Current Pulmonology Reports

, Volume 6, Issue 2, pp 146–154 | Cite as

Impact of High Altitude on Military Operations

  • Cameron W. McLaughlinEmail author
  • Andrew J. Skabelund
  • Amaya D. George
Pulmonology in Combat Medicine (G Eapen, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Pulmonology in Combat Medicine


Purpose of Review

High-altitude combat and medical evacuation pose special challenges to military operations. We aim to summarize the physiologic changes that occur at altitude, as well as review the altitude-related diseases with emphasis on the impact on the military population. Finally, the impact of high-altitude exposure during transportation of combat trauma will be reviewed.

Recent Findings

There is increasing awareness that high-altitude exposure has an impact on mission readiness and could place mission success at risk. High-altitude headache and acute mountain sickness have affected warfighters in both training and combat. Prophylaxis of altitude illness with acetazolamide has been shown to reduce symptoms of altitude exposure; dexamethasone is utilized for the same purpose.

Though not without risk, long-range high-altitude transport of critically ill trauma and medical patients has been found to be safe and effective.


Hypobaric hypoxia is the primary driving force behind the physiologic effects altitude has on the human body. When combined with the stress of combat and AE, altitude can pose a difficult obstacle when caring for critically ill patients. Awareness of altitude-related disease and its impact when caring for non-altitude-related illness is a crucial component of optimizing healthcare to wounded warriors.


Altitude Hyperventilation Critical illness Warfare Military personnel Transportation 


