Urol. 2001;7(1):44–6.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

NP Bondonno acknowledges the support of an Australian Postgraduate Award. NC Ward acknowledges the support of a MRF/UWA Fellowship. JM Hodgson was supported by an NHMRC Senior Research Fellowship.

Compliance with Ethics Guidelines

Conflict of Interest

Nicola P. Bondonno declares that she has no conflict of interest.

Catherine P. Bondonno declares that she has no conflict of interest.

Jonathan M. Hodgson has received research support through grants from the National Health and Medical Research Council of Australia, Fruit West, Horticulture Australia Limited and Nestlé.

Natalie C. Ward declares that she has no conflict of interest.

Kevin D. Croft has received research support through grants from the National Health and Medical Research Council of Australia, Fruit West and the Australian National Apple Breeding Program.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin D. Croft.

Additional information

This article is part of the Topical Collection on Cardiovascular Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bondonno, N.P., Bondonno, C.P., Hodgson, J.M. et al. The Efficacy of Quercetin in Cardiovascular Health. Curr Nutr Rep 4, 290–303 (2015). https://doi.org/10.1007/s13668-015-0137-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13668-015-0137-3

Keywords

Navigation