Advertisement

Natural Products and Bioprospecting

, Volume 9, Issue 2, pp 77–137 | Cite as

The Genus Solanum: An Ethnopharmacological, Phytochemical and Biological Properties Review

  • Joseph Sakah Kaunda
  • Ying-Jun ZhangEmail author
Open Access
Review
  • 302 Downloads

Abstract

Over the past 30 years, the genus Solanum has received considerable attention in chemical and biological studies. Solanum is the largest genus in the family Solanaceae, comprising of about 2000 species distributed in the subtropical and tropical regions of Africa, Australia, and parts of Asia, e.g., China, India and Japan. Many of them are economically significant species. Previous phytochemical investigations on Solanum species led to the identification of steroidal saponins, steroidal alkaloids, terpenes, flavonoids, lignans, sterols, phenolic comopunds, coumarins, amongst other compounds. Many species belonging to this genus present huge range of pharmacological activities such as cytotoxicity to different tumors as breast cancer (4T1 and EMT), colorectal cancer (HCT116, HT29, and SW480), and prostate cancer (DU145) cell lines. The biological activities have been attributed to a number of steroidal saponins, steroidal alkaloids and phenols. This review features 65 phytochemically studied species of Solanum between 1990 and 2018, fetched from SciFinder, Pubmed, ScienceDirect, Wikipedia and Baidu, using “Solanum” and the species’ names as search terms (“all fields”).

Keywords

Solanum Solanaceae Phytochemistry Steroidal saponins and alkaloids Ethnopharmacology 

Abbreviations

ABTS

2,2′-Azino-bis(3-ethylbenzthiazoline-6-sulphonic acid)

CC50

Cytotoxic concentration of the extracts to cause death to 50% of host’s viable cells

CDDP

cis-Diamminedichloroplatinum

DPPH

2,2-Diphenyl-1-picrylhydrazyl

EC50

Half maximal effective concentration

GABA

Neurotransmitter gamma-aminobutyric acid

HBV

Hepatitis B Virus

HSV-1

Herpes simplex virus type 1

IC50

Minimum inhibition concentration for inhibiting 50% of the pathogen

LD50

Dose required to kill half the members of a tested population after test duration

MIC

Minimum inhibitory concentration

MTT

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

SAG

Superoxide anion generation

1 Introduction

The genus Solanum is considered to be one of the largest and most complex genera among the Angiosperms [1], and the most representative and largest genus of the family Solanaceae [1, 2, 3, 4]. It is comprised of about 2000 species distributed across subtropical and tropical regions of Asia [3, 4, 5, 6, 7, 8, 9], tropical Africa [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29], non-arid Africa [30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43], Americas [44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], Australia [71, 72, 73, 74, 81, 82, 83, 84] and India [71]. The genus is well represented in Brazil with about 350 species widely distributed from north to south in diverse phytogeographic regions [70, 80]. In Brazil (Ceará, Bahia, Mato Grosso do Sul, Paraná and north-central coast of Santa Catarina State), many Solanum species, usually known as ‘yubeba’, the word that refers to the prickles found on the stems of several of the species, are widely used in traditional medicine [66, 80, 87]. In the northeast of Brazil, 80 Solanum species are distributed throughout the region and used in folk medicine. One of such species is S. capsicoides, commonly known as “Gogoia” [87]. In East Africa, several Solanum species such as S. arundo and S. incanum are known to be poisonous and are reportedly used to induce miscarriages [64].

Solanum genus is rich in economically significant species; the food crops include S. aethiopicum [20, 21], S. anguivi [30, 31] S. lycopersicum, S. melongena, S. muricatum, S. torvum and S. tuberosum [1]. Ornamental species include S. aviculare, S. capsicastrum, S. crispum, S. laciniatum, S. laxum, S. pseudocapsicum, S. rantonnetii, S. seaforthianum and S. wendlandii [1].

A series of pharmacological studies have been carried out to verify and validate the traditional medicinal applications of many plants in this genus. The studied pharmacological activities include analgesic, anthelminthic, antiallergic, anti-anemic, anti-asthmatic, antibacterial, anti- cancer, anti-convulsant, anti-depressant, anti-diabetic, anti-fungal, antihistaminic, antihyperten- sive, anti-inflammatory, anti-leishmanial, antimelanogenetic, anti-molluscicidal, anti-nociceptive, anti-psoriatic, antiplasmodial, antiprotozoa, anti-trypanosomal, antiurolithiatic, antiviral, cardio- vascular, diuretic, hepatoprotective, hypolipidemic, mosquito larvicidal, nephrotoxic, spasmolytic, schistosomicidal and vasorelaxant activities.

In the past, several reviews on Solanum genus have been documented [88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101], however, mostly with singular focus on particular species. The present review is multi faceted, and features 66 medicinal species of Solanum in their geographical distribution, traditional uses, and 670 isolated chemical constituents, including 134 steroidal saponins, 63 steroidal alkaloids, 13 pregnane glycosides, 128 terpenes, 75 flavonoids, 31 lignans, 31 other types of alkaloids, 66 sterols, 52 phenolic compounds, 20 coumarins and coumestans, 4 coumarinolignoids, 23 fatty acids and esters and 30 other compounds. Where applicable, the biological activities of compounds isolated from various species are noted.

2 Distribution and Ethnopharmacological Uses

Sixty-six species commonly used as important folk medicine, ornamental plants, or wild food sources were selected in this review, and their local names, distribution and ethnopharmacologi- cal uses were summarized in Table 1. Local names are given in different languages with which the inhabitants of a particular region use to identify a specific species. Each species’ natural habitat and/or places of cultivation are mentioned. Traditional as well as modern day applications are presented.
Table 1

Distribution and ethnopharmalogical uses of Solanum species

No.

Species

Local names

Distribution

Uses

1

S. abutiloides

Dwarf tamarillo

Argentina, Bolivia [2, 3]

Ornamental, fruits edible, anti-fungal [2, 3, 4]

2

S. aculeastrum

Goat bitter/poison/gifa/bok-bitter -apple, thola, murulwa, umthuma, itunga, mtuma

Kenya, South Africa, Swaziland [10]

Toothache, ringworm [10], jigger wounds, gonorrhea, anti-molluscicidal [11, 12], anticancer [13, 14, 15], antifungal [16], antimicrobial [12, 17], anti-leishmanial [18]

3

S. aethiopicum

African scarlet/Ethiopian/Chinese scarlet/tomato-fruit eggplant, azoko, garden egg, gilo, golden/love apple, impwa, kumba, losuke, mock/bitter/ruffed tomato, nakasuga, nakati, ngogwe, osun, tokalu, african aubergine, aubergine amère, Ethiopian nightshade, gilo, granadillo, jilo, kumba, meloncillo de olor, meloncillo del campo, pocotillo, quillo, revienta caballo, röd aubergin, shum, silverleaf nightshade, tutía enano

China, India, Japan, Angola, Benin, Botswana,Burkina Faso, Burundi, Cameroon, Cape Verde, Central Africa, Chad, Comoros, Congo DR, Djibouti, Egypt, Equatorial Guinea, Eritrea, Ethiopia, Gabon, Gambia, Ghana, Guinea, Guinea-Bissau, Ivory Coast, Liberia, Madagascar, Malawi, Mali, Mauritania, Mauritius, Mozambique, Namibia, Niger, Nigeria, Rwanda, Senegal, Sierra Leone, Sudan, Togo, Zambia, Zimbabwe, Australia, Brazil, Italy, France [20, 21]

Fruits/leaves eaten, ornamental [20, 21], anti-ulcer, anticancer [23, 24, 25, 26], anti-inflammatory [27]

4

S. agrarium

Gogóia (Brazil)

Brazil, Guyana, Venezuela [44]

Mycosis, diarrhea, gonorrhea, prostatic, inflammation, abortion [44, 45]

5

S. americanum

American black/white/small flower/glossy nightshade, maria pretinha (Brazil), quilete (Guatemala), popolo (Hawaii)

Tropical Pacific, Indian Ocean, Hawaii, Indochina, Brazil, Madagascar, Africa

Ripe fruit makes jams, preservative, shoots eaten, antiviral, antimicrobial [46, 47], antidiabetic [48, 49], bladder spasm, joint pains, cooling, cough, gastric ulcer, protozoal infections, vermifuge [49], anticancer [47, 50, 51, 52], asthma [53]

6

S. amygdalifolium

 

Uruguay, Argentina, Brazil

Decoration [56]

7

S. anguivi

Forest bitterberry, African eggplant

Non-arid Africa: Nigeria, Ghana

Leaves/fruits consumed, coughs, dysuria, nasal ulcers, asthma, toothache, cardiac disorder, worm complaints, spinal chord and nervous disorder, fever, diabetes, artherosclerosis carminative, nasal ulcers, asthma, parturition, worm expeller, itching [30, 31, 32], hypolipidemic [33, 34], anaemia [31, 32, 35], Huntington’s, Alzheimer, Parkinson, amyotrophic lateral sclerosis [36], antioxidant [33, 37, 38, 39], hypotensive [38]

8

S. arboreum

 

Costa Rica, Colombia, Trinidad

Anti-leishmanial [60, 61], antimalarial [62]

9

S. arundo

 

Kenya

Abortion [64], hepatoprotective [65]

10

S. asperum

 

Brazil

Anti-molluscicidal [66], antifungal [67]

11

S. asterophorum

Jurubeba-de-fogo

Brazil

Liver dysfunctions, antidiarrheal [68], spasmolytic [69]

12

S. betaceum

English: tree tomato, South America: tamamoro and tomate de árbol, French: arbre à tomates, tomate de La Paz, tomate en arbre. Spanish: tamarillo, tomate de árbol, tomate Serrano

Ecuador, Colombia, Peru, Bolivia, Rwanda, South Africa, India, Nepal China, United States, Chile, Australia, New Zealand, Malaysia, Philippines, Puerto Rico, Bhutan [71, 72, 73, 74]

Ripe fruit edible, preservative [71, 72], antioxidant [75]

13

S. buddleifolium

Unknown

Brazil [79]

Unknown

14

S. caavurana

Laranjinha do mato, ‘jurubebarana’ or ‘jurubeba-branca’

Brazil (Ceará, Bahia, Mato Grosso do Sul, Paraná,Santa Catarina States), Paraguay, Argentina

Anemia, liver disorders, digestion [80]

15

S. capsicoides

Cockroach berry, polohauai’i (Polynesia), devil’s apple

Brazil, Central America, Australia, Brooklyn, New York [81, 82, 83, 84]

Ornamental [83], anti-inflammatory [85], anticancer [86], antihypertensive [87]

16

S. cathayanum

 

China

Anti-inflammatory, anti-bacterial [102], antitumor, anti-neurodegenerative [102, 103, 104, 105, 106]

17

S. cernuum

“Panaceia”

Brazil

Gastric ulcers, hepatic injuries, skin disorders, anti-tumor, depurative, diuretic, antihemorrhagic, antiblennorrhoea, cardiac disorders, analgesic, anti-inflammatory, urinary disorders, gastric cancer, gonorrhea [107, 108, 109, 110, 111, 112]

18

S. chrysotrichum

“Sosa”

Mexico

Anti-mycotic, anti-inflammatory [113, 114, 115, 116, 117, 118, 119, 120]

19

S. cornifolium

 

Latin America

Anti-mycotic [121]

20

S. crinitum

“jurubeba” and “fruto-de-lobo”

Brazil, Colombia

Anti-tumor [122, 123]

21

S. diphyllum

 

Mexico, Belize, Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua, Florida, Texas, Indonesia, Philippines, West Indies, China, Taiwan, Egypt [124, 125, 126]

Anti-tumor [126]

22

S. dulcamara

Bittersweet/bitter/European/deadly/blue climbing/woody nightshade, felonwort, violet-bloom, fellen, scarlet/snake berry, mortal, fever twig, staff vine

Northern Africa, North America, Europe, Asia

Skin diseases, cancers, anti-tumors, alterative, anodyne, depurative, mildly diuretic, emetic, expectorant, hepatic, mildly narcotic and purgative [127, 128, 129, 130, 131], skin abrasions, inflammation [132]

23

S. elaeagnifolium

Prairie berry, Silverleaf nightshade, silverleaf/Whitehorse/bull/horse nettle (English); silver-leaf bitter-apple, Satan’s bush (South Africa); trompillo (Spanish); meloncillo del campo quillo-quillo, revienta caballo (Argentina); tomatillo (Chile); trompillo (Honduras)[540]

Mexico, USA, South America, Middle East, Southern Africa, North Africa, Taiwan, Penghu Islands, Brazil, India, Germany, Kenya [539, 540]

Contraceptive, corticosteroid drugs, hepatoprotective, hypoglycemic, hepatotonic, laxative, appetizer, cardiotonic, antispasmodic, antiepileptic, renal pain, analgesic, anti-inflammatory, anticancer, antimolluscicidal [133, 134]

24

S. erianthum

Aamourette marron (French); big eggplant, black/mullein nightshade, China flowerleaf, flannel bush, tropillo, turkey berry, wild tobacco, jia yan ye shu (Chinese)

Americas, Cuba, Dominican Republic, Haiti, Jamaica, Trinidad, South America

Leukorrhea, abortion, analgesic, vertigo, dysentery, fever, diarrhea, digestive problems, anti-inflammatory, leprosy, sexually-transmitted diseases, malaria, laxative, anti-diuretic, antihepatitis B, anti-tumor [135, 136, 137, 138, 139]

25

S. glabratum

 

Saudi Arabia, Yemen

Antibacteria, diuretic, scabies, syphilis, cough, hemorrhoids, anticancer [140, 141, 142, 143, 144]

26

S. glaucophyllum

 

Brazil, Bolivia, Argentina, Paraguay, Uruguay

Anticancer [145, 146]

27

S. guaraniticum

Jurubeba, false-jurubeba

Brazil, Paraguay, Argentina

Anemia, fevers, erysipela, hepatitis, ulcers, uterine tumors, tonic, digestive stimulant, fevers, antioxidants [147, 148, 149]

28

S. incanum

Thorn/bitter/sodom/poison/snake apple, mutongu (Kikuyu), mtunguja mwitu (Kiswahili), ochok (Luo)

Kenya, Uganda,Tanzania, Middle East, India, Australia, Madagascar, Mauritius, Saudi Arabia [150, 151]

Antibacterial [152, 153], antileishmanial [154], anticancer [155] conjunctivitis, inflammations [156]

29

S. indicum

Poison berry, Indian nightshade, African eggplant, bush tomato, ntunfulu, bhantaki, bari kateri, kateli, kshudra bhantaaki, mahati, mahotika, vartaki, vrihati, kataai kalaan, mullamkatti, papparamulli, barahantaa

India, Sri Lanka, Malaysia, China, Philippine Islands, Africa [157, 158, 159]

Diaphoretic, diuretic, expectorant, stimulant, bronchites, itching, bodyaches, asthma, wounds, toothache, narcotic, cutaneous disorders, ringworm, mouthwash [157], anti-inflammatory, respiratory disorders, dropsy, heart diseases, chronic fever, colic, scorpion stings, difficult urination, worm infestation [158], alopecia areata, erectile failure, boost appetite, abdominal pain, distaste, deworming, colitis [159], antitumor [160, 161, 162, 163], ascites, edema [164]

30

S. jabrense

 

Brazil [165, 166, 167, 168, 169]

Anticancer [168], molluscicidal [169]

31

S. khasianum

 

India

Anti-inflammatory, antihelmintic, Anticancer [170, 171, 172]

32

S. laciniatum

Kangaroo apple

Australia, Tasmania, Wales, New Zealand [173, 174]

Unknown

33

S. laxum

Potato vine, potato climber, jasmine nightshade,

Australia [175, 176], Uruguay, Argentina [177, 178]

Aphid repellant pesticide [177]

34

S. ligustrinum

Natri, Tomatillo [541, 542]

Chile

Antipyretic, anti-inflammatory, fever, anti-fungal [179]

35

S. lycocarpum

Wolf apple, lobeira, fruit-of-wolf, jurubebao (Brazil) fruta-do-lobbo (Portuguese) [543]

Brazil

Anti-inflammatory, antihepatotoxic, hypotensive, antihistamine [180], anticancer [181], antidiabetic [182], antischistosomicidal [183, 184], antileishmanicidal [185], anti-trypanosomal [186] antiprotozoa [187]

36

S. lycopersicum

Tomatillo (Mexico), tomate (Spanish), tomato (English)

Mexico, South & Central America, Asia, Africa [188]

Antimicrobial [189], antiasthma, antiatherosclerosis [190], antiplatelet [191], anticancer [190, 192]

37

S. lyratum

Nipplefruit (English),

China South America [193]

Anticancer [88, 89, 194, 195, 196, 197, 198, 199, 200], anti-inflammatory [201]

38

S. melongena

Aubergine, bringal, eggplant, terong, baigan, melongene

India, China, Thailand, Burma, Iran, Egypt, Turkey, East Asia [202, 203]

Antioxidant [90, 91, 204, 205, 206], anticancer [206, 207, 208], antidiabetic [209], anti-inflammatory, analgesic, sedative, hypnotic, blood circulation [210], antimelanogenesis [211]

39

S. muricatum

Melon pear, Pepino, Tree melon, sweet cucumber [544, 545, 546, 547]

Equador, Colombia, Peru, Chile, Sri Lanka, New Zealand, Western Australia, Spain, Israel, Morocco, Kenya, Hawaii, California [212, 213]

Anti-inflammatory [214], antidiabetic [215], antitumor [212, 213]

40

S. nienkui

 

China (Hainan) [216, 217, 218]

Unknown

41

S. nigrum

Black nightshade, duscle, garden nightshade, Indian nightshade, garden huckleberry, hound’s berry, petty morel, wonder berry, small-fruited black nightshade, or popolo, makoi (Hindi), manathakkali (Tamil)

Eurasia, Americas, Austrasia, South Africa [219, 220, 221]

Mouth ulcers, peptic ulcers, dysentery, skin disorders, ringworms, painful periods, cough [219, 220, 221], anti-inflammatory, hepatoprotective, diuretic, antipyretic, tuberculosis, cervical carcinoma [220, 221, 222], emollient, febrifuge, narcotic, purgative, sedative, analgesic, antispasmodic, vasodilator [222], antihyperlipidemic [131, 223], antimicrobial [224, 225, 226], antitumor [92, 93, 94, 95, 96, 97, 227, 228, 229, 230], anti-molluscicidal [231, 232, 233], antinociceptive, antipyretic [230, 234, 235], antiulcerogenic [235], antihistaminic, antiallergic [236, 237], hepatoprotective, anti-inflammatory, antipyretic [98, 236, 237], CNS-depressant action [238]

42

S. nudum

 

Caribbean, Haiti, Cuba [239]

Antiplasmodial [240, 241, 242, 243, 244, 245, 246, 247, 248, 249]

43

S. orbignianum

 

Brazil [250]

Unknown

44

S. paludosum

 

Brazil

Hypertension, vasorelaxant, antioxidant, antibiotics [251, 252]

45

S. paniculatum

Jurubeba, jubeba, juribeba, juripeba, jupela, juripeba, juuna, juvena, jurubebinha, jurubeba-branca, jurubeba-verdadeira

Brazil, Argentina, Paraguay, southern, central, eastern and northern Brazil [253, 254, 255]

Anemia, anorexia, bile insufficiency, bladder problems, blood cleansing, bloating, boils, catarrh, congestion, contusions, constipation, convalescence, cystitis, debility, diabetes, digestive sluggishness, dyspepsia, edema, erysipelas, fever, flatulence, gallbladder inflammation, gastric disorders, hangover, headache, heartburn, hepatitis, hives, irritable bowel syndrome, itch, jaundice, liver problems, malaria, menstrual disorders, nausea, skin disorders, spleen inflammation, tumors, ulcers, water retention, wounds [253, 254, 255], antiherpes [256], antiulcers [257, 258], antifungal [259, 548], antibacterial [260]

46

S. pseudocapsicum

Jerusalem/winter cherry, Madeira,

South Africa, Australia, New Zealand, Peru, Ecuador [261, 262, 263]

Hepatoprotective [264]

47

S. rostratum

Buffalobur/spiny nightshade, Colorado bur, Kansas/Mexican/Texas thistle

United States, northern and central Mexico [265, 266, 267, 268, 269, 270, 271, 272]

Cardiovascular [273]

48

S. sarrachoides

Hairy/leafy-fruited nightshade

Columbia [274, 275]

Unknown

49

S. schimperianum

 

Somali, Eritrea, Ethiopia, Egypt, Yemen [276]

Antimicrobial [277, 278], antifungal [279]

50

S. septemlobum

Qing qi (Chinese)

China (Anhui, Gansu, Hebei, Henan, Jiangsu, Liaoning, Nei Mongol, Shandong, Shanxi, Sichuan, Xinjiang, East Xizang, Zhejiang) [280, 281]

Antipyretic, antidotal [261], anticancer [261, 262]

51

S. sessiliflorum

Cocona

Peru, Colombia, Venezuela  [282, 283, 284, 549], Bolivia, Mexico [268]

Antioxidant [550], antimicrobial, hypolipidemic [285]

52

S. sisymbriifolium

Vila-vila, sticky nighthade, red bufallor bur, fire and ice, litchi tomato, morelle de balbis

Brazil, Argentina, Uruguay, Paraguay [286, 287, 288]

Cardiovascular [289], antidiarrheal [290], hypotensive [291, 292], antimicrobial, antioxidative [293], anticonvulsant, CNS depressant [294], antimolluscicidal [295], analgesic [290, 296]

53

S. spirale

 

Southern China, India, Bangladesh, Thailand, Laos, Philippines, Australia [551]

Anaesthetic, diuretic and narcotic, antibacterial, anticancer [297, 298, 299]

54

S. surattense

Cockroach/yellow berry; thorn gourd/eggplant; belladonna; Night-shade, Febrifuge plant (English); Choti kateri/Bhatakataiyya, Rengani (Hindi);