Compliance with Ethical Standards

Conflict of Interest

Amaya George, Andrew Skabelund, and Cameron McLaughlin declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    •• Rodway GW, Muza SR. Fighting in thin air: operational wilderness medicine in high Asia. Wilderness Environ Med. 2011;22(4):297–303. doi: 10.1016/j.wem.2011.08.009. A historical review of high altitude conflicts and evidence based discussion of interventions to maintain optimal health of the warfighter.CrossRefPubMedGoogle Scholar
  2. 2.
    Honigman B, Theis MK, Koziol-McLain J, Roach R, Yip R, Houston C, et al. Acute mountain sickness in a general tourist population at moderate altitudes. Ann Intern Med. 1993;118(8):587–92.CrossRefPubMedGoogle Scholar
  3. 3.
    Leissner KB, Mahmood FU. Physiology and pathophysiology at high altitude: considerations for the anesthesiologist. J Anesth. 2009;23(4):543–53. doi: 10.1007/s00540-009-0787-7.CrossRefPubMedGoogle Scholar
  4. 4.
    West JB. American College of P, American Physiological S. The physiologic basis of high-altitude diseases. Ann Intern Med. 2004;141(10):789–800.CrossRefPubMedGoogle Scholar
  5. 5.
    Hupperets MD, Hopkins SR, Pronk MG, Tiemessen IJ, Garcia N, Wagner PD, et al. Increased hypoxic ventilatory response during 8 weeks at 3800 m altitude. Respir Physiol Neurobiol. 2004;142(2–3):145–52. doi: 10.1016/j.resp.2004.06.011.CrossRefPubMedGoogle Scholar
  6. 6.
    Yang T, Li X, Qin J, Li S, Yu J, Zhang J, et al. High altitude-induced borderline pulmonary hypertension impaired cardiorespiratory fitness in healthy young men. Int J Cardiol. 2015;181:382–8. doi: 10.1016/j.ijcard.2014.12.044.CrossRefPubMedGoogle Scholar
  7. 7.
    Maripov A, Mamazhakypov A, Karagulova G, Sydykov A, Sarybaev A. High altitude pulmonary hypertension with severe right ventricular dysfunction. Int J Cardiol. 2013;168(3):e89–90. doi: 10.1016/j.ijcard.2013.07.129.CrossRefPubMedGoogle Scholar
  8. 8.
    Moudgil R, Michelakis ED, Archer SL. Hypoxic pulmonary vasoconstriction. J Appl Physiol (Bethesda, Md: 1985). 2005;98(1):390–403. doi: 10.1152/japplphysiol.00733.2004.CrossRefGoogle Scholar
  9. 9.
    Penaloza D, Arias-Stella J. The heart and pulmonary circulation at high altitudes: healthy highlanders and chronic mountain sickness. Circulation. 2007;115(9):1132–46. doi: 10.1161/CIRCULATIONAHA.106.624544.CrossRefPubMedGoogle Scholar
  10. 10.
    Lundby C, Araoz M, van Hall G. Peak heart rate decreases with increasing severity of acute hypoxia. High Alt Med Biol. 2001;2(3):369–76. doi: 10.1089/15270290152608543.CrossRefPubMedGoogle Scholar
  11. 11.
    • West JB. High-altitude medicine. Am J Respir Crit Care Med. 2012;186(12):1229–37. doi: 10.1164/rccm.201207-1323CI. A review of high altitude medicine by a well known pulmonary physiologist.CrossRefPubMedGoogle Scholar
  12. 12.
    Haditsch B, Roessler A, Krisper P, Frisch H, Hinghofer-Szalkay HG, Goswami N. Volume regulation and renal function at high altitude across gender. PLoS One. 2015;10(3):e0118730. doi: 10.1371/journal.pone.0118730.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    San T, Polat S, Cingi C, Eskiizmir G, Oghan F, Cakir B. Effects of high altitude on sleep and respiratory system and theirs adaptations. ScientificWorldJournal. 2013;2013:241569. doi: 10.1155/2013/241569.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Norris JN, Viirre E, Aralis H, Sracic MK, Thomas D, Gertsch JH. High altitude headache and acute mountain sickness at moderate elevations in a military population during battalion-level training exercises. Mil Med. 2012;177(8):917–23.CrossRefPubMedGoogle Scholar
  15. 15.
    Hadolt I, Litscher G. Noninvasive assessment of cerebral oxygenation during high altitude trekking in the Nepal Himalayas (2850-5600 m). Neurol Res. 2003;25(2):183–8. doi: 10.1179/016164103101201175.CrossRefPubMedGoogle Scholar
  16. 16.
    Fayed N, Modrego PJ, Morales H. Evidence of brain damage after high-altitude climbing by means of magnetic resonance imaging. Am J Med. 2006;119(2):168 e1–6. doi: 10.1016/j.amjmed.2005.07.062.CrossRefGoogle Scholar
  17. 17.
    Weil JV. Sleep at high altitude. High Alt Med Biol. 2004;5(2):180–9. doi: 10.1089/1527029041352162.CrossRefPubMedGoogle Scholar
  18. 18.