China [300, 301], India [302]

Anti-inflammatory, antibacterial, antitumor, antioxidant, anti-platelet aggregation [303, 304, 305, 306, 307, 308], diuretic [308], antiplasmodial [309], anthelmintic, anti-convulsant, antihyperlipide-mic, antiurolithiatic, natriuretic, antiulcer, wound healing, antiasthmatic, hypoglycemic, hepatoprotective [99]

55

S. torvum

Turkey berry, prickly nightshade, devil’s fig, shoo-shoo bush, wild/pea eggplant (English), aubergine sauvage épineuse, fausse aubergine (French), kantɔsi (Ghana), susumber (Jamaica), berenjena cimarrona (Spanish), kaisurisuri, kausoni, kauvotovotua, soni (Fijian), shui qie (Chinese), bhankatiya, katai (Hindi) [552]

Brazil, Colombia, Caribbean, Central America, Mexico, tropical Africa, Asia, Australia, Hawaii, Guam, American Samoa [310, 311, 312]

Antibacterial, anti-platelet aggregation [100, 313], pesticide [314], analgestic [314], anticancer [315, 316, 317], antifungal, antimicrobial [318, 319, 320], antiulcerogenic [321], antiviral [322], anticonvulsant [323], antihypertensive [324, 325, 553], antinephrotoxicity [326, 327], antioxidants [328, 329, 330], anti-inflammatory [331], antidepressant [332, 333], antiplasmodial [334], antidiabetic [335, 336, 337], antihelminthic [338]

56

S. tridynamum

Spanish: mala mujer, sacamanteca, ojo de liebre, berenjena Silvestre

Mexico [339, 340]

Antidiabetic [339, 340, 341]

57

S. trilobatum

Purple fruited pea eggplant, Thai nightshade

India, Myanmar, Thailand, Vietnam, Malaysia [342, 343]

Antifungal, antimitotic, asthma,vomiting, rheumatism, leprosy [342, 343], fever, antioxidant [344], antibacterial [345, 346, 347], antidiabetic [348], anticancer [349, 350, 351, 352, 353, 354, 355], mosquitocidal [356, 357], anti-inflamatory [358], antinociceptive [359], antihepatitis [360]

58

S. triste

 

Venezuela, Trinidad, Martinique, Dominica [361]

Unknown

59

S. tuberosum

Potato

Chile, Peru, Bolivia [101, 362, 363]

Antifungal, antimicrobial [364], antioxidants [365, 366], antileishmanial [367, 368], anticancer [369, 370, 371, 372], antihypertensive [373]

60

S. umbelliferum

Bluewitch nightshade

California, Arizona [374, 375, 376, 377, 378, 379]

Anticancer [380]

61

S. uporo

Cannibal’s tomato

Fiji island, Tonga, Samoa, Tuamotus, Hawaii [381, 382, 383, 384]

Unknown

62

S. validinervium

 

Venezuela [385]

 

63

S. vestissimum

Toronjo, tumo/coquina melon, lulo fruit

Colombia, Venezuela [386, 387]

 

64

S. villosum

Hairy nightshade, whooly nightshade, red nightshade

Europe, western Asia, northern Africa, North America, Australia, India

Antimolluscicidal [554], mosquito larvicidal [388, 389, 555]

65

S. violaceum

Ci tian qie (Chinese)

China, India, Myanmar, Thailand, Cambodia, Laos, Vietnam, Malaysia, Indonesia, Philippines

Anticancer, anti-inflammatory, antimicrobial, antioxidant, anthelmintic [390, 391, 392, 393]

66

S. xanthocarpum

Wild eggplant, Kantakari, yellow berried nightshade, huang shui qi (Chinese)

Nepal, Pakistan, Bhutan, Bangladesh, Myanmar, Sri Lanka, China, Iran, Yemen, Thailand, Afghanistan, Saudi Arabia, India

Anthelmintic, anti-inflammatory, anodyne, digestive, carminative, appetizer, stomachic, depurative, sudorific, febrifuge, expectorant, laxative, diuretic, emmenagogue, aphrodisiac, leishmaniasis, immunomodulatory, anti-asthmatic [394, 395, 396, 397, 398, 399, 400], antimicrobial [226, 401, 402, 403, 404, 405], molluscicidal, hepatoprotective, antidiabetic [406, 407, 408, 409, 410, 411, 412, 413] antioxidant, antinociceptive, nephroprotective, mosquitocidal, anti-psoriatic, diuretic, antiurolithiatic [414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429]

3 Chemical Constituents and Their Biological Properties

At least 670 compounds, including 134 steroidal saponins (1134), 63 steroidal alkaloids (135197), 13 pregnane glycosides (198210), 128 terpenes (211338), 72 flavonoids (339413), 31 lignans (414444), 31 other types of alkaloids (445475), 66 sterols (476541), 52 phenols (542593), 20 coumarins and coumestans (594613), 4 coumarinolignoids (614617), 23 fatty acids and esters (618640) and 30 other compounds (641670) were reported from the genus Solanum. Most of them were investigated for various biological activities. The chemical constituents and their biological properties are presented in Table 2, together with their plant sources and parts, alongside the classification of structures.
Table 2

Phytochemistry, biological properties and classification of Solanum compounds

No.

Compounds

Plant sources

Parts

Biological properties

References

 

Steroidal Saponins

1

Chlorogenone

S. torvum

Fruit

 

[430]

2

(5α,25S)-Spirostan-3,6-dione

S. torvum

Fruit

 

[430]

3

Solakhasoside

S. khasianum

Fruit

 

[431]

4

Foliumin

S. amygdalifolium

Aerial

 

[57]

5

Foliumin A

S. amygdalifolium

Aerial

 

[56]

6

Neotigogenin

S. paniculatum

Leaf

Cytotoxic

[257]

7

Diuranthoside A

S. cathayanum

Root

 

[432]

8

Torvoside N

S. torvum

Aerial

Anticancer

[316]

9

Atroposide E

S. dulcamara

Aerial

 

[433]

10

Degalactotigonin

S. dulcamara

Aerial

 

[433]

11

Trillin

S. paniculatum

Aerial

 

[258]

12

Diosgenin gentiobioside

S. paniculatum

Aerial

 

[258]

13

Diosgenone

S. nudum

Leaf

Hepatoprotective

[242, 247, 249]

14

(22R, 23S, 25R)-3β,6α, 23-trihydroxy-5α-spirostane 6-O-β-d-xylosyl-(1″”-3″’)-O-[β-d-quinovosyl(1″’-2)]-O-[α-l-rhamnosyl (1-3)] -O-β-d-quinovoside

S. paniculatum

Aerial

 

[258]

15

Nuatigenosido

S. sisymbriifolium

Root

Antihypertensive

[289, 291]

16

(3β,5α,14β,25R)-3-Hydroxyspirost-8-en-11-one

S. villosum

Leaf

 

[434]

17

(3β,5α,6α,25S)-3-Hydroxyspirostan-6-yl 6-deoxy-3-O-(6-deoxy-α-l-mannosyl) -β-d-glucoside

S. torvum

Whole

 

[435]

18

Torvoside Q

S. torvum

Aerial

 

[331, 436]

19

Dioscin

S. indicum

Fruit

 

[160]

S. melongena

Fruit

Antimelanogenesis

[211]

S. rostratum

Aerial

 

[437]

20

Prosapogenin A

S. indicum

Fruit

 

[160]

21

Diosgenin

S. lycopersicum

Aerial

 

[438]

S. melongena

Aerial

 

[439]

S. nigrum

Fruit

 

[440]

S. torvum

Fruit

 

[430]

S. tridynamum

Root

 

[341]

S. tuberosum

Stem

 

[441]

S. violaceum

Aerial

 

[391, 442]

22

Aspidistrin

S. cathayanum

Root

 

[432]

23

Torvoside M

S. torvum

Aerial

Anticancer

[316]

24

Protodioscin

S. abutiloides

Root

 

[7]

S. incanum

Root

 

[156]

S. indicum

Fruit

 

[160, 443]

S. spirale

Fruit

 

[444]

25

Methylprotodioscin

S. incanum

Root

 

[155]

S. indicum

Fruit

 

[160]

26

Indioside D

S. incanum

Root

 

[156]

27

26-O-β-d-Glucosyl-22-methoxyfurost-5-ene-3β,26-diol 3-O-α-l-rhamnosyl-(1-2)-β-d-glucoside

S. indicum

Fruit

 

[160]

S. spirale

Fruit

 

[444]

28

(3β,22α,25R)-26-(β-d-Glucosyloxy)-22-hydroxyfurost-5-en-3-yl O-β-d-glucosyl-(1-2)-O-β-d-glucosyl-(1-4)–β-d-glucoside

S. cathayanum

Root

 

[432]

29

25R-Timosaponin H1

S. cathayanum

Root

 

[432]

30

Torvoside O

S. torvum

Leaf

 

[445]

31

(23S,25R)-spirost-5-en-3,23 diol 3-O-α-l-rhamnosyl-(1-2)-O-α-l-rhamnosyl-1-4)β-d-glucoside

S. glabratum

Aerial

 

[141]

32

23-β-d-glucosyl (23S,25R)spirost-5-en-3,23 diol 3-O-α-l-rhamnosyl-1-2)O-α-l-rhamnosyl-(1-4)β-d-glucoside

S. glabratum

Aerial

 

[141]

33

(25R)spirost-5-en-3-ol 3-O-α-l-rhamnosyl-1-2)O-β-d-glucosyl-1-3)β-d-galactoside

S. glabratum

Aerial

 

[141]

34

Isonuatigenin-3-O-β-solatriose

S. sisymbriifolium

Root

 

[446]

35

Saponin SC-1

S. chrysotrichum

Leaf

 

[118]

36

Saponin SC-2

S. chrysotrichum

Leaf

Antifungal

[113, 114, 115, 117]

37

Saponin SC-3

S. chrysotrichum

Leaf

Antifungal

[114, 117]

38

Saponin SC-4

S. chrysotrichum

Leaf

Antifungal

[114, 117]

39

Saponin SC-5

S. chrysotrichum

Leaf

Antifungal

[114, 117]

40

Saponin SC-6

S. chrysotrichum

Leaf

Antifungal

[114, 117]

S. torvum

Whole

 

[435]

41

Chlorogenin

S. chrysotrichum

Leaf

 

[117]

S. tridynamum

Root

 

[341]

S. torvum

Fruit

 

[430]

42

Chrysogenin

S. chrysotrichum

Leaf

 

[117]

43

Laxumin A

S. laxum

Aerial

 

[178]

44

Laxumin B

S. laxum

Aerial

 

[178]

45

Luciamin

S. laxum

Aerial

 

[177]

46

Lyconoside Ia

S. lycocarpum

Fruit

 

[447]

47

Lyconoside Ib

S. lycocarpum

Fruit

 

[447]

48

Lyconoside II

S. lycocarpum

Fruit

 

[447]

49

Lyconoside III

S. lycocarpum

Fruit

 

[447]

50

Lyconoside IV

S. lycocarpum

Fruit

 

[447]

51

26-O-(β-d-Glucosyl) nuatigenin-3-O-α-l-rhamnosyl-(1-4)-β-d-glucoside

S. surattense

Aerial

 

[305]

52

Aculeatiside A

S. surattense

Aerial

 

[305]

53

(22R, 23S, 25R)-3β,6α,23-trihydroxy-5α-spirostane 6-O-β-d-xylosyl-(1-3) -β-d-quinovoside

S. surattense

Aerial

 

[305]

54

(22R,23S,25S)-3β,6α,23-trihydroxy-5α-spirostane 6-O-β-d-xylosyl-(1-3)-O-β-d-quinovoside

S. surattense

Aerial

 

[305]

55

(22R,23R,25S)-3β,6α,23-trihydroxy-5α-spirostane 6-O-β-d-xylosyl-(1-3)-O-β-d-quinovoside

S. surattense

Aerial

 

[305]

56

Neochlorogenin 6-O-β-d-quinovoside

S. torvum

Aerial

 

[331, 448]

57

Neochlorogenin 6-O-β-d-xylosyl -(1-3)-β-d-quinovoside

S. torvum

Aerial

Anti-inflammatory

[331, 448]

58

Neochlorogenin 6-O-α-l-rhamnosyl-(1-3)-β-d-quinovoside

S. torvum

Aerial

 

[448, 449]

59

Solagenin 6-O-β-d-quinovoside

S. torvum

Whole

 

[448, 449, 450]

60

Solagenin 6-O-α-l-rhamnosyl-(1-3)-β-d-quinovoside

S. torvum

Whole

 

[448]

61

(25S)26-β-d-glucosyloxy)3-oxo-5α-furost-20(22)en-6α-yl-O-β-d-xyloside

S. torvum

Fruit

 

[451]

62

(25S)26-β-d-glucosyloxy)3-oxo-22α-methoxy-5α-furostan-6α-yl-O-β-d-xyloside

S. torvum

Fruit

 

[451]

63

(25S)26-β-d-glucosyloxy)3β-hydroxy-22α-methoxy-5α-furostan-6α-yl-O-α-l-rhamnosyl-1-3)β-d-glucoside

S. torvum

Fruit

 

[451]

64

Torvoside A

S. torvum

Aerial

 

[313, 449]

65

Torvoside B

S. torvum

Root

 

[449]

66

Torvoside E

S. torvum

Root

 

[449]

67

Torvoside F

S. torvum

Root

 

[449]

68

Torvoside H

S. torvum

Fruit

 

[313]

69

(25S)3β-hydroxy-5α-spirostan-6α-yl-O-β-d-xyloside

S. torvum

Fruit

 

[451]

70

(25S)3-oxo-5α-spirostan-6α-yl-O-β-d-xyloside

S. torvum

Fruit

 

[451]

71

(25S)3β-hydroxy-5α-spirostan-6α-yl-O-β-d-glucoside

S. torvum

Fruit

 

[451]

72

(25S)3β,27-dihydroxy-5α-spirostan-6α-yl-O-β-d-glucoside.

S. torvum

Fruit

 

[451]

73

Neochlorogenin

S. tridynamum

Root

 

[451]

S. torvum

Aerial

 

[341]

74

Tigogenin

S. americanum

Leaf

 

[54]

S. torvum

Fruit

 

[430]

75

Yuccagenin

S. tridynamum

Root

 

[341]

76

Yamogenin

S. violaceum

Aerial

 

[391]

77

Yamogenone

S. violaceum

Aerial

 

[391]

78

Indioside L

S. violaceum

Aerial

 

[391]

79

Indioside M

S. violaceum

Aerial

 

[391]

80

Indioside N

S. violaceum

Aerial

 

[391]

81

Indioside O

S. violaceum

Aerial

 

[391]

82

Indioside G

S. violaceum

Whole

 

[392]

83

Indioside H

S. violaceum

Whole

Anticancer

[392]

84

Borassoside D

S. violaceum

Whole

 

[392]

85

Borassoside E

S. violaceum

Whole

Anticancer, anti-inflammatory

[392]

86

Indioside I

S. violaceum

Whole

Anticancer, anti-inflammatory

[392]

87

Indioside J

S. violaceum

Whole

 

[392]

88

Indioside K

S. violaceum

Whole

 

[392]

89

Yamoscin

S. torvum

Aerial

Anti-inflammatory

[331]

S. violaceum

Whole

Anticancer

[392]

90

Zingiberoside A1

S. violaceum

Whole

 

[392]

91

Solanolactoside A

S. torvum

Aerial

 

[316]

92

Solanolactoside B

S. torvum

Aerial

 

[316]

93

Solanolactoside C

S. torvum

Aerial

 

[436]

94

Solanolide

S. torvum

Aerial

 

[316]

95

Torvoside J

S. surattense

Aerial

Anticonvulsant

[305]

S. torvum

Aerial

 

[323, 331, 452]

96

Torvoside K

S. surattense

Aerial

Anticonvulsant, antifungal

[305]

S. torvum

Aerial

 

[323, 331, 452]

97

Torvoside L

S. surattense

Aerial

Anticonvulsant

[305]

S. torvum

Aerial

 

[323, 331, 435, 452]

S. paniculatum

Leaf

 

[260]

98

(22R,23S,25S)-3β,6α,23-trihydroxy-5α-spirostane 6-O-β-d-xylosyl-(1-3)-O-β-d-quinovoside

S. torvum

Aerial

 

[323, 331]

99

(22R,23S,25R)-3β,6α,23-trihydroxy-5α-spirostane 6-O-β-d-xylosyl-(1-3)-O-β-d-quinovoside

S. torvum

Aerial

Anti-inflammatory

[331]

100

(22R,23R,25S)-3β,6α,23-trihydroxy-5α-spirostane 6-O-β-d-xylosyl-(1-3)-O-β-d-quinovoside

S. torvum

Aerial

Anti-inflammatory

[331]

101

Gekogenin

S. torvum

Fruit

 

[430]

102

Sisalagenin

S. torvum

Fruit

 

[430]

103

Δ25(27)tigogenin-3-O-β-d-glucoside

S. paniculatum

Leaf

Antiviral

[257]

104

Soladulcosides A

S. dulcamara

Aerial

 

[129]

105

Soladulcosides B

S. dulcamara

Aerial

 

[129]

106

Abutiloside L

S. abutiloides

Root

 

[4]

107

Abutiloside M

S. abutiloides

Root

 

[4]

108

Abutiloside N

S. abutiloides

Root

 

[4]

109

Abutiloside O

S. abutiloides

Root

 

[4]

110

Torvoside C

S. torvum

Root

 

[449]

111

Torvoside D

S. surattense

Aerial

 

[305]

S. torvum

Root

 

[331, 449]

112

Torvoside G

S. torvum

Fruit, Root

 

[313, 449]

113

Torvoside P

S. torvum

Leaf

 

[445]

114

Anguivioside A

S. anguivi

Fruit

 

[41]

115

Anguivioside B

S. anguivi

Fruit

 

[41]

116

Anguivioside C

S. anguivi

Fruit

 

[41]

117

Anguivioside I

S. indicum

Fruit

 

[443]

118

Anguivioside III

S. anguivi

Fruit

 

[43]

S. indicum

Fruit

 

[443]

119

Anguivioside XI

S. anguivi

Fruit

 

[43]

120

Anguivioside XV

S. anguivi

Fruit

 

[43]

121

Anguivioside XVI

S. anguivi

Fruit

 

[43]

122

Inunigroside A

S. nigrum

Fruit

 

[453]

123

25(S)-26-O-β-d-glucosyl-5α-furost-22(20)-en-3β,6α,26-triol 6-O-[α-l-rhamnosyl-(1-3)-O-β-d-quinovoside]

S. torvum

Fruit

Anticancer

[317]

124

25(S)-26-O-β-d-glucosyl-5α-furost-22(20)-en-3-one-6α,26-diol 6-O-[α-l-rhamnosyl-(1-3)-O-β-d-quinovoside]

S. torvum

Fruit

Anticancer

[317]

125

25(S)-26-O-β-d-glucosyl-5α-furost-22(20)-en-3β,6α,26-triol 6-O-β-d-quinovoside

S. torvum

Fruit

Anticancer

[317]

126

Paniculonin B

S. torvum

Leaf

 

[323]

127

Smilaxchinoside A

S. rostratum

Aerial

 

[437]

128

6-O-l-rhamnosyl-(1″-3′)-β-d-quinovosyl-(22S,23R,25S)-3β,6α,23-trihydroxy-5α-spirostane

S. paniculatum

Leaf

 

[260]

129

6-O-β-d-Xylosyl-(1″-3′)-β-d-quinovosyl-(23R,25S)-3β,6α,23-trihydroxy-5α-spirostane

S. paniculatum

Leaf

 

[260]

130

6-O-β-d-Xylosyl-(1″-3′)-β-d-quinovosyl-(22S,23R,25R)-3β,6α,23-trihydroxy-5α-spirostane

S. paniculatum

Leaf

 

[260]

131

3-O-α-l-Rhamnosyl-(1″-3′)-β-d-quinovosyl-(22S,23S,25R)-3β,6α,23-trihydroxy-5α-spirostane

S. paniculatum

Leaf

 

[260]

132

3-O-β-d-Xylosyl-(1″-3′)-β-d-quinovosyl-(22S,23S,25R)-3β,6α,23-trihydroxy-5α-spirostane

S. paniculatum

Leaf

 

[260]

133

6-O-α-l-Rhamnosyl-(1″-3′)-β-d-quinovosyl-(22S,25S)-1β,3β,6α-trihydroxy-5α-spirostane

S. paniculatum

Leaf

 

[260]

134

6-O-β-d-Xylosyl-(1″-3′)-β-d-quinovosyl-(22S,25S)-3β,4β,6α-trihydroxy-5α-spirostane

S. paniculatum

Leaf

 

[260]

 

Steroidal alkaloids

135

Demissine

S. tuberosum

Stem

 

[101]

136

Solasodiene

S. torvum

Fruit

 

[430]

137

Solanoside A

S. surattense

Whole

 

[454]

138

Solanoside B

S. surattense

Whole

 

[454]

139

Solamargine

S. abutiloides

Root

 

[7]

S. aculeastrum

Fruit

 

[19]

S. asperum

Root

 

[66, 67]

S. buddleifolium

Stem

 

[79]

S. americanum

Fruit

 

[55]

S. anguivi

Root

 

[42]

S. crinitum

Fruit

 

[122]

S. erianthum

Leaf

 

[137, 455]

S. incanum

Root

 

[156]

S. khasianum

Fruit

 

[456]

S. lycocarpum

Fruit

Leishmanicidal, antidiabetic, schistosomicidal, trypanocidal

[182, 183, 185, 186, 447, 457]

S. melongena

Fruit,Root

 

[206, 439]

S. nigrum

Whole

 

[228]

S. paludosum

Fruit

 

[253]

S. sarrachoides

Leaf

Anticancer

[458]

S. surattense

Aerial

 

[305]