    Gilbert KS, Kark SM, Gehrman P, Bogdanova Y. Sleep disturbances, TBI and PTSD: implications for treatment and recovery. Clin Psychol Rev. 2015;40:195–212. doi: 10.1016/j.cpr.2015.05.008.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Wilson MH, Newman S, Imray CH. The cerebral effects of ascent to high altitudes. Lancet Neurol. 2009;8(2):175–91. doi: 10.1016/S1474-4422(09)70014-6.CrossRefPubMedGoogle Scholar
  20. 20.
    Lopez JI, Holdridge A, Mendizabal JE. Altitude headache. Curr Pain Headache Rep. 2013;17(12):383. doi: 10.1007/s11916-013-0383-2.CrossRefPubMedGoogle Scholar
  21. 21.
    Imray C. Acetazolamide for the prophylaxis of acute mountain sickness. BMJ. 2012;345:e7077. doi: 10.1136/bmj.e7077.CrossRefPubMedGoogle Scholar
  22. 22.
    Leshem E, Caine Y, Rosenberg E, Maaravi Y, Hermesh H, Schwartz E. Tadalafil and acetazolamide versus acetazolamide for the prevention of severe high-altitude illness. J Travel Med. 2012;19(5):308–10. doi: 10.1111/j.1708-8305.2012.00636.x.CrossRefPubMedGoogle Scholar
  23. 23.
    Gertsch JH, Lipman GS, Holck PS, Merritt A, Mulcahy A, Fisher RS, et al. Prospective, double-blind, randomized, placebo-controlled comparison of acetazolamide versus ibuprofen for prophylaxis against high altitude headache: the Headache Evaluation at Altitude Trial (HEAT). Wilderness Environ Med. 2010;21(3):236–43. doi: 10.1016/j.wem.2010.06.009.CrossRefPubMedGoogle Scholar
  24. 24.
    Burtscher M, Likar R, Nachbauer W, Philadelphy M, Puhringer R, Lammle T. Effects of aspirin during exercise on the incidence of high-altitude headache: a randomized, double-blind, placebo-controlled trial. Headache. 2001;41(6):542–5.CrossRefPubMedGoogle Scholar
  25. 25.
    Alizadeh R, Ziaee V, Aghsaeifard Z, Mehrabi F, Ahmadinejad T. Characteristics of headache at altitude among trekkers; a comparison between acute mountain sickness and non-acute mountain sickness headache. Asian J Sports Med. 2012;3(2):126–30.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Carod-Artal FJ. High-altitude headache and acute mountain sickness. Neurologia. 2014;29(9):533–40. doi: 10.1016/j.nrl.2012.04.015.CrossRefPubMedGoogle Scholar
  27. 27.
    Peoples GE, Gerlinger T, Craig R, Burlingame B. The 274th Forward Surgical Team experience during Operation Enduring Freedom. Mil Med. 2005;170(6):451–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Roberts MJ. Acute mountain sickness—experience on the roof of Africa expedition and military implications. J R Army Med Corps. 1994;140(1):49–51.CrossRefPubMedGoogle Scholar
  29. 29.
    Department of the Army. TB MED 505. Altitude Acclimatization and Illness Management. 2010. Available at wwwusariemarmymil/assets/docs/partnering/TB-Med-505-Sept-2010pdf.Google Scholar
  30. 30.
    Wang J, Ke T, Zhang X, Chen Y, Liu M, Chen J, et al. Effects of acetazolamide on cognitive performance during high-altitude exposure. Neurotoxicol Teratol. 2013;35:28–33. doi: 10.1016/ Scholar
  31. 31.
    Midla GS. Lessons learned: operation anaconda. Mil Med. 2004;169(10):810–3.CrossRefPubMedGoogle Scholar
  32. 32.
    DeLellis SM. Acetazolamide or not, prior to ascent? J Spec Oper Med. 2010;10(4):38–40.PubMedGoogle Scholar
  33. 33.
    O’Hara R, Serres J, Dodson W, Wright B, Ordway J, Powell E, et al. The use of dexamethasone in support of high-altitude ground operations and physical performance: review of the literature. J Spec Oper Med. 2014;14(4):53–8.PubMedGoogle Scholar
  34. 34.
    US Special Operations Command. Altitude illness. J Spec Oper Med. 2011; Suppl:31-32.Google Scholar
  35. 35.
    Grissom CK, Roach RC, Sarnquist FH, Hackett PH. Acetazolamide in the treatment of acute mountain sickness: clinical efficacy and effect on gas exchange. Ann Intern Med. 1992;116(6):461–5.CrossRefPubMedGoogle Scholar
  36. 36.
    Hackett PH, Roach RC, Wood RA, Foutch RG, Meehan RT, Rennie D, et al. Dexamethasone for prevention and treatment of acute mountain sickness. Aviat Space Environ Med. 1988;59(10):950–4.PubMedGoogle Scholar
  37. 37.
    Sophocles AM Jr. High-altitude pulmonary edema in Vail, Colorado, 1975-1982. West J Med. 1986;144(5):569–73.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Hall DP, Duncan K, Baillie JK. High altitude pulmonary oedema. J R Army Med Corps. 2011;157(1):68–72.CrossRefPubMedGoogle Scholar
  39. 39.