S. uporo

Root

Antibacterial, molluscicidal

[384]

S. xanthocarpum

Fruit

 

[403, 406]

140

γ-Solamargine

S. nigrum

Whole

 

[228]

S. umbelliferum

Whole

 

[380]

141

Khasianine

S. khasianum

Fruit

 

[456]

S. nigrum

Whole

 

[228]

S. surattense

Aerial

Anticancer

[305]

S. xanthocarpum

Fruit

Antibacterial, molluscicidal

[403, 406, 407]

142

Solasonine

S. americanum

Leaf

 

[54]

S. amygdalifolium

Aerial

 

[56]

S. asperum

Fruit

 

[66, 67]

S. crinitum

Aerial

 

[122, 123, 459]

S. erianthum

Leaf

 

[137, 455]

S. khasianum

Fruit

 

[456]

S. lycocarpum

Fruit

Leishmanicidal,antidiabetic, schistosomicidal

[182, 183, 185, 447, 457]

S. melongena

Fruit,Root

 

[206, 439]

S. sarrachoides

Leaf

 

[458]

S. sessiliflorum

Fruit

 

[460]

S. sisymbriifolium

Fruit

 

[294]

143

β1-Solasonine

S. nigrum

Whole

 

[228]

144

12-Hydroxysolasonine

S. lycocarpum

Fruit

 

[182, 447]

145

Solasodine

S. americanum

Leaf

 

[54]

S. aculeastrum

Fruit

Anticancer

[13]

S. crinitum

Aerial

 

[123]

S. khasianum

Fruit

 

[172, 456]

S. laciniatum

Aerial

 

[461, 462]

S. lycocarpum

Fruit

 

[185]

S. melongena

Fruit

 

[206]

S. nigrum

Whole

 

[163, 440]

S. sisymbriifolium

Fruit

 

[294]

S. surattense

Whole

CNS depressant

[303]

S. torvum

Whole

Anti-inflammatory

[463]

S. trilobatum

Whole

 

[358]

S. villosum

Whole

 

[442]

S. xanthocarpum

Fruit

Antibacterial

[403, 429]

S. umbelliferum

Whole

 

[380]

146

N-Hydroxysolasodine

S. paludosum

Root

 

[464]

147

O-Acetylsolasodine

S. umbelliferum

Whole

 

[380]

148

Putuline

S. paludosum

Root

 

[464]

149

Anguivine

S. anguivi

Root

 

[42]

S. uporo

Root

 

[384]

150

Isoanguivine

S. uporo

Root

 

[384]

151

Arudonine

S. arundo

Root

 

[64]

152

Solanandaine

S. asperum

Fruit

 

[66]

153

Robeneoside A

S. lycocarpum

Fruit

 

[182, 447]

154

Robeneoside B

S. lycocarpum

Fruit

 

[182, 447]

155

Lobofrutoside

S. lycocarpum

Fruit

 

[447]

156

Solanigroside P

S. nigrum

Whole

 

[228]

157

(22R, 25R)-16β-H-22α-N-Spirosol-3β-ol-5-ene 3-O-l-rhamnosyl-(1-2)-[α-l-rhamnosyl-(1-4)]-β-d-glucoside

S. surattense

Aerial

Anticancer

[305]

158

Solaculine A

S. aculeastrum

Root

 

[19]

159

β-Solamarine

S. aculeastrum

Root

 

[19]

S. elaeagnifolium

Seed

 

[465]

S. incanum

Root

 

[155]

160

Tomatidenol

S. aculeastrum

Root

 

[19]

S. palodusum

Root

 

[464]

S. lycopersicum

Fruit

 

[192]

S. surattense

Aerial

 

[454]

161

Tomatidine 3-O-β-d-glucoside

S. arboreum

Aerial

 

[63]

162

Dehydrotomatine

S. lycopersicum

Fruit

 

[192]

163

Tomatidine 3-OO-β-d-xylosyl-1-6)β-d-glucoside]

S. arboreum

Aerial

 

[63]

164

Solaverol A

S. uporo

Root

 

[384]

165

(23S)-23-hydroxyanguivine

S. uporo

Root

 

[384]

166

(23S)-23-hydroxyisoanguivine

S. uporo

Root

 

[384]

167

Tomatidine

S. lycopersicum

Fruit

 

[192]

S. aculeastrum

Fruit

Anticancer

[13]

168

Tomatine

S. lycopersicum

Fruit

 

[192, 466]

S. cathayanum

Whole

Neurotoxicity

[106]

S. sarrachoides

Leaf

 

[276]

169

22-Imido-3-[4′-(6″-deoxy-α-l-mannoside)-β-d-glucoside]-5-dehydro spirostane

S. xanthocarpum

Fruit

 

[407]

170

Leptinidine

S. paludosum

Root

 

[253]

S. orbignianum

Aerial

 

[250]

171

Leptinine I

S. orbignianum

Aerial

 

[250]

172

Leptinine II

S. orbignianum

Aerial

 

[250]

173

Solanine

S. dulcamara

Stem

 

[467]

S. indicum

Whole

 

[162]

S. tuberosum

Stem

 

[441]

S. villosum

Fruit

 

[468]

174

α-Chaconine

S. tuberosum

Stem

 

[372, 441]

175

β-d-Glucoside, (3β,23β)23-hydroxysolanid-5-en-3-yl

S. orbignianum

Aerial

 

[250]

176

Solanidine

S. villosum

Fruit

 

[469]

177

Solanopubamine

S. schimperianum

Aerial

Antifungal

[279]

178

Jurubine

S. paniculatum

Fruit

 

[273, 548]

179

Etioline

S. spirale

Root

 

[470]

180

Deacetylveralosine

S. spirale

Root

 

[470]

S. diphyllum

Root

 

[126]

181

Solaspiralidine

S. spirale

Root

 

[470]

182

Soladunalinidine

S. arboreum

Aerial

 

[59]

183

3-epi-Soladunalinidine

S. arboreum

Aerial

 

[59]

184

Caavuranamide

S. caavurana

Fruit

Antibacterial

[80]

185

4-Tomatiden-3-one

S. caavurana

Fruit

 

[80]

186

5-Tomatidan-3-one

S. caavurana

Fruit

 

[80]

187

(22S,25S)-3β-aminospirosol-5-ene

S. arboreum

Aerial

 

[59]

188

(22R,25R)3β-amino-5α-spirosolane

S. triste

Aerial

 

[362, 471]

189

(22R,25R)3β-amino-5-spirosolene

S. triste

Aerial

 

[362, 471]

190

Isojuripidine

S. asterophorum

Aerial

Spasmolytic

[70]

191

23,24-2-methyl-tetrahydrofuran)Solanidine

S. cornifolium

Aerial

 

[472, 473]

192

Spiraloside C

S. spirale

Fruit

 

[474]

193

Spiraloside B

S. spirale

Fruit

 

[474]

194

Spiraloside A

S. spirale

Fruit

 

[474]

195

Soladulcine A

S. dulcamara

Aerial

 

[433]

196

Soladulcine B

S. dulcamara

Aerial

 

[433]

197

Esculeoside A

S. lycopersicum

Fruit

 

[475]

 

Pregnane glycosides

198

Solanigroside A

S. nigrum

Whole

 

[476]

199

Solanigroside B

S. nigrum

Whole

 

[476]

200

5α-Pregn-16-en-3β -ol-20-one lycotetraoside

S. nigrum

Whole

 

[476]

201

(5α)-3-Hydroxypregn-16-en-20-one

S. lyratum

Whole

 

[194]

202

Hypoglaucin H

S. nigrum

Whole

 

[476]

S. rostratum

Aerial

 

[437]

203

16-Dehydropregnolone

S. lyratum

Whole

Anticancer

[194]

204

16-dehydropregnenolone 3-O-l-rhamnosyl-1-2)β-d-glucosiduronic acid

S. lyratum

Whole

 

[194]

205

Torvpregnanoside A

S. torvum

Aerial

 

[317, 331]

206

5α-pregn-16-en-3,20-dione-6α-ol-6-O-[α-l-rhamnosyl-(1-3)-β-d-quinovoside]

S. torvum

Fruit

Anticancer

[317]

207

Torvpregnanoside B

S. torvum

Aerial

 

[331]

208

Ganaxolone

S. torvum

Aerial

 

[323]

209

Allopregnanolone

S. torvum

Aerial

 

[323]

210

Pregnanolone

S. torvum

Aerial

 

[323]

 

Triterpenes

211

Betulinic acid

S. buddleifolium

Stem

 

[79]

212

Lupeol

S. cathayanum

Aerial

 

[472, 473, 477]

S. schimperianum

Aerial

 

[278]

S. spirale

Leaf

Anticancer

[297]

213

Cycloeucalenone

S. cernuum

Leaf

Anticancer

[107]

214

24-oxo-31-norcycloartanone

S. cernuum

Leaf

Anticancer

[107]

215

Friedelin

S. lycopersicum

Seed

 

[478]

216

Ursolic acid

S. lyratum

Whole

 

[197]

S. torvum

Aerial

 

[463]

S. xanthocarpum

Root

 

[427]

217

2α,3β-Dihydroxyursolic acid

S. torvum

Aerial

 

[463]

218

Daturaolone

S. arundo

Whole

 

[65]

219

Carbenoxolone

S. cernuum

Leaf

 

[109]

220

β-Amyrin

S. melongena

Aerial

 

[439]

221

Oleanolic acid

S. torvum

Aerial

 

[463]

S. xanthocarpum

Root

 

[427]

222

2α-Hydroxyoleanolic acid

S. torvum

Aerial

 

[463]

223

3β-Acetoxy-11α,12α-epoxyoleanan-13ß,28-olide

S. torvum

Aerial

 

[463]

224

Solanoglycosydane I

S. torvum

Fruit

 

[314]

 

Diterpenes

225

Phytol

S. pseudocapsicum

Leaf

 

[263]

S. villosum

Leaf

 

[434, 479]

226

Kaur-16-ene

S. aculeastrum

Leaf

 

[11]

227

Solanerioside A

S. erianthum

Leaf

 

[138]

228

Tricalysioside U

S. violaceum

Whole

 

[392]

 

Sesquiterpenes

229

Roseoside

S. erianthum

Leaf

 

[138]

230

(6E,10E)-5,12-Dihydroxy-ß-nerolidol 5-O-β-d-glucoside

S. erianthum

Leaf

 

[138]

231

Amarantholidoside IV

S. erianthum

Leaf

 

[138]

232

3β-Hydroxysolavetivone

S. abutiloides

Root

Antifungal

[3]

S. aethiopicum

Root

 

[29]

233

Solavetivone

S. abutiloides

Root

Antifungal

[3]

S. aethiopicum

Root

 

[29]

S. indicum

Root

 

[163]

S. jabrense

Aerial

 

[166]

234

13-Hydroxysolavetivone

S. buddleifolium

Stem

 

[79]

S. aethiopicum

Root

 

[29]

235

Lubimin

S. abutiloides

Root

Antifungal

[3]

S. aethiopicum

Root

 

[29]

236

Lubiminoic acid

S. aethiopicum

Root

 

[29]

237

Epilubimin

S. aethiopicum

Root

 

[29]

238

Epilubiminoic acid

S. aethiopicum

Root

 

[29]

239

Lubiminol

S. aethiopicum

Root

 

[29]

240

α-Farnesene

S. aculeastrum

Leaf

 

[11]

241

Nerolidol

S. aculeastrum

Leaf

 

[11]

242

2,7,10-Trimethyldodecane

S. aculeastrum

Leaf

 

[11]

243

Aethione

S. aethiopicum

Root

 

[29]

244

Anhydro-β-rotunol

S. aethiopicum

Root

 

[29]

245

(4S,5R,7S)-4,11-Dihydroxy-guaia-1(2),9(10)-dien

S. erianthum

Stem

 

[480]

246

Caryophyllene

S. erianthum

Fruit

 

[481]

247

Cadina-1(10),4-diene

S. erianthum

Fruit

 

[481]

248

α-Gurjunene

S. erianthum

Fruit

 

[481]

249

Globulol

S. erianthum

Fruit

 

[481]

250

α-Guaiene

S. erianthum

Fruit

 

[481]

251

α-Calacorene

S. erianthum

Fruit

 

[481]

252

2-naphthalenemethanol

S. erianthum

Fruit

 

[481]

253

Octahydro-2,2-dimethyl-4a,7a-ethano-5H-cyclobut[e]inden-5-ol

S. erianthum

Fruit

 

[481]

254

4,5-Dehydroisolongifolene

S. erianthum

Fruit

 

[481]

255

α -Caryophyllene

S. erianthum

Fruit

 

[481]

256

Solafuranone

S. indicum

Root

 

[163]

257

Lyratol D

S. lyratum

Whole

Anticancer

[199]

S. septemlobum

Whole

 

[482]

258

Solajiangxin B

S. lyratum

Whole

Anticancer

[198]

S. septemlobum

Whole

 

[482]

259

Septemlobin D

S. septemlobum

Whole

 

[483]

260

Blumenol A

S. lyratum

Whole

Anticancer

[199, 484]

261

Blumenol C

S. lyratum

Whole

 

[484]

262

Dehydrovomifoliol

S. lyratum

Whole

Anticancer

[199, 484]

263

Grasshopper ketone

S. lyratum

Whole

 

[484]

264

6α-Epoxy-7-megastigmen-9-one

S. lyratum

Whole

 

[484]

265

(1′R,2R,5S,10R)2-1′,2′-dihydroxy-1′-methylethyl)6,10-dimethylspiro[4, 5]dec-6-en-8-one

S. lyratum

Whole

 

[484]

266

(1′S,2R,5S,10R)2-1′,2′-dihydroxy-1′-methylethyl)6,10-dimethylspiro[4, 5]dec-6-en-8-one

S. lyratum

Whole

 

[484]

267

2-1′,2′-dihydroxy-1′-methylethyl)6,10-dimethyl-9-hydroxyspiro[4, 5]dec-6-en-8-one

S. lyratum

Whole

 

[200, 484]

268

Boscialin

S. lyratum

Whole

 

[484]

269

1β-Hydroxy-1,2-dihydro-α-santonin

S. lyratum

Whole

 

[193, 484]

270

Lyratol A

S. lyratum

Whole

 

[485]

271

Lyratol B

S. lyratum

Whole

 

[485]

S. septemlobum

Whole

 

[482]

272

Lyratol C

S. lyratum

Whole

Anticancer

[199]

273

Lyratol G

S. lyratum

Whole

 

[196]

274

Solajiangxin A

S. lyratum

Whole

Anticancer

[198]

275

Solajiangxin C

S. lyratum

Whole

Anticancer

[198]

276

Solajiangxin D

S. lyratum

Whole

Anticancer

[200]

S. septemlobum

Whole

 

[482]

277

Solajiangxin E

S. lyratum

Whole

Anticancer

[200]

278

Solajiangxin F

S. lyratum

Whole

Anticancer

[197]

S. septemlobum

Whole

 

[482]

279

Solajiangxin G

S. lyratum

Whole

Anticancer

[197]

280

2-hydroxysolajiangxin E

S. lyratum

Whole

Anticancer

[200]

281

Dehydrocarissone

S. lyratum

Stem

 

[486]

S. septemlobum

Whole

 

[482]

282

Atractylenolide I

S. lyratum

Stem

 

[486]

283

Ligucyperonol

S. septemlobum

Whole

 

[482]

284

Nardoeudesmol A

S. septemlobum

Whole

 

[482]

285

Solanerianone A

S. septemlobum

Whole

 

[482]

286

Pterocarptriol

S. torvum

Root

 

[487]

287

Selina-3β,4α,11-triol

S. torvum

Root

 

[487]

288

2-(1′,2′-dihydroxy-1′-methylethyl)-6,10-dimethylspiro[4, 5]dec-6,9-dien-8-one

S. torvum

Root

 

[487]

289

10β,12,14-Trihydroxy-allo-aromadendrane

S. torvum

Root

 

[487]

290

10β,13,14-Trihydroxy-allo-aromadendrane

S. torvum

Root

 

[487]

291

2-(1′,2′-dihydroxy-1′-methylethyl)-6,10-dimethyl-9-hydroxy-spirodec-6-en-8-one

S. torvum

Root

 

[487]

292

1β,10β,12,14-Tetrahydroxy-allo-aromadendrane

S. torvum

Root

 

[487]

293

1β,10β,13,14-Tetrahydroxy-allo-aromadendrane

S. torvum

Root

 

[487]

294

Teferidin

S. schimperianum

Aerial

 

[278]

295

Teferin

S. schimperianum

Aerial

 

[278]

296

Ferutinin

S. schimperianum

Aerial

 

[278]

297

Bisabolol

S. sessiliflorum

Fruit

 

[488]

298

11,12-O-Isopropylidenesolajiangxin F

S. septemlobum

Whole

 

[483]

299

Eudesmane

S. septemlobum

Whole

 

[281]

300

Vitispirane

S. septemlobum

Whole

 

[281]

301

Septemlobin A

S. septemlobum

Whole

Anticancer

[281]

302

Septemlobin B

S. septemlobum

Whole

Anticancer

[281]

303

Septemlobin C

S. septemlobum

Whole

Anticancer

[281]

304

3β,11-dihydroxy-4,14-oxideenantioeudesmane

S. torvum

Root

 

[487]

305

Aromadendrene oxide

S. erianthum

Fruit

 

[481]

306

Thujopsene

S. betaceum

Fruit

 

[77]

307

α-Cedrene

S. betaceum

Fruit

 

[77]

308

Cedrol

S. betaceum

Fruit

 

[77]

309

α-Hexylcinnamaldehyde

S. betaceum

Fruit

 

[77]

310

β-Cadinene

S. betaceum

Fruit

 

[77]

 

Monoterpenes

311

Decanal

S. aculeastrum

Leaf

 

[11]

312

Decane

S. aculeastrum

Leaf

 

[11]

313

2,4-Decadienal

S. aculeastrum

Leaf

 

[11]

314

1,8-Cineole

S. betaceum

Fruit

 

[77]

315

Terpinen-4-ol

S. betaceum

Fruit

 

[77]

316

Linalool

S. vestissimum

Fruit

 

[489, 490]

317

Geraniol

S. vestissimum

Fruit

 

[490]

318

Limonene

S. vestissimum

Fruit

 

[490]

319

β-Cyclocitral

S. aculeastrum

Leaf

 

[11]

320

β-Ionone

S. aculeastrum

Leaf

 

[11]

S. pseudocapsicum

Leaf

 

[263]

S. betaceum

Fruit

 

[77]

321

1, 2-Dihydro-1,1,6-trimethyl-naphthalene

S. aculeastrum

Leaf

 

[11]

322

trans-β -Damascenone

S. aculeastrum

Leaf

 

[11]

323

Loliolide

S. erianthum

Leaf

 

[137]

S. americanum

Aerial

 

[49]

S. pseudocapsicum

Leaf

 

[263]

324

Hotrienol

S. vestissimum

Fruit

 

[468, 490]

325

Neroloxide

S. vestissimum

Fruit

 

[468]

326

5-Ethynyltetrahydro-α,α,5-trimethyl-2-furanmethanol

S. vestissimum

Fruit

 

[490]

327

Nerol

S. vestissimum

Fruit

 

[490]

328

8-Hydroxylinalool

S. vestissimum

Fruit

 

[491]

329

(R)-Linalyl β-d-glucoside

S. vestissimum

Fruit

 

[492]

330

(1R,4E)-1-Ethenyl-6-hydroxy-1,5-dimethyl-4-hexen-1-yl β-d-glucoside

S. vestissimum

Fruit

 

[492]

331

(R)-Linalyl β-vicianoside

S. vestissimum

Fruit

 

[492]

332

6-O-linked β-d-glucoside of (R)E)2,6-dimethyl-3,7-octadiene-2,6-diol

S. vestissimum

Fruit

 

[468]

333

(3E,6R)-2,6-Dimethyl-3,7-octadiene-2,6-diol

S. vestissimum

Fruit

 

[468]

334

p-Cymenene

S. betaceum

Fruit

 

[77]

335

Dihydroactinidiolide

S. erianthum

Leaf

 

[137]

336

Apiole

S. sessiliflorum

Fruit

 

[488]

337

α-Terpinen-7-al

S. betaceum

Fruit

 

[77]

338

1,3,8-p-Menthatriene

S. betaceum

Fruit

 

[77]

 

Flavonoids

339

Vitecetin

S. agrarium

Aerial

 

[31]

340

Quercetin

S. anguvi

Fruit

Anticancer

[31]

S. elaeagnifolium

Seed

 

[493]

S. incanum

Aerial

 

[494]

S. melongena

Stem

 

[205]

S. muricatum

Whole

 

[215]

S. nigrum

Leaf

 

[92, 93, 94, 95, 96, 97, 98, 230, 231, 232, 233, 234, 235, 236, 237, 238, 495, 496, 497]

S. torvum

Whole

 

[498]

341

Kaempferol 7-O-rhamnoside

S. asperum

Fruit

 

[67]

342

Rutin

S. anguvi

Fruit

Anticancer

[31]

S. melongena

Stem

 

[499, 500]

S. muricatum

Fruit

 

[215]

S. nigrum

Leaf

 

[230]

S. spirales

Aerial

 

[470]

343

Kaempferol 3-rutinoside-7-rhamnoside

S. asperum

Fruit

 

[67]

344

Afzelin

S. cernuum

Leaf

 

[109, 112, 501]

345

Quercitrin

S. cernuum

Leaf

 

[109]

S. melongena

Stem

 

[205]

346

Astragalin

S. cernuum

Leaf

 

[501]

S. crinitum

Aerial

 

[459]

S. incanum

Aerial

 

[494]

S. elaeagnifolium

Aerial

 

[502]

347

Kaempferol 3-O-[α-apiofuranosyl-(1-2)]-α-rhamnoside

S. cernuum

Leaf

 

[501]

348

Kaempferol 3-O-[α-apiofuranosyl-(1-2)]-β-galactoside

S. cernuum

Leaf

 

[501]

349

Tiliroside

S. asperum

Fruit

 

[67]

S. crinitum

Aerial

 

[123, 459]

S. elaeagnifolium

Whole

Anticancer

[503]

S. cernuum

Leaf

 

[501]

350

cis-Tiliroside

S. cernuum

Leaf

 

[501]

S. elaeagnifolium

Aerial

 

[502]

351

Kaempferol

S. crinitum

Aerial

 

[459]

S. elaeagnifolium

Whole

 

[504]

S. incanum

Aerial

 

[494]

S. indicum

Whole

 

[505]

S. nigrum

Leaf

 

[227]

S. surattense

Whole

 

[99]

S. torvum

Whole

 

[498]

352

Camelliaside C

S. erianthum

Leaf

 

[137]

353

Baimaside

S. incanum

Aerial

 

[506]

354

Narcissin

S. glabratum

Aerial

 

[141]

355

Isorhamnetin 3-glucoside

S. incanum

Aerial

 

[506]

356

Populnin

S. elaeagnifolium

Aerial

 

[502]

357

Quercetin 3-O-robinoside

S. paniculatum

Aerial

 

[258]

358

Kaempferol 3-O-(6″-O-cis-p-coumaroyl)-O-β-galactoside

S. elaeagnifolium

Aerial

 

[502]

359

Myricetin-3-galactoside

S. melongena

Stem

 

[205]

360

Apigenin

S. lyratum

Whole

 

[507]

S. torvum

Whole

 

[498]

361

Pelanin

S. tuberosum

Stem

 

[508]

362

Petanin

S. tuberosum

Stem

 

[508]

363

Peonanin

S. tuberosum

Stem

 

[508]

364

Keracyanin

S. betaceum

Fruit

Anticancer

[75, 76]

365

Pelargonidin 3-rutinoside

S. betaceum

Fruit

Anticancer

[75, 76]

366

Tulipanin

S. betaceum

Fruit

Anticancer

[75, 76]

367

Delphinidin 3-O-l-rhamnosyl-(1-6)-β-d-glucoside-3′-O-β-d-glucoside

S. betaceum

Fruit

Anticancer

[75, 76]

368

Cyanidin 3-O-(2″-O-xylosyl)rutinoside

S. betaceum

Fruit

 

[76]

369

Asterin

S. betaceum

Fruit

 

[76]

370

Biochanin A-7-O-β-d-apiofuranosyl-1-5)β-d-apiofuranosyl-1-6)β-d-glucoside

S. crinitum

Fruit

 

[122]

371

2R,3R-5,7,4′-trihydroxy-dihydroflavon-3-O-α-d-glucosyl-6″-O-β-d-glucoside-6‴-p-hydroxy benzoate

S. elaeagnifolium

Whole

Anticancer

[503]

372

6,2′,3″,5″,4‴-Pentahydroxy-3,7″-biflavone

S. dulcamara

Fruit

 

[130]

373

Kaempferol 8-C-β-d-galactoside

S. elaeagnifolium

Aerial

Hepatoprotective

[502]

374

Kaempferol 8-C-glucoside

S. elaeagnifolium

Aerial

 

[502]

375

Kaempferol 6-C-glucoside

S. elaeagnifolium

Aerial

 

[502]

376

Vitexin

S. elaeagnifolium

Aerial

 

[502]

377

Vicenin II

S. elaeagnifolium

Aerial

 

[502]

378

Quercetin 6-C-β-glucoside

S. elaeagnifolium

Aerial

 

[502]

379

Quercetin 3-O-β-galactoside

S. elaeagnifolium

Aerial

 

[502]

380

Isoquercitrin

S. elaeagnifolium

Aerial

 

[502, 503, 504]

S. incanum

Aerial

 

[494]

S. torvum

Root

 

[338]

S. melongena

Stem

 

[205]

381

Quercetin 3-O-β-apiofuranosyl-(1-2)-O-β-galactoside

S. elaeagnifolium

Aerial

 

[502]

382

5-Hydroxy,7,2′,3′,5′-tetramethoxyflavone

S. glabratum

Whole

 

[140]

383

Combretol

S. glabratum

Whole

 

[140]

384

Baicalin

S. incanum

Aerial

 

[506]

385

Kaempferol 3‐O‐(6‴‐O‐2,5‐dihydroxycinnamoyl)‐β‐D‐glucosyl(1-2) β‐D‐glucoside

S. incanum

Aerial

 

[506]

386

(±)-Naringenin

S. indicum

Whole

 

[505]

S. nienkui

Whole

 

[509]

S. sessiliflorum

Fruit

 

[510]

S. surattense

Whole

 

[99]

387

Manghaslin

S. lycopersicum

Fruit

 

[511]

388

Genkwanin

S. jabrense

Aerial

 

[167]

S. palodusum

Aerial

 

[512]

389

Ombuine

S. jabrense

Aerial

 

[167]

390

Rhamnocitrin

S. jabrense

Aerial

 

[167]

S. palodusum

Aerial

 

[513]

391

Retusin

S. jabrense

Aerial

 

[167]

S. palodusum

Aerial

 

[512]

S. schimperianum

Aerial

 

[278]

S. torvum

Fruit

 

[322]

392

Pentamethoxyquercetin

S. jabrense

Aerial

 

[167]

393

3-O-Methylquercetin

S. jabrense

Aerial

 

[167]

S. palodusum

Aerial

 

[513]

394

Kumatakenin

S. jabrense

Aerial

 

[167]

S. palodusum

Aerial

 

[513]

395

3′-Hydroxyflindulatin

S. jabrense

Aerial

 

[167]

S. palodusum

Aerial

 

[513]

396

3,7,8-Trimethylherbacetin

S. jabrense

Aerial

 

[167]

397

3,7,8,3′,4′-Pentamethylgossypetin

S. jabrense

Aerial

 

[167]

S. palodusum

Aerial

 

[512, 513]

398

Diosmetin

S. nienkui

Whole

 

[509]

399

Formononetin

S. lyratum

Whole

 

[514]

400

Ononin

S. lyratum

Whole

 

[514]

401

Daidzein

S. lyratum

Whole

 

[507, 514]

402

Genistin

S. lyratum

Whole

 

[514]

403

5-Hydroxylononin

S. lyratum

Whole

 

[514]

404

2,7-Dihydroxy-3-(4-hydroxyphenyl)-5-methoxy-4H-1-benzopyran-4-one

S. nienkui

Whole

 

[509]

405

5-hydroxy-3,7,4′-trimethoxyflavone

S. schimperianum

Aerial

 

[278]

406

Kaempferol-3-O-β-d-glucoside

S. schimperianum

Aerial

 

[278]

407

Luteolin

S. schimperianum

Aerial

 

[278]

408

Tamarixin

S. torvum

Whole

 

[498]

409

Torvanol A

S. torvum

Root

Antidepressant, antiviral

[322, 332]

410

5-methoxy-(3,4″-dihydro-3″,4″-diacetoxy)-2″,2′-dimethyl-(7,8:5″,6″)-flavone

S. erianthum

Leaf

 

[137]

411

5,7,8,4′-tetrahydroxy-3-methoxyflavone-8-O-β-d-xyloside

S. rostratum

Aerial

 

[515]

412

3-O-Methylquercetin 3-O-β-d-galactoside

S. rostratum

Whole

 

[516]

413

3-O-Methylquercetin 3-O-β-d-glucoside

S. rostratum

Whole

 

[516]

 

Lignans

414

Isolariciresinol

S. buddleifolium

Stem

 

[79]

415

5-Methoxyisolariciresinol

S. buddleifolium

Stem

 

[79]

416

Polystachyol

S. buddleifolium

Stem

 

[79]

417

(+)-Lyoniresinol 3-O-d-glucoside

S. buddleifolium

Stem

 

[79]

418

(-)-Lyoniresinol 3-O-d-glucoside

S. buddleifolium

Stem

 

[79]

419

Alangilignoside C

S. buddleifolium

Stem

 

[79]

420

(+)-(7S,8R,7′E)-4-Hydroxy-3,5,5′,9′-tetram ethoxy-4′,7-epoxy-8,3′-neo-lign-7′-en-9-ol

S. erianthum

Stem

 

[480]

421

(-)-(7R,8S,7′E)-4-Hydroxy-3,5,5′,9′-tetramethoxy-4′,7-epoxy-8,3′-neo-lign-7′-en-9-ol

S. erianthum

Stem

 

[480]

422

Liriodendrin

S. lyratum

Whole

 

[517]

423

Syringaresinol

S. lyratum

Whole

 

[517]

S. nigrum

Whole

 

[496]

S. surattense

Whole

 

[518]

424

Melongenamide A

S. melongena

Root

 

[210]

425

Cannabisin D

S. melongena

Root

Anti-inflammatory

[210]

426

Melongenamide B

S. melongena

Root

Anti-inflammatory

[210]

427

Grossamide

S. melongena

Root

Anti-inflammatory

[210]

428

Melongenamide C

S. melongena

Root

Anti-inflammatory

[210]

429

Cannabisin F

S. melongena

Root

Anti-inflammatory

[210]

430

Melongenamide D

S. melongena

Root

Anti-inflammatory

[210]

431

Cannabisin G

S. melongena

Root

Anti-inflammatory

[210]

432

1,2-dihydro-6,8-dimethoxy-7-hydroxy-1-(3,5-dimethoxy-4-hydroxyphenyl)-N1,N2-bis-[2-(4-hydroxyphenyl)ethyl]-2,3-naphthalene dicarboxamide

S. melongena

Root

 

[210]

433

Sisymbrifolin

S. sisymbriifolium

Fruit

 

[519]

434

Grossamide K

S. melongena

Root

 

[210]

435

Pinoresinol

S. nigrum

Whole

 

[496]

436

Pinoresinol 4-O-β-d-glucoside

S. nigrum

Whole

 

[520]

437

Medioresinol

S. nigrum

Whole

 

[496]

S. torvum

Stem

 

[436]

438

Syringaresinol-4′-O-β-d-glucoside

S. nigrum

Whole

 

[520]

439

Glycosmisic acid

S. surattense

Whole

 

[518]

440

Simulanol

S. surattense

Whole

 

[518]

441

Balanophonin

S. surattense

Whole

 

[518]

442

Ficusal

S. melongena

Root

 

[209]

443

Tribulusamide A

S. surattense

Whole

 

[518]

444

Clemastanin B

S. torvum

Fruit

 

[521]

 

Other alkaloids

445

Xylogranatinine

S. cathayanum

Stem

 

[477]

446

Cernumidine

S. cernuum

Leaf

 

[109, 111, 112]

447

Isocernumidine

S. cernuum

Leaf

 

[111]

448

Cernidine

S. cernuum

Leaf

 

[501]

449

Ethyl orotate

S. cathayanum

Stem

 

[103, 477]

450

3-Indolecarboxylic acid

S. americanum

Aerial

 

[49]

451

L-Valyl-l-isoleucyl-l-leucine

S. asperum

Fruit

 

[67]

452

2-Methyltetrahydro-β-carboline

S. jabrense

Aerial

 

[166]

453

Proline

S. asperum

Fruit

 

[67]

454

Acetamide

S. schimperianum

Aerial

 

[277]

455

Stearamide

S. schimperianum

Aerial

 

[277]

456

(6E, 9E)N,N-dimethyloctadeca-6,9-dienamide

S. schimperianum

Aerial

 

[277]

457

(2E)-3-(4-Hydroxyphenyl)-N-[(2S)-2-(4-hydroxyphenyl)-2-methoxyethyl]-2-propenamide

S. torvum

Aerial

 

[450]

458

4-Coumaroyltyramine

S. buddleifolium

Stem

 

[79]

S. cathayanum

Stem

 

[522]

S. indicum

Root

 

[163]

S. melongena

Root

 

[209]

S. surattense

Whole

 

[518]

S. torvum

Aerial

 

[338]

S. lyratum

Whole

 

[507]

459

N-trans-Feruloyltyramine

S. buddleifolium

Stem

 

[79]

S. cathayanum

Stem

 

[522]

S. indicum

Root

 

[163]

S. melongena

Root

Antidiabetic

[209]

S. lyratum

Whole

 

[507]

460

N-trans-Feruloylmethoxytyramine

S. buddleifolium

Stem

 

[79]

S. cathayanum

Stem

 

[522]

461

N-trans-Caffeoyltyramine

S. buddleifolium

Stem

 

[79]

462

N-trans-Feruloyldopamine

S. buddleifolium

Stem

 

[79]

463

N-trans-Feruloyloctopamine

S. cathayanum

Stem

 

[522]

S. septemlobum

Aerial

 

[523]

464

N-trans-p-coumaroyloctopamine

S. americanum

Aerial

Antidiabetic

[49]

S. torvum

Aerial

 

[524]

465

N-trans-p-feruloyloctopamine

S. americanum

Aerial

Antidiabetic

[49]

466

N-trans-p-coumaroyltyramine

S. americanum

Aerial

Antidiabetic

[49]

S. melongena

Root

467

N-trans-p-feruloytyramine

S. americanum

Aerial

Antidiabetic

[49]

S. torvum

Aerial

 

[524]

468

N-cis-p-Coumaroyltyramine

S. melongena

Root

 

[209]

469

Caffeoylputrescine

S. melongena

Stem

 

[205]

470

3-(3,4-Dihydroxyphenyl)-N-[3-[[4-[[3-(3,4-dihydroxyphenyl)-1-oxo-2-propen-1-yl] amino]butyl]amino]propyl]-2-propenamide

S. melongena

Stem

 

[205]

471

Aurantiamide acetate

S. torvum

Aerial

 

[524]

472

N1,N4,N8-Tris(dihydrocaffeoyl) spermidine

S. sessiliflorum

Fruit

 

[525]

473

N-(4-Aminobutyl)-N-[3-[[3-(3,4-dihydroxyphenyl)-1-oxopropyl] amino]propyl]-3,4-dihydroxybenzenepropanamide

S. sessiliflorum

Fruit

 

[525]

474

N-(3-Aminopropyl)-N-[4-[[3-(3,4-dihydroxyphenyl)-1-oxopropyl] amino]butyl]-3,4-dihydroxybenzenepropanamide

S. sessiliflorum

Fruit

 

[525]

475

Soya-cerebroside I

S. torvum

Root

 

[435]

 

Sterols

    

476

Cilistol G

S. capsicoides

Leaf

 

[85]

477

Capsisteroid A

S. capsicoides

Leaf

 

[85]

478

Capsisteroid B

S. capsicoides

Leaf

 

[85]

479

Capsisteroid C

S. capsicoides

Leaf

 

[85]

480

Capsisteroid D

S. capsicoides

Leaf

 

[85]

481

Capsisteroid E

S. capsicoides

Leaf

 

[85]

482

Capsisteroid F

S. capsicoides

Leaf

 

[85]

483

β-Sitosterol

S. cathayanum

Stem

 

[477, 522]

S. anguvi

Fruit

 

[34]

S. cornifolium

Aerial

 

[472, 473]

S. dulcamara

Fruit

 

[130]

S. elaeagnifolium

Whole

 

[134, 504]

S. indicum

Whole

 

[160]

S. lycopersicum

Seed

 

[478]

S. melongena

Aerial

 

[206, 439]

S. schimperianum

Aerial

 

[278]

S. surattense

Aerial

 

[518]

S. torvum

Root

 

[526]

S. trilobatum

Whole

 

[356]

S. xanthocarpum

Fruit

 

[398]

484

Daucosterol

S. cathayanum

Stem

 

[522]

S. chrysotrichum

Leaf

 

[120]

S. elaeagnifolium

Whole

 

[504]

S. glabratum

Whole

 

[140]

S. ligustrinum

Aerial

 

[179]

S. septemlobum

Aerial

 

[523]

S. torvum

Root

 

[526]

S. violaceum

Whole

 

[392]

485

Campesterol

S. elaeagnifolium

Seed

 

[134]

S. melongena

Root

 

[439]

486

Cholesterol

S. lycopersicum

Seed

 

[478]

S. sessiliflorum

Fruit

 

[285]

487

γ-Sitosterol

S. lycopersicum

Seed

 

[478]

488

7-Oxositosterol

S. violaceum

Aerial

 

[391]

489

(3β)-7-Hydroxystigmast-5-en-3-yl β-d-glucoside

S. violaceum

Whole

 

[392]

490

Stigmasterol

S. cornifolium

Aerial

 

[472, 473]

S. dulcamara

Fruit

 

[130]

S. elaeagnifolium

Whole

 

[134, 504]

S. lycopersicum

Seed

 

[478]

S. melongena

Aerial

 

[439]

S. septemlobum

Aerial

 

[523]

S. surattense

Aerial

 

[527]

S. xanthocarpum

Fruit

 

[398]

491

Brassicasterol

S. elaeagnifolium

Seed

 

[134]

492

Poriferasterol monoglucoside

S. glabratum

Whole

 

[140]

493

7-Oxostigmasterol

S. violaceum

Aerial

 

[391]

494

β-stigmasteryl-3-O-β-d-6-palmityl) glucoside

S. septemlobum

Aerial

 

[523]

495

Clerosterol

S. elaeagnifolium

Seed

 

[134]

496

7-Sitoster-3β-ol

S. elaeagnifolium

Seed

 

[134]

497

(3β,5α)Cholest-7-en-3-ol

S. lycopersicum

Seed

 

[478]

498

Stigmasta-5,24(28)-dien-3-ol

S. elaeagnifolium

Seed

 

[134]

S. torvum

Leaf

 

[318]

499

Avenasterol

S. elaeagnifolium

Seed

 

[134]

500

5,24-Stigmastadienol

S. elaeagnifolium

Seed

 

[134]

501

γ-Tocopherol

S. lycopersicum

Seed

 

[478]

S. villosum

Leaf

 

[479]

502

Ergosterol

S. lycopersicum

Seed

 

[478]

503

Lanosterol

S. lycopersicum

Seed

 

[478]

504

Peroxyergosterol

S. lyratum

Stem

 

[486]

S. violaceum

Aerial

 

[391]

505

9,11-Dehydroergosterol peroxide

S. lyratum

Stem

 

[486]

S. violaceum

Aerial

 

[391]

506

Nigralanostenone

S. nigrum

Leaf

 

[528]

507

Tumacone A

S. nudum

Leaf

 

[242, 247]

508

Tumacone B

S. nudum

Leaf

 

[242, 247]

509

Tumacoside A

S. nudum

Leaf

Antiplasmodial

[242, 247]

510

Tumacoside B

S. nudum

Leaf

Antiplasmodial

[242, 247]

511

SN-1

S. nudum

Aerial

Antiplasmodial

[245]

512

SN-2

S. nudum

Aerial

Antiplasmodial

[245]

513

SN-3

S. nudum

Aerial

Antiplasmodial

[245]

514

SN-4

S. nudum

Aerial

Antiplasmodial

[245]

515

SN-5

S. nudum

Aerial

Antiplasmodial

[245]

516

9α,11α-epidioxyergosta-6,22-dien-3β-ol

S. septemlobum

Aerial

 

[523]

517

Carpesterol

S. capsicoides

Seed

Anticancer, antifungal

[86]

S. sisymbriifolium

Fruit

 

[519]

518

Carpesterol methyl ether

S. xanthocarpum

Fruit

Antifungal

[401]

519

Carpesterol ethyl ether

S. xanthocarpum

Fruit

Antifungal

[401]

520

Stigmast-7-en-6-one, 3-β-d-glucosyloxy)22-hydroxy-4-methyl-(3β,4α,5α,22R)

S. xanthocarpum

Fruit

Antifungal

[401]

521

Stigmast-7-en-6-one, 3-β-d-glucosyloxy)22-methoxy-4-methyl-(3β,4α,5α,22R)

S. xanthocarpum

Fruit

Antifungal

[401]

522

Toptriol

S. glaucophyllum

Leaf

 

[529]

523

Cholecalciferol

S. glaucophyllum

Leaf

 

[530]

524

β-d-Glucoside, (1α,3β,5Z,7E)-3,25-dihydroxy-9,10-secocholesta -5,7,10(19) –trien -1-yl

S. glaucophyllum

Leaf

 

[530]

525

Dehydrocholesterol

    

526

3,4-Dihydro-3,5,8-trimethyl-3-(4,8,12-trimethyltridecyl)-2H-1-benzopyran-7-yl acetate

S. villosum

Leaf

 

[479]

527

Tumaquenone

S. nudum

Aerial

 

[247]

528

Abutiloside A

S. abutiloides

Root

 

[5, 7, 8, 9]

529

Abutiloside B

S. abutiloides

Root

 

[5]

530

Abutiloside H

S. abutiloides

Root

 

[5]

531

Abutiloside I

S. abutiloides

Root

 

[5]

532

Abutiloside J

S. abutiloides

Root

 

[5]

533

Abutiloside K

S. abutiloides

Root

 

[5]

534

Abutiloside C

S. abutiloides

Root

 

[7, 8]

535

Abutiloside D

S. abutiloides

Root

 

[6]

536

Abutiloside E

S. abutiloides

Root

 

[6]

537

Abutiloside F

S. abutiloides

Root

 

[6]

538

Abutiloside G

S. abutiloides

Root

 

[6]

539

Aethioside A

S. aethiopicum

Stem

 

[28]

540

Aethioside B

S. aethiopicum

Stem

 

[28]

541

Aethioside C

S. aethiopicum

Stem

 

[28]

 

Phenolic compounds

542

4-Caffeoylquinic acid

S. melongena

Stem,Leaf

 

[205, 531]

S. lyratum

Whole

 

[517]

543

5-Caffeoylquinic acid

S. melongena

Stem

 

[205]

S. sessiliflorum

Fruit

 

[525]

544

(1R,3R,4S,5R)-3-(Acetyloxy)-5-[[(2E)-3-(3,4-dihydroxyphenyl)-1-oxo-2-propen-1-yl]oxy] -1,4-dihydroxycyclohexanecarboxylic acid