    Zhou Q. Standardization of methods for early diagnosis and on-site treatment of high-altitude pulmonary edema. Pulm Med. 2011;2011:190648. doi: 10.1155/2011/190648.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Chawla A, Tripathi KK. Objective criteria for diagnosing high altitude pulmonary edema in acclimatized patients at altitudes between 2700 m and 3500 m. Med J Armed Forces India. 2015;71(4):345–51. doi: 10.1016/j.mjafi.2015.09.002.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Arora R, Jha KN, Sathian B. Retinal changes in various altitude illnesses. Singap Med J. 2011;52(9):685–8.Google Scholar
  42. 42.
    Deshwal R, Iqbal M, Basnet S. Nifedipine for the treatment of high altitude pulmonary edema. Wilderness Environ Med. 2012;23(1):7–10. doi: 10.1016/j.wem.2011.10.003.CrossRefPubMedGoogle Scholar
  43. 43.
    Willmann G, Gekeler F, Schommer K, Bartsch P. Update on high altitude cerebral edema including recent work on the eye. High Alt Med Biol. 2014;15(2):112–22. doi: 10.1089/ham.2013.1142.CrossRefPubMedGoogle Scholar
  44. 44.
    Wu T, Ding S, Liu J, Jia J, Dai R, Liang B, et al. Ataxia: an early indicator in high altitude cerebral edema. High Alt Med Biol. 2006;7(4):275–80. doi: 10.1089/ham.2006.7.275.CrossRefPubMedGoogle Scholar
  45. 45.
    Clarke C. High altitude medicine. Travel Med Infect Dis. 2005;3(4):189–97. doi: 10.1016/j.tmaid.2004.11.006.CrossRefPubMedGoogle Scholar
  46. 46.
    Luks AM, McIntosh SE, Grissom CK, Auerbach PS, Rodway GW, Schoene RB, et al. Wilderness Medical Society practice guidelines for the prevention and treatment of acute altitude illness: 2014 update. Wilderness Environ Med. 2014;25(4 Suppl):S4–14. doi: 10.1016/j.wem.2014.06.017.CrossRefPubMedGoogle Scholar
  47. 47.
    Raitt S. High altitude cerebral oedema during adventure training on Mount Kenya. J R Army Med Corps. 2012;158(3):245–7.CrossRefPubMedGoogle Scholar
  48. 48.
    Crawley PG. The critical care air transport experience. Curr Pulmonol Rep. 2016; 5(2):77. doi: 10.1007/s13665-016-0148-6.
  49. 49.
    Johannigman J, Gerlach T, Cox D, Juhasz J, Britton T, Elterman J, et al. Hypoxemia during aeromedical evacuation of the walking wounded. J Trauma Acute Care Surg. 2015;79(4 Suppl 2):S216–20. doi: 10.1097/TA.0000000000000736.CrossRefPubMedGoogle Scholar
  50. 50.
    •• Lairet J, King J, Vojta L, Beninati W. Short-term outcomes of US Air Force Critical Care Air Transport Team (CCATT) patients evacuated from a combat setting. Prehosp Emerg Care. 2013;17(4):486–90. doi: 10.3109/10903127.2013.811564. This study suggest long range AE of critically ill trauma and medical patients is safe and effective.CrossRefPubMedGoogle Scholar
  51. 51.
    Mason PE, Eadie JS, Holder AD. Prospective observational study of United States (US) Air Force Critical Care Air Transport team operations in Iraq. J Emerg Med. 2011;41(1):8–13. doi: 10.1016/j.jemermed.2008.06.032.CrossRefPubMedGoogle Scholar
  52. 52.
    Barnes SL, Branson R, Gallo LA, Beck G, Johannigman JA. En-route care in the air: snapshot of mechanical ventilation at 37,000 feet. J Trauma. 2008;64(2 Suppl):S129–34. doi: 10.1097/TA.0b013e318160a5b4. discussion S34-5.CrossRefPubMedGoogle Scholar
  53. 53.
    AFI 41-307. Aeromedical evacuation patient considerations and standards of care. 2003. Available at
  54. 54.
    Renz EM, Cancio LC, Barillo DJ, White CE, Albrecht MC, Thompson CK, et al. Long range transport of war-related burn casualties. J Trauma. 2008;64(2 Suppl):S136–44. doi: 10.1097/TA.0b013e31816086c9. discussion S44-5.CrossRefPubMedGoogle Scholar
  55. 55.
    Turkan H, Sener S, Tugcu H, Pauldine R. Considerations in the aeromedical evacuation of a critically ill blast victim: lessons learned. Mil Med. 2006;171(7):586–8.CrossRefPubMedGoogle Scholar
  56. 56.
    Dorlac GR, Fang R, Pruitt VM, Marco PA, Stewart HM, Barnes SL, et al. Air transport of patients with severe lung injury: development and utilization of the Acute Lung Rescue Team. J Trauma. 2009;66(4 Suppl):S164–71. doi: 10.1097/TA.0b013e31819cdf72.CrossRefPubMedGoogle Scholar
  57. 57.
    Allan PF, Osborn EC, Bloom BB, Wanek S, Cannon JW. The introduction of extracorporeal membrane oxygenation to aeromedical evacuation. Mil Med. 2011;176(8):932–7.CrossRefPubMedGoogle Scholar
  58. 58.
    • Fang R, Allan PF, Womble SG, Porter MT, Sierra-Nunez J, Russ RS, et al. Closing the “care in the air” capability gap for severe lung injury: the Landstuhl acute lung rescue team and extracorporeal lung support. J Trauma. 2011;71(1 Suppl):S91–7. doi: 10.1097/TA.0b013e3182218f97. This article describes the long range lung rescue capabilities of the US Air Force.CrossRefPubMedGoogle Scholar
  59. 59.