S. melongena

Stem

 

[205]

545

(1S,3R,4R,5R)-3-(Acetyloxy)-4-[[(2E)-3-(3,4-dihydroxyphenyl)-1-oxo-2-propen-1-yl]oxy] -1,5-dihydroxycyclohexanecarboxylic acid

S. melongena

Stem

 

[205]

546

Chlorogenic acid

S. anguvi

Fruit

Anticancer

[31]

S. guaraniticum

Leaf

 

[146]

S. incanum

Aerial

 

[494]

S. lycocarpum

Fruit

 

[532]

S. lyratum

Whole

 

[517]

S. melongena

Stem,Leaf

 

[205, 531]

S. surattense

Whole

 

[99]

547

Neochlorogenic acid

S. lyratum

Whole

 

[517]

548

Rosmarinic acid

S. betaceum

Fruit

 

[78]

S. guaraniticum

Leaf

 

[146]

549

3,5-Dicaffeoylquinic acid

S. melongena

Stem

 

[91]

550

(Z)-Neochlorogenic acid

S. melongena

Stem

 

[91]

551

Gallic acid

S. anguvi

Fruit

Anticancer

[31]

S. cernuum

Leaf

 

[112]

S. spirale

Aerial

 

[299]

S. surattense

Whole

 

[99]

552

4-hydroxybenzoic acid

S. crinitum

Fruit

 

[122]

S. americanum

Aerial

 

[49]

553

Protocatechuic acid

S. lyratum

Whole

 

[514]

S. spirale

Leaf

 

[297]

S. nigrum

Whole

 

[520]

554

Vanillic acid

S. lyratum

Whole

 

[514]

S. sessiliflorum

Fruit

 

[510]

S. nigrum

Whole

 

[520]

S. vestissimum

Fruit

 

[491]

555

Caffeic acid

S. anguvi

Fruit

Anticancer

[31]

S. guaraniticum

Leaf

 

[146]

S. incanum

Aerial

 

[506]

S. lycocarpum

Fruit

 

[532]

S. lyratum

Whole

 

[194]

S. melongena

Stem

 

[205]

S. muricatum

Whole

 

[215]

S. surattense

Whole

 

[99, 518]

S. xanthocarpum

Root

 

[427]

556

P-Coumaric acid

S. americanum

Aerial

 

[49]

557

Isoferulic acid

S. cernuum

Leaf

 

[109, 112]

558

2,4,6-Trimethoxyphenol

S. torvum

Stem

 

[533]

559

Propionylsyringol

S. torvum

Stem

 

[533]

560

Resveratrol

S. americanum

Fruit

 

[45]

561

cis-p-Coumaric acid ethyl ester

S. crinitum

Fruit

 

[122]

562

 cis-p-Coumaric acid

S. crinitum

Fruit

 

[122]

563

trans-p-Coumaric acid ethyl ester

S. crinitum

Fruit

 

[122]

564

trans-p-Coumaric acid

S. crinitum

Fruit

 

[122]

S. incanum

Aerial

 

[506]

565

Erythro-1,2-bis-(4-hydroxy-3-methoxyphenyl)-1,3-propanediol

S. lyratum

Whole

 

[517]

566

Threo-1,2-bis-(4-hydroxy-3-methoxyphenyl)-1,3-propanediol

S. lyratum

Whole

 

[517]

567

Evofolin B

S. surattense

Whole

 

[518]

568

Ethyl caffeate

S. nienkui

Whole

 

[509]

569

Methyl salicylate

S. nienkui

Whole

 

[509]

S. aculeastrum

Leaf

 

[11]

570

p-Hydroxybenzoic acid

S. nigrum

Whole

 

[520]

571

Vanillin

S. nienkui

Whole

 

[509]

572

Protocatechuic aldehyde

S. nienkui

Whole

 

[509]

573

3,5-Diethoxyphenol

S. nigrum

Leaf

 

[528]

574

Quinic acid

S. sessiliflorum

Fruit

 

[525]

575

Phenol

S. sessiliflorum

Fruit

 

[525]

576

Salicylic acid

S. torvum

Aerial

 

[524]

577

Violaxanthin

S. sessiliflorum

Fruit

 

[525]

578

Lutein

S. sessiliflorum

Fruit

 

[525]

579

α-Carotene

S. sessiliflorum

Fruit

 

[525]

580

Kryptoxanthin

S. sessiliflorum

Fruit

 

[525]

581

Luteoxanthin

S. sessiliflorum

Fruit

 

[525]

582

15-cis-β-Carotene

S. sessiliflorum

Fruit

 

[525]

583

Foliaxanthin

S. sessiliflorum

Fruit

 

[525]

584

Physoxanthin

S. sessiliflorum

Fruit

 

[525]

585

Coniferol

S. surattense

Whole

 

[518]

586

1,2-Bis(4-hydroxy-3-methoxyphenyl)-1,3-propanediol

S. surattense

Whole

 

[518]

587

Threo-1-(4-Hydroxy-3-methoxyphenyl)-2-[4-[(E)-3-hydroxy-1-propenyl]-2-methoxy phenoxy]-1,3-propanediol

S. surattense

Whole

 

[518]

588

Tyrosol C

S. validinervium

Aerial

 

[534]

589

(E)-Coniferaldehyde

S. melongena

Root

 

[209]

590

trans-Cinnamic acid

S. spirale

Leaf

Antibacterial

[297]

591

Methyl caffeate

S. torvum

Fruit

Antibacterial,antidiabetic

[315, 320, 335, 336, 337]

592

(E)-2,3-dihydroxycyclopentyl-3-(3′,4′-dihydroxyphenyl)acrylate

S. torvum

Fruit

Antihypertensive

[521]

593

Eugenol

S. torvum

Stem

 

[533]

 

Coumarins and coumestans

594

Scopolin

S. cathayanum

Stem

Anticancer

[104, 105]

S. lyratum

Whole

 

[194]

S. septemlobum

Aerial

 

[523]

595

Scopoletin

S. glabratum

Whole

 

[140]

S. indicum

Seed

 

[535]

S. ligustrinum

Aerial

 

[179]

596

Coumarin

S. incanum

Leaf

 

[494]

S. surattense

Whole

 

[99]

S. vestissimum

Fruit

 

[491]

597

Fraxetin

S. indicum

Seed

 

[536]

598

Isofraxidin

S. indicum

Seed

 

[536]

599

Umbelliferone

S. lycopersicum

Aerial

 

[438]

600

7-hydroxy-6,8-dimethoxy-3-(4′-hydroxy-3′-methoxyphenyl)-coumarin

S. indicum

Seed

 

[536]

601

Cleosandrin

S. indicum

Seed

 

[535]

602

4,4′-Biisofraxidin

S. indicum

Seed

 

[535]

603

Arteminorin A

S. indicum

Seed

 

[535]

604

Indicumin E

S. indicum

Seed

 

[536]

605

Bergaptin

S. lycopersicum

Aerial

 

[438]

606

Aesculetin

S. lycopersicum

Aerial

 

[438]

S. validinervium

Aerial

 

[534, 537]

607

6, 7-Dimethoxycoumarin

S. melongena

Root

 

[209]

608

Escopoletin

S. nigrum

Whole

 

[520]

609

Isoscopoletin

S. validinervium

Aerial

 

[534, 537]

610

1′-O-7-esculetin-4′-O-1″-ethylenglycol-β-d-glucose

S. validinervium

Aerial

 

[534]

611

Coumestrol

S. lyratum

Whole

Anti-inflammatory

[88]

612

9-hydroxy-2′,2′-dimethyl[5′,6′:2,3]-coumestan

S. lyratum

Whole

Anti-inflammatory

[88]

613

Solalyratin A

S. lyratum

Whole

Anti-inflammatory

[88]

 

Coumarinolignoids

614

Indicumine A

S. indicum

Seed

Anti-HBV

[535]

615

Indicumine B

S. indicum

Seed

Anti-HBV

[535]

616

Indicumine C

S. indicum

Seed

 

[535]

617

Indicumine D

S. indicum

Seed

 

[535]

 

Fatty acids and esters

618

Hexadecanoic acid

S. aculeastrum

Leaf

 

[11]

S. vestissimum

Fruit

 

[490]

S. villosum

Leaf

 

[434, 479]

619

Octadecanoic acid,

S. aculeastrum

Leaf

 

[11]

S. erianthum

Leaf

 

[137]

620

Linoleic acid

S. aculeastrum

Leaf

 

[11]

S. glabratum

Whole

 

[140]

621

Lignoceric acid

S. cathayanum

Stem

 

[477]

622

Corchorifatty acid B

S. americanum

Aerial

 

[49]

623

Linolenic acid

S. erianthum

Leaf

 

[137]

S. glabratum

Whole

 

[140]

624

9(Z),11(E)-Octadecadienoic acid

S. erianthum

Leaf

 

[137]

625

13S-Hydroxy-9(Z),11(E)-octadecadienoic acid

S. erianthum

Leaf

 

[137]

626

9S-Hydroxy-10(E),12(Z),15(Z)-octadecatrienoic acid

S. erianthum

Leaf

 

[137]

627

Decosahexaenoic acid

S. glabratum

Whole

 

[140]

628

Decosapentaenoic acid

S. glabratum

Whole

 

[140]

629

Oleic acid

S. glabratum

Whole

 

[140]

630

Eicosapentaenoic acid

S. glabratum

Whole

 

[140]

631

Lauric acid

S. glabratum

Whole

 

[140]

632

Palmitoleic acid

S. glabratum

Whole

 

[140]

633

Arachidonic acid

S. glabratum

Whole

 

[140]

S. trilobatum

Whole

 

[356]

634

Myristic acid

S. glabratum

Whole

 

[140]

635

Gamma-linolenic acid

S. glabratum

Whole

 

[140]

636

9-Oxo-(10E, 12Z)-octadecadienoic acid

S. melongena

Calyx

 

[91]

637

(10Z,12E)-9-Oxo-10,12-octadecadienoic acid

S. melongena

Calyx

 

[91]

638

Eicosanoic acid

S. torvum

Root

 

[526]

639

Octacosanoic acid

S. torvum

Root

 

[526]

640

4-(3,5-Di-Tert-Butyl-4-Hydroxy Phenyl) butyl Acrylate

S. villosum

Leaf

 

[479]

 

Others

641

Puerariafuran

S. lyratum

Whole

Anti-inflammatory

[88]

642

1,2-Benzenedicarboxylic acid

S. aculeastrum

Leaf

 

[11]

643

1, 4-Dimethyl-benzene

S. aculeastrum

Leaf

 

[11]

644

n-Nonane

S. aculeastrum

Leaf

 

[11]

645

n-Octanol

S. aculeastrum

Leaf

 

[11]

646

Methyl hexadecanoate

S. aculeastrum

Leaf

 

[11]

647

Dodecane

S. aculeastrum

Leaf

 

[11]

648

Undecanal

S. aculeastrum

Leaf

 

[11]

649

Nonanal

S. aculeastrum

Leaf

 

[11]

650

Eicosane

S. aculeastrum

Leaf

 

[11]

S. betaceum

Fruit

 

[77]

651

Methyl-9,12-octadecadienoate

S. aculeastrum

Leaf

 

[11]

652

Hexadecane

S. aculeastrum

Leaf

 

[11]

653

9,17-Octadecadienal

S. aculeastrum

Leaf

 

[11]

654

Hexanal

S. betaceum

Fruit

 

[78]

655

Ethyl butanoate

S. betaceum

Fruit

 

[78]

656

4-Hydroxy-4-methyl-2-pentanone

S. betaceum

Fruit

 

[78]

657

2,3-Butanediol

S. betaceum

Fruit

 

[78]

658

cis-3-Hexen-1-ol

S. betaceum

Fruit

 

[78]

659

3(Z)-Hexenal

S. betaceum

Fruit

 

[78]

660

Ethyl-α-d-arabinofuranoside

S. lyratum

Whole

 

[514]

661

Solalyratin B

S. lyratum

Whole

Anti-inflammatory

[88]

662

1-{1-[2-(2 hydroxypropoxy) propoxy] propan-2-yloxy} propan-2-ol

S. schimperianum

Aerial

 

[277]

663

5-Hydroxymethyl furfural

S. torvum

Stem

 

[533]

664

Solanesol

S. tuberosum

Leaf

 

[538]

665

3-Hydroxymethyl-7-methoxywutaifuranol

S. cathayanum

Whole

 

[102]

666

Phenylmethyl 2-O-β-d-xylosyl-β-d-glucoside

S. incanum

Aerial

 

[506]

667

Zizybeoside I

S. lycopersicum

Fruit

 

[511]

668

Methyl salicylate 2-O-β-d-glucosyl-(1-2)-[O-β-d-xylosyl-(1-6)]-O-β-d-glucoside

S. lycopersicum

Fruit

 

[511]

669

Phenethyl alcohol 8-O-β-d-glucosyl-(1-2)-[O-α-l-arabinosyl-(1-6)]-O-β-d-glucoside

S. lycopersicum

Fruit

 

[511]

670

Benzyl alcohol 7-O-β-d-glucosyl-(1-2)-[O-l-arabinosyl-(1-6)]-β-d-glucoside

S. lycopersicum

Fruit

 

[511]

3.1 Steroidal Saponins

Steroidal saponins are prominent characteristic components in Solanum species, from which 134 compounds, 1134, have been obtained (Fig. 1). Among all the studied species, S. torvum was the one studied mostly, resulting in the isolation of 32 saponins including chlorogenone (1), (5α,25S)-spirostan-3,6-dione (2), diosgenone (13), 5672, neochlorogenin (73), solanolactosides A–C (9193), torvosides J–L (9597) and 98102 from the leaves, fruits, aerial parts and the whole plant [323, 325, 430, 435, 436, 448, 449, 451, 452, 463].
Fig. 1

Steroidal saponins 1134 from Solanum

Included herein are spirostane saponins, SC1–SC6 (3540), isolated from the leaves of S. chrysotrichum [113, 114, 115, 117], and lyconosides Ia (46), Ib (47), II (48), III (49), and IV (50) reported from the fruits of S. lycocarpum. Indiosides G (82) and H (83) with an iso-type F ring were isolated from the methanolic extract of the whole plant of S. violaceum, together with indioside I (86), and two unusual furostanol saponins with a deformed F ring, indiosides J (87) and K (88) [391, 392]. In addition, four steroidal sapogenins, indiosides L–O (7881) were also obtained from this plant [391]. Indioside L (78) is a rare spirostanoid possessing a 1,4-dien-3-one moiety in ring A. Compounds 80 and 81 represent rare examples of spirostane with the 3β,7α-diol-5,6-ene moiety compared to the normal 3β,7β-diol-5,6-ene derivatives [391].

Two C-22 steroidal lactone saponins, namely solanolactosides A, B (91, 92) and two spirostanol glycosides, torvosides M, N (23, 8) were isolated from ethanol extract of aerial parts of S. torvum. Compounds 91 and 92 possess the aglycon of solanolide (94), while 23 and 8 have the aglycons of yamogenin (76) and neochlorogenin (73), resp. The aglycon of 94 is an unusual C-22 steroidal lactone sapogenin [316].

An avenacoside-type saponin (51) was isolated from aerial parts of S. surattense [305]. Two 23-keto-spirostanol glycosides, torvoside Q (18) and paniculonin B (126) were obtained from aerial parts of S. torvum [323, 331]. Torvosides A (64), B (65), F (67) and G (112) displayed a positive reaction with Ehrlich reagent, suggesting these to be furostanol glycosides [449]. Abutilosides L (106), M (107) and N (108), a 22S,25S-epoxy-furost-5-ene type glycosides, and abutiloside O, being a 20,22-seco-type steroidal glycoside, were isolated from the fresh fruits of S. abutiloides [4].

Anguiviosides III (118) and XI (119) are hydroxylated at C-23 and C-26 on the spirostanol and furostanol skeletons, resp. Anguiviosides XV (120) and XVI (121) are based on a 16, 22-dicarbonyl aglycon, with 121 hydroxylated at C-23 and C-26 followed by ring closure. The biogenetic pathway of 16,22-dicarbonyl compounds such as 120 and 121 might be considered via a 17R-hydroxy spirostanol such as pennogenin, 11 or via a 3β,16β,22,26-tetrahydroxycholesterol glycoside such as anguivioside A (114) [43].

Solanum saponins were reported to have various bioactivies, e.g. cytotoxic [257], anticancer [316, 317, 392], hepatoprotective [242, 247], antihypertensive [289, 291], antimelanogenesis [211], antifungal [113, 114, 117], anti-inflammatory [331, 392, 448] anticonvulsant [305] and antiviral [257].

Nuatigenosido (15) from the roots of S. sisymbriifolium presented anti-hypertensive effect in experimental hypertensive rats [291]. Dioscin (19) showed antimelanogenesis effect on α-melanocyte stimulating hormone (α-MSH)induced melanogenesis in B16 murine melanoma cells. It significantly downregulated the expression of tyrosinase, TRP-1, and TRP-2, which led to the reduction of α-MSH-induced melanogenesis in B16 cells [211]. Degraded diosgenone (13) from S. nudum exhibited hepatoprotective effect on the liver of mice infected with Plasmodium berghei; necrosis of hepatocytes in mice infected with malaria decreased 47–65 [249].

Spirostanic saponins SC2-SC6 (3640) from the leaves of S. chrysotrichum displayed activity against dermatophytes and yeasts. 36 was the most active in indicating fungicidal effect against Candida albicans and non-albicans strains [113, 114, 117].

Indioside H (83), borassoside E (85), indioside I (86) and yamoscin (89) demonstrated cytotoxic activity against six human cancer cell lines (HepG2, Hep3B, A549, Ca9-22, MDA-MB-231, and MCF-7) (IC50 = 1.83–8.04 μg/mL) [392]. Seperately, 85 and 86 presented inflammation inhibitory effects on SAG (IC50 = 0.62 ± 0.03 and 2.84 ± 0.18 μg/mL, resp.). Compound 85 also inhibited elastase release with IC50 values of 111.05 ± 7.37 μg/mL [392], while 89 showed anti-neutrophilic inflammatory activity against SAG with an IC50 value of 3.59 μM [331].

Torvosides N (8) and M (23) revealed significant cytotoxicity against MGC-803, HepG2, A549 and MCF-7 as compared to the positive control, CDDP [316]. Torvosides J-L (9597), isolated from the leaves of S. torvum, exhibited substantial anticonvulsant activity in zebrafish seizure assays [323], while 96 also showed considerable antifungal activity against Aspergillus flavus and Fusarium verticillioides with MIC ranging from 31.25 to 250 μg/mL [318]. Compounds 99 and 100 inhibited both inflammatory mediators SAG (IC50 = 3.49 and 2.87 μM) and elastase release (IC50 = 2.69 and 0.66 μM) [331], while 123125 convinced cytotoxicities against melanoma A375 [317].

3.2 Steroidal Alkaloids

Sixty-three steroidal alkaloids (135197), as other principal components in Solanum were reported from this genus (Fig. 2). Compounds 139156 are derivatives of solasodine (145), one of the main glycoalkaloid constituents in Solanum spp., even as indicated by several numbers of species from which it has been isolated. Solamargine (139) is the major steroidal alkaloid constituent of Solanum plants and literature data showed that it has been revealed in 18 species.
Fig. 2

Steroidal alkaloids 135197 from Solanum

Compounds such as 139, solasonine (142), β1-solasonine (143) and solanigroside P (156) with three sugar units and α-l-rhamnose at C-2 or a hydroxyl group on the steroidal backbone may be potential candidates for the treatment of gastric cancer [228].

Featured here are steroidal pseudoalkaloid oligoglycosides, robeneosides A (153) and B (154) and lobofrutoside (155) from the fruits of S. lycocarpum [182, 447], and a rare 16β-H steroidal alkaloid (157) from aerial parts of S. surattense [305]. Also included are leptinine I (171) and II (172), the solanidane alkaloid glycosides, isolated from aerial parts of S. orbignianum [46].

Two rare C-3 amino steroidal alkaloids, 188 and 189, were isolated from aerial parts of S. triste [362, 471]. Three C-27 steroidal glycoalkaloids, spiralosides A (194), B (193), C (192), were obtained from the fruits of S. spirale [474]. Esculeoside A (197), a tomato saponin, is a significant component of ripened tomatoes isolated by Toshihiro et al. [475].

Various bioactivities e.g. antibacterial [80, 384, 403, 406, 407], anticancer [13, 305, 458], antidiabetic [182, 183], antifungal [279], anti-inflammatory [303], CNS depressant [294], leishmanicidal [182, 183], molluscicidal [384, 403, 406, 407], neurotoxicity [106], schistosomicidal [185, 186, 447, 457], spasmolytic [70] and trypanocidal [185, 186, 447, 457] were highlighted as have been exhibited by steroidal alkaloids of Solanum.

Antioxidant activity of 145 and tomatidine (167) from the berries of S. aculeastrum was investigated using DPPH, ABTS and reducing power assays, and the highest inhibition was observed when the two compounds were combined, followed by 145 and 167 [13]. Furthermore, 145 exhibited significant anti-inflammatory activity at doses of 30 mg/kg, with a maximum inhibition of 77.75% in carrageenan-induced rat paw edema, comparing to indomethacin (81.69%). It also showed stronger (46.79effect in xylene induced ear edema in mice [303]. Intraperitoneal injection of 145 (25 mgkg) significantly delayed latency of hind limb tonic extensor phase in the picrotoxin-induced convulsions, and it also potentiated thiopental-provoked sleep in a dose-dependent manner [294]. Moreover, 145 exhibited not only the antibacterial activity against Klebsiella and Staphylococcus spp. at concentration of 1 mg, together with 139 and 141 [403], but also a potent stemness and invasion inhibitory effect on human colorectal cancer HCT116 cells [155]. Colony Spheroid formation assay showed that solasodine dose-dependently prohibited HCT116 cell stemness. CD133, CD44, Nanog, Oct-4 and Sox-2 were inhibited by 145 to reverse stemness and similar mechanism was stimulated in vivo. Transwell and scratch wound assays revealed that 145 impeded HCT116 cell invasion and migration potential strengthened by TGF-β1. Moreover, solasodine attenuated TGF-β1-induced EMT and decreased MMPs while in vivo study showed the same trend. The results of this study implied that 145 may be a novel therapeutic drug for CRC treatment [155].

Burger et al. documented that the crude extract and aqueous fraction containing 139 displayed potent non-selective cytotoxicity (IC50 15.62 μgmL) and noteworthy 9.1-fold P-glycoprotein inhibition at 100 μgmL [15]. Zhang et al. assessed the molecular mechanism underlying the anti-cancer effect of 139 in human cholangiocarcinoma QBC939 cells. The results revealed that 139 inhibited the viability of QBC939 cells in a dose-dependent manner. Furthermore, it significantly induced the apoptosis of QBC939 cells and altered the mitochondrial membrane potential of cells. Quantitative polymerase chain reaction analysis revealed that 139 decreased the mRNA level of B cell lymphoma-2 (Bcl-2) Bcl-extra-large and X-linked inhibitor of apoptosis protein but increased the mRNA level of Bcl-2-associated X protein (Bax) In addition, western blot analysis demonstrated that 139 inhibited the protein expression of Bcl-2 and poly ADP ribose polymerase (PARP) and promoted the protein expression of Bax, cleaved PARP, caspase 3, cleaved caspase 3 and caspase [97].

Compounds 139, 141 and 157 demonstrated cytotoxicity against A549, whereas 139 and 156 showed cytotoxicity against HepG2 cell lines [305]. Compounds 139 and 141 were confirmed as the effective components for Oncomelania snail control. The death rate of Oncomelania snails was 94.2 at a concentration of 2.50 mg/L (139) [406], while 141 exhibited a lethality of 100against O. hupensis [407]. Moreover, 139 and solasonine (142) displayed not only leishmanicidal activity against promastigote forms of Leishmania amazonensis [185], but also antidiabetic activity by inhibiting the serum glucose increase in oral sucrose-loaded rats and suppressing gastric emptying in mice [182]. A synergistic effect was observed for a mixture of the compounds [183]. Compound 139 also expressed stronger trypanocidal activity (IC50 = 15.3 μg/mL), when compared to benznidazol (IC50 = 9.0 μg/mL), the only drug used to treat Chagas’ disease [186].

Tomatine (168) was illustrated to exert significant neuroprotective effect on H2O2-induced SH-SY5Y cells, by enhancing intracellular anti-oxidant enzyme activity and brain-derived neurotrophic factor expression and restraining H2O2-induced oxidative stress [106]. Isojuripidine (190) displayed spasmolytic activity by hindering phasic contractions induced by both histamine and acetylcholinein guinea-pig ileum [69].

3.3 Pregnane Glycosides

Compounds 198210 from Solanum comprise pregnane glycosides (Fig. 3). These compounds coexist in small amounts and could be biosynthesised from steroidal glycosides [194]. Solanigrosides A (198), B (199), 200 and hypoglaucin H (202) were isolated from S. nigrum [476]. Aerial parts of S. torvum gave the highest number of pregnane glycosides, torvpregnanosides A (205) and B (207), ganaxolone (208), allopregnanolone (209) and pregnanolone (210). The whole plant of S. lyratum afforded compounds 203 and 204 [194].
Fig. 3

Pregnane glycosides 198210 from Solanum

Pregnane glycosides have reportedly demonstrated anticancer properties [194, 317]. Compound 203 exhibited substantial cytotoxic activity against A375-S2, HeLa, SGC-7901, and Bel-7402 cell lines, with IC50 values of 13.1 to 49.8 μg/mL [194]. Compound 206 indicated cytotoxicity against human melanoma A375 (IC50 = 39.66 μM) [317].

3.4 Triterpenes

Fourteen triterpenes (211224) were identified in Solanum spp. (Figure 4), with lupeol (212) from S. cathayanum [472, 473, 477], S. schimperianum [278], S. spirale [297] and ursolic acid (216) from S. lyratum [197], S. torvum [463] and S. xanthocarpum [427], as the major ones. Six triterpenes 216217 and 221224 were reported from the aerial parts of S. torvum [314, 463]. Two cycloartane triterpenoids, cycloeucalenone (213) and 24-oxo-31-norcycloartanone (214) are the main constituents of S. cernuum leaves [107]. Daturaolone (218) was isolated for the first time from S. arundo [65].
Fig. 4

Triterpenoids 211224 from Solanum

Solanum triterpenes have indicated to possess anticancer properties. For instance, 213 presented significant activity against KB-Oral cavity cancer (IC50 = 26.73 μgmL) [297], while 213 exhibited selective activity against lung tumor cell line (NCIH460). The anti-nociceptive activity observed for 213 and 214 was found to be related to the inhibition of different mediators involved in inflammation and nociceptive process. Both compounds decreased cyclooxygenase 2 (COX-2) protein expression, although only 214 reached a significant response (P < 0.05 vs control) [107].

3.5 Diterpenes

Four diterpenes, e.g., phytol (225) from S. pseudocapsicum [263], kaur-16-ene (226) from S. aculeastrum [11], solanerioside A (227) from S. erianthum [138], and tricalysioside U (228) from S. violaceum [392] were reported from Solanum spp. (Figure 5). Solanerioside A (227) was the first example of a diterpenoid glucoside featuring a 14, 15-dinor-cyclophytane scaffold [138].
Fig. 5

Diterpenes 225228 from Solanum

3.6 Sesquiterpenes

Sesquiterpenes, 229310, have been characterized from Solanum spp. (Figure 6). Majority of these compounds, 260282, were from S. lyratum [196, 197, 199, 200, 484, 485, 486] and S. septemlobum [281, 482, 483]. Likewise, 283285 and 298303 were reported from S. septemlobum [281, 482, 483]. Compounds 229231 and 245255 were isolated from the leaves and fruits of S. erianthum [138, 481], while 286293 were from the roots of S. torvum [487]. Compounds 236239 were isolated from the roots of S. aethiopicum [29], while 240242 were obtained from the leaves of S. aculeastrum [11]. The fruits of S. betaceum yielded compounds 306310 [77].
Fig. 6

Sesquiterpenes 229310 from Solanum

The bioactivities notedly displayed by sesquiterpenes include anticancer [197, 198, 199, 200, 281, 484] and antifungal [3]. 3-β-Hydroxysolavetivone (232), solavetivone (233) and lubimin (235) from the roots of S. abutiloides exhibited anti-fungal activities against Fusarium oxysporum f. sp. Melongenae [3]. The eudesmane-type, solajiangxin D (276), and vetispirane-type, solajiangxin E (277) from S. lyratum demonstrated crucial cytotoxicities (ED50 = 2.1–3.7 μg/mL) against three human cancer lines (P-388, HONE-1, and HT-29) [200]. Solajiangxin B (258), A (274) and C (275) from the whole plant of S. lyratum [198] and Septemlobin D (259), and 11,12-O-isopropylidene solajiangxin F (298) [483] also showed significant cytotoxicities (ED50 = 1.9–3.7, and 3.0–7.3 μM, resp.) against these three cancer cell lines. Lyratol D (257), blumenol A (260), dehydrovomifoliol (262) and lyratol C (272) from the whole plant of S. lyratum displayed critical cytotoxic activities against HONE-1 nasopharyngeal, KB oral epidermoid carcinoma, and HT29 colorectal carcinoma cells (IC50 = 3.7–8.1 μM) [199].

Eudesmane-related sesquiterpenes, septemlobins A (301) and B (302) and vetispirane-type, septemlobin C (303) exhibited significant cytotoxicities against three cancer cell lines (P-388, HONE-1, and HT-29) (IC50 = 3.8–7.5 mΜ) [281].

3.7 Monoterpenes

Twenty-eight monoterpenes (311338) have been characterized from Solanum spp. (Fig. 7), with β-Ionone (320) reported from S. aculeastrum [11], S. pseudocapsicum [263] and S. betaceum [77], and loliolide (323) obtained from S. erianthum [137], S. americanum [49] and S. pseudocapsicum [263], as dominant monoterpenes. Majority of the compounds, 316-318 and 324333 [468, 489, 490, 491, 492], were obtained from the fruits of S. vestissimum. Hotrienol (324), with very sweet and flowery flavor is a well-known constituent of the leaf oil of Cinnamomum camphora. It has also been found in a large number of other natural tissues, such as tea, grapes, wines passion fruit, elderberry flowers, Achillea ligustica and papaya fruit [468]. Seven monoterpenes, 311313 and 319322 were reported from the leaves of S. aculeastrum [11], and glycosides 329332 were the aroma precursors in S. vestissimum fruit peelings [468, 492].
Fig. 7

Monoterpenes 311338 from Solanum

3.8 Flavonoids

Seventy-two flavonoids 339-413 have been identified in the genus Solanum (Fig. 8), with quercetin (340) and kaempferol (351) as the primary flavonoids. Several glycosylated flavonoids, e.g., afzelin (344), astragalin (346), kaempferol 3-O-[apiofuranosyl-(1 → 2)]- α-rhamnoside (347) and -β-galactoside (348) from S. cernuum [501], and camelliaside C (352) from S. erianthum [137] were obtained. Five kaempferol derivatives 373377 were reported from S. elaeagnifolium [502]. Moreover, three anthocyanins 361363 were isolated from the red and purple tubers of S. tuberosum [508], while five anthocyanin rutinosides 364368 were reported from the fruits of S. betaceum [75, 76]. Anthocyanins are the largest group of water-soluble pigments in the plant kingdom. They are responsible for most red and blue colours in fruits, vegetables, and have been used in the food industry as pigments, owing to their bright attractive colours, high water solubility and associated health benefits [76]. In addition, diverse flavonoids, such as 388397 from S. jabrense [167] and S. palodusum [513] and 399403 from S. lyratum [514] were reported.
Fig. 8

Flavonoids 339413 from Solanum

Flavonoids of Solanum have displayed various biactivities e.g., anticancer [31, 75, 76, 503], anti-depressant and antiviral [322, 332] and hepatoprotective [502] characteristics. Compound 373 exhibited significant hepatoprotective and curative effects against histopathological and histochemical damage induced by paracetamol in liver [502], while 349 and 371 displayed cytotoxicity against breast MCF7 and liver HPG2 cancer cell lines [503].

Compound 340 and rutin (342) indicated potent and concentration-dependent free radical-scavenging activity [45]. They also inhibited peroxidation of cerebral and hepatic lipids subjected to iron oxidative assault. Compound 340 induced in vitro antiproliferative and apoptotic activities on Jurkat cells (IC50 = 11.77 ± 2.4 mg/mL) [23], while 364-367 showed antioxidant activities [75]. Torvanol A (409) from the roots of S. torvum exhibited antidepressant, anxiolytic and adaptogenic effects [316], as well as anti-HSV-1 activity (IC50 = 9.6 μgmL) [322].

3.9 Lignans

Lignans, widely distributed in the plant kingdom, are a family of secondary metabolites produced by oxidative dimerization of two phenylpropanoid units. Although their molecular scaffold consists only of two phenylpropane (C6–C3) units, lignans exhibit an enormous structural diversity originating from various linkage patterns of these phenylpropane units. As the C-8–C-3′/C-7–O–C-4′ linked lignans containing two chiral centers (C-7 and C-8) comprise the core of 2, 3-dihydrobenzo[b]furan [480].

Lignans are rare in the genus Solanum [79], with only 31 compounds (414444) having been isolated (Fig. 9). Compounds 414419 were obtained from the stems of S. buddleifolium [79], while 424432, 434 and 442 were isolated from the roots of S. melongena [208, 209, 210]. Several neo-lignans, sisymbrifolin (433) from the fruits of S. sisimbriifolium [519], ficusal (442) from the roots of S. melongena [209], glycosmisic acid (439), simulanol (440) and balanophonin (443) from the whole plant of S. surattense [518] were identified. A pair of new C-8–C-3′/C-7–O–C-4′ linked neolignan enantiomers, 420 and 421, were isolated from the stems of S. erianthum [480]. Lignanamides 424432 and 434 were obtained from the roots of S. melongena [210].
Fig. 9

Lignans 414444 from Solanum

Among lignans from the genus Solanum, only lignanamides (425432) were reported with bioactivities. They displayed anti-inflammatory activities by inhibition of nitric oxide production in lipopoly-saccharide-induced RAW 264.7 macrophages (IC50 = 16.2 to 58.5 μM) [210].

3.10 Other Alkaloids

The alkaloids have a natural (2-aminopyrrolidin-1-yl) carboxamidine alkaloidal base acylated with isoferulic (3-hydroxy-4-methoxycinnamic) acid with Z and E configurations, resp. [111]. Thirty-one alkaloids 445475 have been isolated from Solanum spp. (Fig. 10), comprising types of cyclic guanidine alkaloids, e.g., cernumidine (446) and isocernumidine (447) from the leaves of S. cernuum [109, 111, 112]. Bioactive long chain amides, 454456, exhibiting antimicrobial activity against Escherichia coli and Candida albicans were isolated from aerial parts of S. schimperianum [277]. Compounds 472474 were obtained from S. sessiliflorum [525].
Fig. 10

Other alkaloids 445475 from Solanum

Antidiabetic activity was illustrated by Solanum alkaloids [49, 209]. Four amides, N-trans-p-coumaroyl -octopamine (464) and -tyramine (466), and N-trans-p-feruloyl -octopamine (465) and -tyramine (467) exhibited antidiabetic properties by enhancing α-glucosidase inhibitory activity in a study involving dual high-resolution α-glucosidaseradical scavenging inhibition profiling [35]. Moreover, 459, 466 and 468 demonstrated possession of inhibitory activity against α-glucosidase (IC50 = 500.6, 5.3 and 46.3 μM, resp.) [209].

3.11 Sterols

Sixty-six sterols (476541) were obtained from the genus Solanum (Fig. 11), with β-sitosterol (483), daucosterol (484) and stigmasterol (485) as the main sterol constituents. Clistol G (476) and capsisteroids A-F (477482) were obtained from the leaves of S. capsicoides [85], tumacones A (507) and B (508) and tumacosides A (509) and B (510) were from the leaves of S. nudum [242, 243, 244, 245, 246, 247], carpesterol (517) was isolated from the seeds of S. capsicoides [86], and its derivatives (518521) were reported from the fruits of S. xanthocarpum [401]. From the seeds of S. elaeagnifolium, 491, 495, 496 and 498 were yielded [134]. Additionally, two 26-aminochole- stane-type glycosides, abutilosides A (528) and B (529), and five 26-hydroxycholestane-type glycosides, abutilosides C-G (534538), were isolated from the fresh roots of S. abutiloides [5, 6, 7, 8, 9]. These compounds are important intermediates in the biogenesis of steroidal alkaloids [5].
Fig. 11

Sterols 476541 from Solanum

Sterols in Solanum have indicated possession of anticancer [86], antifungal [401], and antiplasmodial [242, 245, 247] features. For instance, 509 and 510 displayed in vitro antimalarial activity against P. falciparum chloroquine-resistant FCB-1 strain (IC50 = 27 and 16 μM) [247]. Compounds 511515 from aerial parts of S. nudum demonstrated antiplasmodial activity on hepatic trophozoites of P. vivax. All the steroids reduced the number of hepatic P. vivax trophozoites. Among them, 506 and 512 reduced the number of hepatic trophozoites by 47and 39resp. [245]. Compound 517 produced antiproliferative activity in glioma (U251), breast (MCF-7), kidney (786-0), ovary (OVCAR-03), and K562 cell lineages [86]. In addition, 505509 displayed antifungal activity by inhibiting radial growth of A. niger and T. viride [401].

3.12 Phenolic Compounds

Fifty-two phenolic compounds (542593) were recorded from Solanum (Fig. 12). The fruits of S. crinitum have yielded 552, 561564 [122]. Aerial parts of S. torvum indicated a great wealth of phenolic compunds, e.g. 558559, 576, 591593 [315, 320, 335, 336, 337, 521, 524, 533]. The highest numbers of phenols, 542546, 549540, 552, 555 and 589 were reported from stems of S. melongena [205] while 574575 and 577584 were mentioned from the fruits S. sessiliflorum [525].
Fig. 12

Phenolic compounds 542593 from Solanum

Phenolic compounds in Solanum have displayed antibacterial [297, 320, 335, 336, 337, 524], anticancer [31], anti- diabetic [297, 320, 335, 336, 337, 524] and antihypertensive [521] activities. Chlorogenic acid (546) (21.90 ± 0.02 mgg), gallic acid (551) (17.54 ± 0.04 mgg) and caffeic acid (555) (16.64 ± 0.01 mgg) have indicated potent and concentration-dependent DPPH radical-scavenging activity (IC50 = 275.03 ± 7.8 μg/mL) [31], and 551 and 555 reportedly have great potentials as natural source of antidiabetic and antioxidant drug [336]. trans-Cinnamic acid (590) showed antibacterial activities (MIC = 250 μg/mL) against Staphylococcus aureus [297], and antimycobacterial activities (inhibition zone = 0–22 mm) against Proteus vulgaris, Klebsiella pneumoniae (ESBL-), M. tuberculosis (H37Rv) and M. tuberculosis (Rifampin) [320]. Methyl caffeate (591) not only significantly reduced the cell proliferation, but also increased formation of fragmented DNA and apoptotic body in MCF-7 cells. In this study, Bcl-2, Bax, Bid, p53, caspase-3, PARP and cytochrome c release were detected by western blot analyses [474]. The effects of oral administration of 591 (10, 20 and 40 mgkg) in streptozotocin induced diabetic rats, including body weight, fasting blood glucose, plasma insulin, hemoglobin, glycated hemoglobin, total protein, hepatic glycogen and carbohydrate metabolism enzymes have been studied for 28 days. At 40 mgkg, the compound significantly prevented the increase in blood glucose level after glucose administration at 60 min in comparison to the hyperglycemic control group. It also produced remarkable reductions in blood glucose and increased body weight in streptozotocin induced diabetic rats [335]. Takahashi et al. further established that 591 has a most favorable structure for both sucrase and maltase inhibition against sucrose and that its moderate inhibitory action against alpha-glucosidase provides a prospect for antidiabetic usage of S. torvum fruit [337].

3.13 Coumarins and Coumestans

Seventeen coumarins 594610 and three coumastans 611613 were isolated from Solanum spp. (Fig. 13). The seeds of S. indicum yielded the highest number of coumarins 597598 and 600604 [535, 536], while coumestans 611613 were from the whole plant of S. lyratum [88]. Scopolin (594), scopoletin (595) and coumarin (596) are the main coumarins in Solanum. Compounds 611613 showed in vitro anti-inflammatory activities with IC50 values in the range of 6.3–9.1 μM [88].
Fig. 13

Coumarins and coumestans 594613 from Solanum

3.14 Coumarinolignoids

Four coumarinolignoids known as indicumines A–D (614617) were obtained from the seeds of S. indicum [535] (Fig. 14). Coumarinolignoids, including cleomiscosins, aquillochins and malloapelins, are unique and rare in nature. Coumarinolignoids of the cleomiscosins type bearing cleomiscosins A–D, 8-epi-cleomiscosin A, and malloapeli A functionalities have been identified in a few genera, including Cleome viscosa, Mallotus apelta, and Rhododendron collettianum. The compounds with such functionalities, especially cleomiscosins A–C and 8-epi-cleomiscosin A, which contributed to biological activities, have been reported with hepatoprotective and tyrosinase inhibition activities [535].
Fig. 14

Coumarinolignoids 614617 from Solanum

3.15 Fatty Acids and Esters

Nine saturated (618619, 621, 627628, 631, 634, 638639) and 13 unsaturated (620, 622626, 629, 630, 632, 633, 635637, 640) fatty acids were reported from Solanum (Fig. 15). The whole plant of S. glabratum has yielded the highest number of fatty acid and esters (627635) in Solanum spp. [140]. Hexadecanoic acid (618), notably the major fatty acid component in Solanum, was isolated from aerial parts of S. aculeastrum [11] S. vestissimum [489] and S. villosum [434, 479].
Fig. 15

Fatty acids and esters 618640 from Solanum

3.16 Others

Thirty other kinds of compounds (641670) were also obtained from Solanum spp. (Fig. 16). Most of them, 642653, were from the leaves of S. aculeastrum [11] and 654659 were yielded from the fruits of S. betaceum [78]. An aldehyde puerariafuran (641) and a cyclic eight-membered α,β-unsataturated ketone, solalyratin B (661) were isolated from the whole plant of S. lyratum [88]. Compounds 641 and 661 showed in vitro anti-inflammatory activities, with IC50 values in the range 6.3–9.1 μM [88]. Also presented here are two furans, ethyl-α-D-arabinofuranoside (660) from the whole plant of S. lyratum and 5-hydroxymethyl furfural (663) from the stems of S. torvum [533]. Five aromatic glycosides (666670) were also isolated from the aerial part of S. incanum [494] and the fruit of S. lycopersicum [511].
Fig. 16

Other compounds 641670 from Solanum

4 Conclusion and Future Prospects

From 1990 to 2017, phytochemical studies on the 65 Solanum species have yielded at least 670 compounds (134 steroidal saponins, 63 steroidal alkaloids, 13 pregnane glycosides, 128 terpenes, 75 flavonoids, 31 lignans, 31 alkaloids, 66 steroids, 52 phenolic compounds, 20 coumarins and coumestans, 4 coumarinolignoids, 23 fatty acids and esters, and 30 other types of compounds).