    Rossaint R, Bouillon B, Cerny V, Coats TJ, Duranteau J, Fernandez-Mondejar E, et al. The European guideline on management of major bleeding and coagulopathy following trauma: fourth edition. Crit Care. 2016;20:100. doi: 10.1186/s13054-016-1265-x.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Spahn DR, Bouillon B, Cerny V, Coats TJ, Duranteau J, Fernandez-Mondejar E, et al. Management of bleeding and coagulopathy following major trauma: an updated European guideline. Crit Care. 2013;17(2):R76. doi: 10.1186/cc12685.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Borgman MA, Spinella PC, Perkins JG, Grathwohl KW, Repine T, Beekley AC, et al. The ratio of blood products transfused affects mortality in patients receiving massive transfusions at a combat support hospital. J Trauma. 2007;63(4):805–13. doi: 10.1097/TA.0b013e3181271ba3.CrossRefPubMedGoogle Scholar
  62. 62.
    Spinella PC, Perkins JG, Grathwohl KW, Beekley AC, Niles SE, McLaughlin DF, et al. Effect of plasma and red blood cell transfusions on survival in patients with combat related traumatic injuries. J Trauma. 2008;64(2 Suppl):S69–77. doi: 10.1097/TA.0b013e318160ba2f. discussion S-8.CrossRefPubMedGoogle Scholar
  63. 63.
    Mora AG, Ervin AT, Ganem VJ, Bebarta VS. Aeromedical evacuation of combat patients by military critical care air transport teams with a lower hemoglobin threshold approach is safe. The journal of trauma and acute care surgery. 2014;77(5):724–8. doi: 10.1097/TA.0000000000000446.CrossRefPubMedGoogle Scholar
  64. 64.
    Hamilton JA, Mora AG, Chung KK, Bebarta VS. Impact of anemia in critically ill burned casualties evacuated from combat theater via US Military Critical Care Air Transport Teams. Shock. 2015;44(Suppl 1):50–4. doi: 10.1097/SHK.0000000000000336.CrossRefPubMedGoogle Scholar
  65. 65.
    •• Dukes SF, Bridges E, Johantgen M. Occurrence of secondary insults of traumatic brain injury in patients transported by critical care air transport teams from Iraq/Afghanistan: 2003-2006. Mil Med. 2013;178(1):11–7. This study suggests CCATT is safe despite the risk of secondary insult of traumatic brain injury during CCATT evacuation.CrossRefPubMedGoogle Scholar
  66. 66.
    Goodman MD, Makley AT, Lentsch AB, Barnes SL, Dorlac GR, Dorlac WC, et al. Traumatic brain injury and aeromedical evacuation: when is the brain fit to fly? J Surg Res. 2010;164(2):286–93. doi: 10.1016/j.jss.2009.07.040.CrossRefPubMedGoogle Scholar
  67. 67.
    Minnick JM, Bebarta VS, Stanton M, Lairet JR, King J, Torres P, et al. The incidence of fever in US Critical Care Air Transport Team combat trauma patients evacuated from the theater between March 2009 and March 2010. J Emerg Nurs. 2013;39(6):e101–6. doi: 10.1016/j.jen.2013.02.001.CrossRefPubMedGoogle Scholar
  68. 68.
    Bendz B, Rostrup M, Sevre K, Andersen TO, Sandset PM. Association between acute hypobaric hypoxia and activation of coagulation in human beings. Lancet. 2000;356(9242):1657–8. doi: 10.1016/S0140-6736(00)03165-2.CrossRefPubMedGoogle Scholar
  69. 69.
    DeLoughery TG. Anticoagulation considerations for travel to high altitude. High Alt Med Biol. 2015;16(3):181–5. doi: 10.1089/ham.2015.0058.CrossRefPubMedGoogle Scholar
  70. 70.
    Gupta N, Ashraf MZ. Exposure to high altitude: a risk factor for venous thromboembolism? Semin Thromb Hemost. 2012;38(2):156–63. doi: 10.1055/s-0032-1301413.CrossRefPubMedGoogle Scholar
  71. 71.
    Chee YL, Watson HG. Air travel and thrombosis. Br J Haematol. 2005;130(5):671–80. doi: 10.1111/j.1365-2141.2005.05617.x.CrossRefPubMedGoogle Scholar
  72. 72.
    Holley AB, Petteys S, Mitchell JD, Holley PR, Collen JF. Thromboprophylaxis and VTE rates in soldiers wounded in Operation Enduring Freedom and Operation Iraqi Freedom. Chest. 2013;144(3):966–73. doi: 10.1378/chest.12-2879.CrossRefPubMedGoogle Scholar
  73. 73.
    Chung KK, Blackbourne LH, Renz EM, Cancio LC, Wang J, Park MS, et al. Global evacuation of burn patients does not increase the incidence of venous thromboembolic complications. J Trauma. 2008;65(1):19–24. doi: 10.1097/TA.0b013e3181271b8a.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York (outside the USA) 2017

Authors and Affiliations

  • Cameron W. McLaughlin
    • 1
    Email author
  • Andrew J. Skabelund
    • 1
  • Amaya D. George
    • 1
  1. 1.Pulmonary/Critical Care MedicineSan Antonio Military Medical CenterSan AntonioUSA

Personalised recommendations