Pharmacological studies on Solanum genus have focused on antioxidants and anticancer activities. A total of 17 species (fruits of S. aculeastrum, S. americanum, S. muricatum, S. sessiliflorum and S. spirale, seeds of S. capsicoides, the stems of S. cathayanum and S. tuberosum, the roots of S. diphyllum, aerial parts of S. surattense and S. torvum and the whole plant parts of S. aethiopicum, S. nigrum, S. anguivi, S. septemlobum, S. violaceum and S. xanthocarpum) have been explored for anticancer activities and have exhibited significant results.

S. xanthocarpum has outstandingly demonstrated the most diverse pharmacological activities e.g. antioxidants and antitumor, anti-fungal, anti-bacterial, antileishmanial, mosquito larvicidal, molluscicidal, antidiabetic, asthmatic,hepatoprotective, diuretic, nephrotoxicity, antinociceptive, anti-psoriatic, and antiurolithiatic.

Steroidal alkaloids have been presented as being largely responsible for various pharmacological activities of Solanum species, e.g. antibacterial (139, 141 and 145), anticonvulsant and CNS depressant (145), antidiabetic (139, 142 and 144), anti-fungal (145 and 174), anti-inflammatory (145), antileishmanial (139 and 142), molluscicidal (139 and 141), nephrotoxicity (168), antioxidants and antitumor (139, 141, 145, 158, 168 and 180), antiprotozoa (139 and 142), schistosomicidal (139 and 142), spasmolytic (190) and anti-trypanosomal (139).

The genus Solanum seems to possess great potential, yet majority of the species remain unknown or scantily studied for the chemical constituents. It would be very necessary for the phytochemistry researchers to explore and investigate more of its species. The vast pharmacological activities envinced by many compounds from Solanum genus should attract the attention of the pharmacological community to determine their exact target sites, structure–activity relationships and other medicinal applications.

Notes

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
  2. 2.
  3. 3.
    T. Yokose, K. Katamoto, S. Park, H. Matsuura, T. Yoshihara, Biosci. Biotechnol. Biochem. 68, 2640–2642 (2004)Google Scholar
  4. 4.
    H. Yoshimitsu, M. Nishida, T. Nohara, Phytochemistry 64, 1361–1366 (2003)Google Scholar
  5. 5.
    H. Yoshimitsu, M. Nishida, M. Yoshida, T. Nohara, Chem. Pharm. Bull. 50, 284–286 (2002)Google Scholar
  6. 6.
    H. Yoshimitsu, M. Nishida, T. Nohara, Chem. Pharm. Bull. 48, 556–558 (2000)Google Scholar
  7. 7.
    R.H. Tian, E. Ohmura, M. Matsui, T. Nohara, Phytochemistry 44, 723–726 (1997)Google Scholar
  8. 8.
    R.H. Tian, E. Ohmura, H. Yoshimitsu, T. Nohara, M. Matsui, Chem. Pharm. Bull. 44, 1119–1121 (1996)Google Scholar
  9. 9.
    E. Ohmura, T. Nakamura, R.H. Tian, S. Yahara, H. Yoshimitsu, T. Nohara, Tetrahedron Lett. 36, 8443–8444 (1995)Google Scholar
  10. 10.
  11. 11.
    S. Koduru, O.T. Asekun, D.S. Grierson, A.J. Afolayan, J. Ess, Oil-Bear. Plants 9, 65–69 (2006)Google Scholar
  12. 12.
    A.W. Wanyonyi, S.C. Chhabra, G. Mkoji, W. Njue, P.K. Tarus, Fitoterapia 74, 298–301 (2003)Google Scholar
  13. 13.
    S. Koduru, F.O. Jimoh, D.S. Grierson, A.J. Afolayan, J. Pharm. Toxicol. 2, 160–167 (2007)Google Scholar
  14. 14.
    S. Koduru, D.S. Grierson, M. Van de Venter, A.J. Afolayan, Pharm. Biol. 45, 613–618 (2007)Google Scholar
  15. 15.
    T. Burger, V. Steenkamp, W. Cordier, T. Mokoka, G. Fouche, P. Steenkamp, BMC Comp. Alt. Med. 18, 137 (2018)Google Scholar
  16. 16.
    L.M. Njoki, S.A. Okoth, P.M. Wachira, Int. J. Microbiol. 2017, 5273893 (2017)PubMedPubMedCentralGoogle Scholar
  17. 17.
    K.K. Francisca, M. Jacob, L.K. Omosa, J. Nganga, N. Maina, J. Ethnopharmacol. 192, 524–534 (2016)Google Scholar
  18. 18.
    L.T. Laban, J.M. Mutiso, S.G. Kiige, M.M. Ngedzo, Iran. J. Basic. Med. Sci. 18, 64–71 (2015)PubMedPubMedCentralGoogle Scholar
  19. 19.
    A.W. Wanyonyi, S.C. Chhabra, G. Mkoji, U. Eilert, W.M. Njue, Phytochemistry 59, 79–84 (2002)Google Scholar
  20. 20.
  21. 21.
  22. 22.
    A. Chioma, A. Obiora, U. Chukwuemeka, J. Trop. Med. 4, 163–166 (2011)Google Scholar
  23. 23.
    K.C. Kouassi, B.J.A. Mamyrbekova, Res. J. Rec. Sci. 4, 81–87 (2015)Google Scholar
  24. 24.
    C.A. Anosike, N.E. Ogbodo, A.L. Ezugwu, R.I. Uroko, C.C. Ani, O. Abonyi, Am.-Eur J. Toxicol. Sci. 7, 104–109 (2015)Google Scholar
  25. 25.
    A. Adetutu, O.S. Olorunnisola, E.B. Oyewo, Can. J. Pure Appl. Sci. 7, 2357–2362 (2013)Google Scholar
  26. 26.
    E.E. Nwanna, E.O. Ibukun, G. Oboh, Adv. Food Sci. 35, 30–36 (2013)Google Scholar
  27. 27.
    C.A. Anosike, O. Obidoa, L.U.S. Ezeanyika, Asian Pac. J. Trop. Med. 5, 62–66 (2012)Google Scholar
  28. 28.
    C. Tagawa, M. Okawa, T. Ikeda, T. Yoshida, T. Nohara, Tetrahedron Lett. 44, 4839–4841 (2003)Google Scholar
  29. 29.
    T. Nagaoka, K. Goto, A. Watanabe, Y. Sakata, T. Yoshihara, J. Biosci. 56, 707–713 (2001)Google Scholar
  30. 30.
  31. 31.
    O.O. Elekofehinti, J.P. Kamdem, A.A. Bolingon, M.L. Athayde, S.R. Lopes, Asian Pac. J. Trop. Biomed. 3, 757–766 (2013)PubMedPubMedCentralGoogle Scholar
  32. 32.
    C. Dalavi, S. Patil, Int. J. Pharm. Sci. Rev. Res. 30, 112–120 (2016)Google Scholar
  33. 33.
    O.O. Elekofehinti, J.P. Kamdem, I.J. Kade, J.B.T. Rocha, S. Afr. J. Bot. 88, 56–61 (2013)Google Scholar
  34. 34.
    O.O. Elekofehinti, I.G. Adanlawo, J.A. Saliu, S.A. Sodehinde, Pharm. Lett. 4, 811–814 (2012)Google Scholar
  35. 35.
    O.O. Elekofehinti, I.G. Adanlawo, A. Fakoya, Asian J. Pharm. Health Sci. 2, 416–419 (2012)Google Scholar
  36. 36.
    O.O. Elekofehinti, J.P. Kamdem, D.F. Meinerz, I.J. Kade, I. Joseph, Arch. Pharmacal Res. (2015)Google Scholar
  37. 37.
    O.O. Elekofehinti, J.P. Kamdem, I.J. Kade, I.G. Adanlawo, Asian J. Pharm. Clin. Res. 6, 252–257 (2013)Google Scholar
  38. 38.
    J. Gandhiappan, R. Rengasamy, Pharm. Lett. 4, 875–880 (2012)Google Scholar
  39. 39.
    O.O. Elekofehinti, I.G. Adanlawo, J.A. Saliu, S.A. Sodehinde, Curr. Res. J. Biol. Sci. 4, 530–533 (2012)Google Scholar
  40. 40.
    I.G. Adanlawo, M.A. Akanji, Rec. Prog. Med. Plants 19, 1–7 (2008)Google Scholar
  41. 41.
    X.H. Zhu, T. Ikeda, T. Nohara, Chem. Pharm. Bull. 48, 568–570 (2000)Google Scholar
  42. 42.
    H. Ripperger, U. Himmelreich, Phytochemistry 37, 1725–1727 (1994)Google Scholar
  43. 43.
    T. Honbu, T. Ikeda, X.H. Zhu, O. Yoshihara, M. Okawa, A.M. Nafady, T. Nohara, J. Nat. Prod. 65, 1918–1920 (2002)Google Scholar
  44. 44.
    http://eol.org/pages/5695130/data. Accessed 22 Aug 2017
  45. 45.
    A.C. Correia, C.L. Macedo, F.S. Monteiro, G. Alves de Oliveira, J. Med. Plants Res. 7, 2293–2299 (2013)Google Scholar
  46. 46.
  47. 47.
  48. 48.
    J.N. Kadima, F.M. Kasali, B. Bavhure, A.O. Mahano, F.M. Bwironde, Int. J. Pharmacol. Pharm. 5, 196–206 (2016)Google Scholar
  49. 49.
    E.L. Silva, L.R.C. Almeida, R.M. Borges, D. Staerk, Fitoterapia 118, 42–48 (2017)Google Scholar
  50. 50.
    J.M. Vagula, J. Bertozzi, J.C. Castro, O.C. Celestino, Nat. Prod. Res. 30, 2230–2234 (2016)Google Scholar
  51. 51.
    I. Fidrianny, A. Rizkiya, K. Ruslan, J. Chem. Pharm. Res. 7, 666–672 (2015)Google Scholar
  52. 52.
    L.U. Colmenares, J. Lai, Determination of Phenolic Content, Antioxidant Activity and Mineral Content of Popolo (Solanum americanum) Leaves. Abstracts, 64th Northwest Regional Meeting of the American Chemical Society, (Tacoma, WA, United States, 2009)Google Scholar
  53. 53.
    B.E. Hope, D.G. Massey, M.G. Fournier, Hawaii Med. J. 52, 160–166 (1993)Google Scholar
  54. 54.
    V.A. Maritza, N.L. Clara, Afinidad 56, 393–396 (1999)Google Scholar
  55. 55.
    L. Al Chami, R. Mendez, B. Chataing, J. O’Callaghan, A. Usubillaga, Phytother. Res. 56, 254–258 (2003)Google Scholar
  56. 56.
    A. Vazquez, F. Ferreira, P. Moyna, L. Kenne, Phytochem. Anal. 10, 194–197 (1999)Google Scholar
  57. 57.
    F. Ferreira, A. Vazquez, P. Moyna, L. Kenne, Phytochemistry 36, 1473–1478 (1994)Google Scholar
  58. 58.
  59. 59.
    A. Maxwell, R. Pingal, W.F. Reynolds, S. McLean, Phytochemistry 43, 913–915 (1996)Google Scholar
  60. 60.
    F. Londono, W. Cardona, F. Alzate, F. Cardona, I.D. Velez, J. Med. Plants Res. 10, 100–107 (2016)Google Scholar
  61. 61.
    C.M. Chinchilla, C.I. Valerio, P.R. Sanchez, M.V. Bagnarello, C.D. Rodriguez, Rev. Biol. Trop. 62, 1229–1240 (2014)Google Scholar
  62. 62.
    M. Chinchilla, I. Valerio, R. Sanchez, V. Mora, V. Bagnarello, L. Martinez, Rev. Biol. Trop. 60, 881–891 (2012)Google Scholar
  63. 63.
    A. Maxwell, R. Pingal, W.F. Reynolds, M.S. McLean, Stewart Phytochem. 42, 543–545 (1996)Google Scholar
  64. 64.
    K. Fukuhara, K. Shimizu, I. Kubo, Arudonine Phytochem. 65, 1283–1286 (2004)Google Scholar
  65. 65.
    M.H. Grace, M.M. Saleh, Pharm 51, 593–595 (1996)Google Scholar
  66. 66.
    T.M.S. Silva, C.A. Camara, K.R.L. Freire, T.G. da Silva, J. Braz. Chem. Soc. 19, 1048–1052 (2008)Google Scholar
  67. 67.
    F.C.L. Pinto, D.E.A. Uchoa, E.R. Silveira, O.D.L. Pessoa, L.S. Espindola, Quim. Nova 34, 284–288 (2011)Google Scholar
  68. 68.
    P.C.B. Silva, N.J. Clementino, A.D.S. da Silva, S. da Melo, S. Karoline, M.S. Tania, Rev. Bras. Farmacogn. 22, 131–136 (2012)Google Scholar
  69. 69.
    R.C.M. Oliveira, J.T. Lima, L.A.A. Ribeiro, J.L.V. Silva, F.S. Monteiro, J. Biosci. 61, 799–805 (2006)Google Scholar
  70. 70.
    T.M.S. Silva, R.A. Costa, E.J. Oliveira, F.J.M. Barbosa, J. Braz. Chem. Soc. 16, 1467–1471 (2005)Google Scholar
  71. 71.
  72. 72.
  73. 73.
    http://eol.org/pages/486416/overview. Accessed 23 August 2017
  74. 74.
  75. 75.
    N.H. Hurtado, A.L. Morales, M.L. Gonzalez-Miret, M.L. Escudero-Gilete, F. Heredia, Food Chem. 117, 88–93 (2009)Google Scholar
  76. 76.
    C. Osorio, N. Hurtado, C. Dawid, T. Hofmann, M. Heredia, J. Francisco, A.L. Morales, Food Chem. 132, 1915–1921 (2012)Google Scholar
  77. 77.
    A.A. Durant, C. Rodriguez, A.I. Santana, C. Herrero, J.C. Rodriguez, Rec. Nat. Prod. 7, 15–26 (2013)Google Scholar
  78. 78.
    G.J. Maria, P.L. Juliana, O. Coralia, G. Alirio, M. Diana, Mol. 21, (2016)Google Scholar
  79. 79.
    F.D.C.L. Pinto, M.D.C.M. Torres, E.R. Silveira, Quim. Nova 36, 1111–1115 (2013)Google Scholar
  80. 80.
    N.P. Vaz, E.V. Costa, E.L. Santos, S.B. Mikich, F.A. Marques, R.A. Braga, J. Braz. Chem. Soc. 23, 361–366 (2012)Google Scholar
  81. 81.
  82. 82.
  83. 83.
  84. 84.
  85. 85.
    B.W. Chen, Y.Y. Chen, Y.C. Lin, RSC Adv. 5, 88841–88847 (2015)Google Scholar
  86. 86.
    M. Petreanu, A.A.A. Guimaraes, M.F. Broering, Nau.-Sch Arch. Pharm. 389, 1123–1131 (2016)Google Scholar
  87. 87.
    L.O. Simoes, F.G. Conceicao, T.S. Ribeiro, A.M. Jesus, D.F. Silva, Phytomedicine 23, 498–508 (2016)Google Scholar
  88. 88.
    J. He, B.Z. Ma, X.F. Tian, F.L. Wei, T. Zhao, Chin. Pharm. Mag. 25, 3713–3718 (2014)Google Scholar
  89. 89.
    S. Xu, L. Wang, H. Liu, Shizhen Chin. Med. J. 17, 523–524 (2006)Google Scholar
  90. 90.
    G.M. Nino, O.V. Urias, M.D.R. Muy, J.B. Heredia, S. Afr. J. Bot. 111, 161–169 (2017)Google Scholar
  91. 91.
    J. Sun, Y.F. Gu, M.M. Li, X.Q. Su, H. Li, J. Li, P.F. Tu, Chin. Herb. Med. 44, 2615–2622 (2013)Google Scholar
  92. 92.
    T.F. Cao, L. Zhou, X.H. Huang, L. Wang, D.K. Wang, Q. Wu, W.Y. Hou, Chin. Vet. Med. Mag. 33, 31–33 (2014)Google Scholar
  93. 93.
    J. He, C.D. Zhou, B.Z. Ma, F. Liu, X. Liu, T. Zhao, Chin. Pharm. 26, 4433–4436 (2015)Google Scholar
  94. 94.
    H. Huang, J. Zhou, Food Ind. Tech. 30, 315–318 (2009)Google Scholar
  95. 95.
    L. An, J.T. Tang, X.M. Liu, N.N. Gao, Chin. J. of Chin. Mat. Med. 31(1225–1226), 1260 (2006)Google Scholar
  96. 96.
    G. Butt, M.A. Romero, F. Tahir, A.A. Farooqi, J. of Cell. Biochem. 119, 9640–9644 (2018)Google Scholar
  97. 97.
    X. Zhang, Z. Yan, T. Xu, Z. An, W. Chen, F. Zhu, Onc. Lett. 15, 6329–6335 (2018)Google Scholar
  98. 98.
    S.E. Potawale, S.D. Sinha, K.K. Shroff, H.J. Dhalawat, S.S. Boraste, S.P. Gandhi, A.D. Tondare, Pharmacol. Onl. 3, 140–163 (2008)Google Scholar
  99. 99.
    K. Aftab, R. Noreen, S.A. Bukhari, A. Malik, A. Sahar, Oxid. Commun. 39, 3079–3089 (2016)Google Scholar
  100. 100.
    Z. Yousaf, Y. Wang, E. Baydoun, J. App. Pharm. Sci. 3, 152–160 (2013)Google Scholar
  101. 101.
    J. Lachman, K. Hamouz, M. Orsak, V. Pivec, Rost. Vyr. 47, 181–191 (2001)Google Scholar
  102. 102.
    Y. Zhou, Z.S. Deng, F. Cheng, W.J. Dong, K. Zou, Chem. Nat. Comp. 52, 920–921 (2016)Google Scholar
  103. 103.
    F. Cheng, X. Li, J.Z. Wang, Chin. Chem. Lett. 19, 68–70 (2008)Google Scholar
  104. 104.
    K. Yushan, S. Huang, M. Xie, Y. Xue, J. Zou, Med. Plant 6, 1–3 (2015)Google Scholar
  105. 105.
    Y.S. Kong, S.L. Huang, M.X. Xie, Y.H. Xue, K. Zou, S.P. Liu, Nat. Prod. Res. Dev. 26, 943–946 (2014)Google Scholar
  106. 106.
    S.L. Huang, H.B. He, K. Zou, C.H. Bai, Y.H. Xue, J.Z. Wang, J.F. Chen, J. Pharm. Pharmacol. 66, 844–854 (2014)Google Scholar
  107. 107.
    L.C. Lopes, J.E. de Carvalho, M. Kakimore, C.D.B. Vendramini, Inflammopharmacology 22, 179–185 (2014)Google Scholar
  108. 108.
    R. Grando, M.A. Antonio, C.E.P. Araujo, C. Soares, M.A. Medeiros, J. Biosci. 63, 507–514 (2008)Google Scholar
  109. 109.
    A.M. Mariza, M. Lemos, A.C. Kamila, D. Rodenburg, J.D. McChesney, J. Ethnopharmacol. 172, 421–429 (2015)Google Scholar
  110. 110.
    J.L. Damasceno, P.F. Oliveira, M.A. Miranda, L.F. Leandro, Biomed. Pharmacother. 83, 1111–1115 (2016)Google Scholar
  111. 111.
    L.C. Lopes, B. Roman, M.A. Medeiros, A. Mukhopadhyay, Tetrahedron Lett. 52, 6392–6395 (2011)Google Scholar
  112. 112.
    J.L. Damasceno, P.F. de Oliveira, M.A. Miranda, M. Lima, C. Denise, Biol. Pharm. Bull. 39, 920–926 (2016)Google Scholar
  113. 113.
    A. Herrera, F.E. Jimenez, A. Zamilpa, R.M.A. Martinez, Planta Med. 75, 466–471 (2009)Google Scholar
  114. 114.
    H.A. Armando, J.F. Enrique, V.P.A. Maria, Planta Med. 70, 483–488 (2004)Google Scholar
  115. 115.
    H.A. Armando, V.E.O. Lopez, T.A.V. Rodriguez, A. Zamilpa, R.M.A. Martinez, Afr. J. Trad. Comp. Altern. Med. 10, 410–417 (2013)Google Scholar
  116. 116.
    H.A. Armando, R.S. Artemio, M.R. Maria, M.C. Eugenia, J. Tortoriello, Planta Med. 69, 390–395 (2003)Google Scholar
  117. 117.
    A. Zamilpa, J. Tortoriello, V. Navarro, G. Delgado, L. Alvarez, J. Nat. Prod. 65, 1815–1819 (2002)Google Scholar
  118. 118.
    L. Alvarez, M.D.C. Perez, J.L. Gonzalez, V. Navarro, M.L. Villarreal, Planta Med. 67, 372–374 (2001)Google Scholar
  119. 119.
    X. Lozoya, V. Navarro, M. Garcia, M. Zurita, J. Ethnopharmacol. 36, 127–132 (1992)Google Scholar
  120. 120.
    L. Alvarez, H.A. Armando, S. Marquina, J. Tortoriello, A. Zamilpa, V. Navarro, Curr. Top. Steroid Res. 6, 89–104 (2009)Google Scholar
  121. 121.
    I. Gaitaan, A.M. Paz, S.A. Zacchino, G. Tamayo, A. Gimeenez, R. Pinzoon, Pharm. Biol. 49, 907–919 (2011)Google Scholar
  122. 122.
    M.T.F. Cornelius, M.G. de Carvalho, T.M.S. da Silva, C.C.F. Alves, J. Braz. Chem. Soc. 21, 2211–2219 (2010)Google Scholar
  123. 123.
    E.S. Andressa, T.M.S. da Silva, C.C.F. Alves, M.G. de Carvalho, J. Braz. Chem. Soc. 13, 838–842 (2002)Google Scholar
  124. 124.
  125. 125.
  126. 126.
    M.A. El-Sayed, A.E.H. Mohamed, M.K. Hassan, M.E.F. Hegazy, J. Biosci. 64, 644–649 (2009)Google Scholar
  127. 127.
  128. 128.
  129. 129.
    T. Yamashita, T. Matsumoto, S. Yahara, N. Yoshida, T. Nohara, Chem. Pharm. Bull. 39, 1626–1628 (1991)Google Scholar
  130. 130.
    T. Sabudak, O. Kaya, E. Cukurova, Nat. Prod. Res. 29, 308–314 (2015)Google Scholar
  131. 131.
    N. Mimica-Dukic, L. Krstic, P. Boza, Oxid. Commun. 28, 536–546 (2005)Google Scholar
  132. 132.
    H. Tunon, H.C. Olavsdotter, L. Bohlin, J. Ethnopharmacol. 48, 61–76 (1995)Google Scholar
  133. 133.
  134. 134.
    H. Feki, I. Koubaa, H. Jaber, J. Makni, M. Damak, J. Eng. Appl. Sci. 8, 708–712 (2013)Google Scholar
  135. 135.
  136. 136.
  137. 137.
    S.C. Chou, T.J. Huang, E.H. Lin, C.H. Huang, C.H. Chou, Nat. Prod. Commun. 7, 153–156 (2012)Google Scholar
  138. 138.
    S.Y. Peng, H. Li, D. Yang, B. Bai, L.P. Zhu, Q. Liu, Nat. Prod. Res. 31, 810–816 (2017)Google Scholar
  139. 139.
    S.D. Priyadharshini, V. Sujatha, Int. J. Pharm. Pharm. Sci. 5, 652–658 (2013)Google Scholar
  140. 140.
    M.A. Monem, R. Azza, Bull. Fac. Pharm. 47, 59–66 (2009)Google Scholar
  141. 141.
    A.S. Essam, M.A. Farag, E.A. Mahrous, Rec. Nat. Prod. 9, 94-104/1 (2015)Google Scholar
  142. 142.
    N.A. Siddiqui, M.A. Parvez, A.J. Al-Rehaily, M.S. Al Dosari, Saudi Pharm. J. 25, 184–195 (2017)Google Scholar
  143. 143.
    R.A. Mothana, N.M. Al-Musayeib, M.F. Al-Ajmi, P. Cos, L. Maes, Evidence-based Comp. Altern. Med. 2014, 905639 (2014)Google Scholar
  144. 144.
    R.A.A. Mothana, R. Gruenert, P.J. Bednarski, U. Lindequist, Pharmazie 64, 260–268 (2009)Google Scholar
  145. 145.
  146. 146.
    C.N. Zanuzzi, F. Nishida, E.L. Portiansky, P.A. Fontana, E.J. Gimeno, C.G. Barbeito, Res. Vet. Sci. 93, 336–342 (2012)Google Scholar
  147. 147.
    M. Zadra, M. Piana, T. de Brum, F. Thiele, A.A. Boligon, Molecules 17, 12560–12574 (2012)PubMedPubMedCentralGoogle Scholar
  148. 148.
    G. Bonfanti, K.S.D. Bona, L.D. Lucca, L. Jantsch, M.B. Moretto, Red. Rep. 19, 206–213 (2014)Google Scholar
  149. 149.
    G. Bonfanti, P.R. Bitencourt, S.B. Karine, S.S. Priscila, Molecules 18, 9179–9194 (2013)PubMedPubMedCentralGoogle Scholar
  150. 150.
  151. 151.
  152. 152.
    S.A. Alamri, M.F. Moustafa, Saudi Med. J. 33, 272–277 (2012)Google Scholar
  153. 153.
    B. Taye, M. Giday, A. Animut, J. Seid, Asian Pac. J. Trop. Biomed. 1, 370–375 (2011)PubMedPubMedCentralGoogle Scholar
  154. 154.
    S.S. Al-Sokari, N.A.A. Ali, L. Monzote, M. Al-Fatimi, Biomed. Res. Int. 2015, 938747 (2015)PubMedPubMedCentralGoogle Scholar
  155. 155.
    M.J. Manase, O.A.C. Mitaine, D. Pertuit, T. Miyamoto, C. Tanaka, S. Delemasure, Fitoterapia 83, 1115–1119 (2012)Google Scholar
  156. 156.
    S. Sundar, Y.J.K. Pillai, Asian J. Pharm. Clin. Res. 8, 179–188 (2015)Google Scholar
  157. 157.
  158. 158.
  159. 159.
    Y.W. Zhuang, C.E. Wu, J.Y. Zhou, Z.M. Zhao, C.L. Liu, S.L. Liu, Biochem. Biophy. Res. Commun. 505, 485–491 (2018)Google Scholar
  160. 160.
    H.C. Chiang, T.H. Tseng, C.J. Wang, C.F. Chen, W.S. Kan, Anticancer Res. 11, 1911–1917 (1991)Google Scholar
  161. 161.
    A. Aberoumand, S.S. Deokule, J. Food Technol. 8, 131–133 (2010)Google Scholar
  162. 162.
    P. Ma, T.T. Cao, G.F. Gu, X. Zhao, Y.G. Du, Y. Zhang, Chin. J. Cancer 25, 438–442 (2006)Google Scholar
  163. 163.
    W.J. Syu, M.J. Don, G.H. Lee, C.M. Sun, J. Nat. Prod. 64, 1232–1233 (2001)Google Scholar
  164. 164.
    W.H. Huang, C.W. Hsu, J.T. Fang, Clin. Toxicol. 46, 293–296 (2008)Google Scholar
  165. 165.
  166. 166.
    T.M.S. Silva, R. Braz-Filho, M.G. de Carvalho, M.F. Agra, Biochem. Syst. Ecol. 30, 1083–1085 (2002)Google Scholar
  167. 167.
    T.M.S. Silva, G.M. de Carvalho, B.F. Raimundo, Quim. Nova 32, 1119–1128 (2009)Google Scholar
  168. 168.
    E.S. Andressa, T.M.S.S. da Silva, C.C.F. Alves, M.G. de Carvalho, A. Echevarria, Aurea J. Braz. Chem. Soc. 13, 838–842 (2002)Google Scholar
  169. 169.
    T.M.S. Silva, C.A. Camara, M.F. Agra, M.G. de Carvalho, B.F. Raimundo, Fitoterapia 77, 449–452 (2006)Google Scholar
  170. 170.
    E.E. Jarald, S. Edwin, V. Saini, L. Deb, V.B. Gupta, S.P. Wate, K.P. Busari, Nat. Prod. Res. 22, 267–274 (2008)Google Scholar
  171. 171.
    R. Chand, Indian Drugs 30, 650 (1993)Google Scholar
  172. 172.
    G. Rosangkima, G.C. Jagetia, J. Pharm. Res. 4, 98–103 (2015)Google Scholar
  173. 173.
  174. 174.
  175. 175.
  176. 176.
    https://plantsam.com/solanum-laxum/. Accessed 27 Sept 2017
  177. 177.
    S. Soule, C. Guntner, A. Vazquez, V. Argandona, P. Moyna, F. Ferreira, Phytochemistry 55, 217–222 (2000)Google Scholar
  178. 178.
    F. Ferreira, S. Soule, A. Vazquez, P. Moyna, L. Kenne, Phytochemistry 42, 1409–1416 (1996)Google Scholar
  179. 179.
    C. Delporte, N. Backhouse, R. Negrete, P. Salinas, P. Rivas, B.K. Cassels, Phytother. Res. 12, 118–122 (1998)Google Scholar
  180. 180.
    C.C. Munari, P.F. Oliveira, J.C.L. Campos, S.P.L. Martins, J. Nat. Med. 68, 236–241 (2014)Google Scholar
  181. 181.
    C.C. Munari, P.F. de Oliveira, L.F. Leandro, L.M. Pimenta, N.H. Ferreira, PLoS ONE 9, 111999 (2014)Google Scholar
  182. 182.
    M. Yoshikawa, S. Nakamura, K. Ozaki, A. Kumahara, T. Morikawa, H. Matsuda, J. Nat. Prod. 70, 210–214 (2007)Google Scholar
  183. 183.
    M.A. Miranda, L.G.M. Magalhaes, R.F.J. Tiossi, C.C. Kuehn, Parasit. Res. 111, 257–262 (2012)Google Scholar
  184. 184.
    A.M. Mariza, C.C. Kuehn J.F.R. Cardoso, L.G.R. Oliveira, L.G. Magalhaes, Exp. Parasit. 133, 396-402 (2013)Google Scholar
  185. 185.
    A.M. Mariza, R.F.J. Tiossi, M.R. da Silva, K.C. Rodrigues, C.C. Kuehn, Chem. Biodiversity 10, 642–648 (2013)Google Scholar
  186. 186.
    R.R.D. Moreira, G.Z. Martins, N.O. Magalhaes, A.E. Almeida, R.C.L.R. Pietro, Anais Acad. Bras. Cienc. 85, 903–907 (2013)Google Scholar
  187. 187.
    G.Z. Martins, R.R.D. Moreira, C.S. Planeta, A.E. Almeida, J.K. Bastos, Pharmacogn. Mag. 11, 161–165 (2015)Google Scholar
  188. 188.
  189. 189.
    M. Kralova, M. Sanda, M. Mackova, T. Macek, Collec. Symp. Series 13, 73–76 (2011)Google Scholar
  190. 190.
    S. Paoli, A.P.M. Dias, P.V.S.Z. Capriles, T.E.M.M. Costa, Rev. Bras. Farmacogn. 18, 190–196 (2008)Google Scholar
  191. 191.
    E. Fuentes, R. Castro, L. Astudillo, G. Carrasco, Evidence-based Comp. Altern. Med. 2012, 147031 (2012)Google Scholar
  192. 192.
    M. Friedman, C.E. Levin, S.U. Lee, H.J. Kim, I.S. Lee, J. Agric. Food Chem. 57, 5727–5733 (2009)Google Scholar
  193. 193.
  194. 194.
    L.X. Sun, W.W. Fu, J. Ren, L. Xu, K.S. Bi, M.W. Wang, Arch. Pharm. Res. 29, 135–139 (2006)Google Scholar
  195. 195.
    S.H. Liu, X.H. Shen, X.F. Wei, X.H. Mao, T. Huang, Immunopharmcol. Immunotoxicol. 33, 100–106 (2011)Google Scholar
  196. 196.
    X.P. Nie, F. Yao, X.D. Yue, G.S. Li, S.J. Dai, Nat. Prod. Res. 28, 641–645 (2014)Google Scholar
  197. 197.
    G.S. Li, F. Yao, L. Zhang, X.D. Yue, S.J. Dai, Chin. Chem. Lett. 24, 1030–1032 (2013)Google Scholar
  198. 198.
    F. Yao, Q.L. Song, L. Zhang, G.S. Li, S.J. Dai, Fitoterapia 89, 200–204 (2013)Google Scholar
  199. 199.
    Y. Ren, L. Shen, D.W. Zhang, S.J. Dai, Chem. Pharm. Bull. 57, 408–410 (2009)Google Scholar
  200. 200.
    F. Yao, Q.L. Song, L. Zhang, G.S. Li, S.J. Dai, Phytochem. Lett. 6, 453–456 (2013)Google Scholar
  201. 201.
    D.W. Zhang, Y. Yang, F. Yao, Q.Y. Yu, S.J. Dai, J. Nat. Med. 66, 362–366 (2012)Google Scholar
  202. 202.
  203. 203.
  204. 204.
    M.A.S. Atta, M.T.K. Shahid, Oxid. Commun. 39, 2249–2259 (2016)Google Scholar
  205. 205.
    A.P. Singh, D. Luthria, T. Wilson, N. Vorsa, V. Singh, Food Chem. 114, 955–961 (2009)Google Scholar
  206. 206.
    A. Zhao, Y. Sakurai, K. Shibata, F. Kikkawa, Y. Tomoda, H. Mizukami, Nippon Shokuhin Kagaku Gakkaish 21, 42–47 (2014)Google Scholar
  207. 207.
    M.M. Shabana, M.M. Salama, S.M. Ezzat, L.R. Ismail, J. Carcinog. Mutagen. 4, 1000149/1–1000149/6 (2013)Google Scholar
  208. 208.
    K. Yoshikawa, K. Inagaki, T. Terashita, J. Shishiyama, S. Kuo, D.M. Shankel, Mutagen. Res. Gen. Toxicol. 371, 65–71 (1996)Google Scholar
  209. 209.
    X. Liu, J. Luo, L. Kong, Nat. Prod. Commun. 6, 851–853 (2011)Google Scholar
  210. 210.
    J. Sun, Y.F. Gu, X.Q. Su, M.M. Li, H.X. Huo, J. Zhang, Fitoterapia 98, 110–116 (2014)Google Scholar
  211. 211.
    A. Nishina, K. Ebina, M. Ukiya, M. Fukatsu, M. Koketsu, M. Ninomiya, J. Food Sci. 80, H2354–H2359 (2015)Google Scholar
  212. 212.
    W. Ren, D.G. Tang, Antican. Res. 19, 403–408 (1999)Google Scholar
  213. 213.
    F.J. Herraiz, M. Plazas, S. Vilanova, J. Prohens, D. Villano, F. Ferreres, Int. J. Mol. Sci. 17, 394 (2016)PubMedPubMedCentralGoogle Scholar
  214. 214.
    V.H.C. Chang, T.H. Chiu, S.C. Fu, J. Sci. Food Agric. 96, 192–198 (2016)Google Scholar
  215. 215.
    C.C. Hsu, Y.R. Guo, Z.H. Wang, M.C. Yin, J. Sci. Food Agric. 91, 1517–1522 (2011)Google Scholar
  216. 216.
  217. 217.
  218. 218.
  219. 219.
  220. 220.
  221. 221.
  222. 222.
  223. 223.
    B.K. Sharma, D. Iyer, U.K. Patil, J. Herb. Spic. Med. Plants 18, 257–267 (2012)Google Scholar
  224. 224.
    T.M. Sridhar, P. Josthna, C.V. Naidu, J. Exp. Sci. 2, 24–29 (2011)Google Scholar
  225. 225.
    L.G. Matasyoh, H.M. Murigi, J.C. Matasyoh, Afr. J. Microbiol. Res. 8, 3923–3930 (2014)Google Scholar
  226. 226.
    F.Z. Khan, M.A. Saeed, M. Alam, A.R. Chaudhry, M. Ismail, J. Fac. Pharm. Gazi Uni. 10, 105–116 (1993)Google Scholar
  227. 227.
    H.L. Yuan, X.L. Liu, Y.J. Liu, Asian Pac. J. Cancer Prev. 15, 10469–10473 (2014)Google Scholar
  228. 228.
    X. Ding, F. Zhu, Y. Yang, M. Li, Food Chem. 141, 1181–1186 (2013)Google Scholar
  229. 229.
    K.V. Prashanth, S. Shashidhara, M.M. Kumar, B.Y. Sridhara, Fitoterapia 72, 481–486 (2001)Google Scholar
  230. 230.
    H.C. Huang, K.Y. Syu, J.K. Lin, J. Agric. Food Chem. 58, 8699–8708 (2010)Google Scholar
  231. 231.
    G.T. El-Sherbini, R.A. Zayed, E.T. El-Sherbini, J. Parasit. Res. 2009, 474360 (2009)Google Scholar
  232. 232.
    H. Hammami, A. Ayadi, J. Helminth. 82, 235–239 (2008)Google Scholar
  233. 233.
    A. Rawani, A.S. Ray, G. Chandra, A. Ghosh, M. Sakar, BMC Res. Notes 10, 135 (2017)PubMedPubMedCentralGoogle Scholar
  234. 234.
    Z.A. Zakaria, H.K. Gopalan, H. Zainal, P.N.H. Mohd, Yakugaku Zasshi 126, 1171–1178 (2006)Google Scholar
  235. 235.
    M. Jainu, C.S.S. Devi, J. Ethnopharmacol. 104, 156–163 (2006)Google Scholar
  236. 236.
    H.M. Lin, H.C. Tseng, C.J. Wang, J.J. Lin, C.W. Lo, Chem.-Biol. Int. 171, 283–293 (2008)Google Scholar
  237. 237.
    C.C.H.L. Fang, W.C. Lina, J. Ethnopharmacol. 119, 117–121 (2008)Google Scholar
  238. 238.
    R.M. Perez, J.A. Perez, L.M. Garcia, J. Ethnopharmacol. 62, 43–48 (1998)Google Scholar
  239. 239.
  240. 240.
    A. Pabon, S. Blair, J. Carmona, M. Zuleta, J. Saez, Pharm. 58, 263–267 (2003)Google Scholar
  241. 241.
    G. Alvarez, A. Pabon, J. Carmona, S. Blair, Phytother. Res. 18, 845–848 (2004)Google Scholar
  242. 242.
    M.L. Lopez, R. Vommaro, M. Zalis, W. Souza, S. Blair, C. Segura, Parasit. Int. 59, 217–225 (2010)Google Scholar
  243. 243.
    M.L. Lopez, S. Blair, J. Saez, C. Segura, Memo. Inst. Oswaldo Cruz 104, 683–688 (2009)Google Scholar
  244. 244.
    A. Pabon, E. Deharo, L. Zuluaga, J.D. Maya, J. Saez, S. Blair, Exp. Parasit. 122, 273–279 (2009)Google Scholar
  245. 245.
    B. Londono, E. Arango, C. Zapata, S. Herrera, J. Saez, S. Blair, F.J. Carmona, Phytother. Res. 20, 267–273 (2006)Google Scholar
  246. 246.
    O.M.S. Cardoso, E.J.N. Gomez, L.A. Garces, S.B. Trujillo, Rev. Colomb. Biotechnol. 13, 186–192 (2011)Google Scholar
  247. 247.
    J. Saez, W. Cardona, D. Espinal, S. Blair, J. Mesa, M. Bocar, A. Jossang, Tetrahedron 54, 10771–10778 (1998)Google Scholar
  248. 248.
    G.H. Paola, A. Pabon, C. Arias, S. Blair, Biomed. 33, 78–87 (2013)Google Scholar
  249. 249.
    M. Echeverri, S. Blair, J. Carmona, P. Perez, Am. J. Chin. Med. 29, 477–484 (2001)Google Scholar
  250. 250.
    R.M. Coelho, M.C. Souza, M.H. Sarragiotto, Phytochemistry 49, 893–897 (1998)Google Scholar
  251. 251.
  252. 252.
    F.S. Monteiro, A.C.L. Silva, I.R.R. Martins, A.C.C. Correia, J. Ethnopharmacol. 141, 895–900 (2012)Google Scholar
  253. 253.
    M.L.C. Valverde, J. Boustie, H.E. Badaoui, B. Muguet, M. Henry, Planta Med. 59, 483–484 (1993)Google Scholar
  254. 254.
  255. 255.
  256. 256.
  257. 257.
    Y.M. Valadares, G.C. Brandao’a, E.G. Kroon, J.D.S. Filho, A.B. Oliveira, F.C. Braga, J. Biosci. 64, 813–818 (2009)Google Scholar
  258. 258.
    G.M.J. Vieira, Q.C. Rocha, R.T. Souza, C.L.H. Lima, W. Vilegas, Food Chem. 186, 160–167 (2015)Google Scholar
  259. 259.
    V.S. Mesia, M.T. Santos, C. Souccar, L.M.T.R. Lima, A.J. Lapa, Phytomed. Int. J. Phytother. Phytopharm. 9, 508–514 (2002)Google Scholar
  260. 260.
    A.B. Valerino-Diaz, G.T. Daylin, A.C. Zanatta, W. Vilegas, L. dos Santos, J. Agric. Food Chem. 66, 8703–8713 (2018)Google Scholar
  261. 261.
  262. 262.
  263. 263.
    A.A. Aliero, O.T. Asekun, D.S. Grierson, A.J. Afolayan, Asian J. Plant Sci. 5, 1054–1056 (2006)Google Scholar
  264. 264.
    P. Vijayan, H.C. Prashanth, P. Vijayaraj, S.A. Dhanaraj, S. Badami, B. Suresh, Pharm. Biol. 41, 443–448 (2003)Google Scholar
  265. 265.
  266. 266.
  267. 267.
  268. 268.
  269. 269.
  270. 270.
  271. 271.
  272. 272.
  273. 273.
    C.A. Ibarra, A. Rojas, S. Mendoza, M. Bah, D.M. Gutierrez, S.L. Hernandez, M. Martinez, Pharmaceu. Bio. 48, 732–739 (2010)Google Scholar
  274. 274.
  275. 275.
  276. 276.
  277. 277.
    W.H.B. Hassan, M. Al-Oqail, M.S. Ahmad, A.J. Al-Rehaily, Biosci. Biotechnol. Res Asia 9, 593–599 (2012)Google Scholar
  278. 278.
    W.H.B. Hassan, M. Al-Oqail, M.S. Ahmad, A.J. Al-Rehaily, Saudi Pharm. J. 20, 371–379 (2012)PubMedPubMedCentralGoogle Scholar
  279. 279.
    A.J. Al-Rehaily, J. Adnan, M.S. Ahmad, J. Mustafa, M.M. Al-Oqail, I.A. Khan, J. Saudi Chem. Soc. 17, 67–76 (2013)Google Scholar
  280. 280.
  281. 281.
    L. Zhang, G.S. Li, F. Yao, X.D. Yue, S.J. Dai, Phytochem. Lett. 11, 173–176 (2015)Google Scholar
  282. 282.
  283. 283.
  284. 284.
  285. 285.
    J.R.P. Maia, M.C. Schwertz, R.F.S. Sousa, J.P.L. Rev, Bras. Plantas Med. 17, 112–119 (2015)Google Scholar
  286. 286.
  287. 287.
  288. 288.
  289. 289.
    D.A. Ibarrola, M.D.C. Hellion-Ibarrola, N.L. Alvarenga, Pharm. Biol. 44, 378–381 (2006)Google Scholar
  290. 290.
    A.S. Apu, S.H. Bhuyan, M. Matin, F. Hossain, F. Khatun, A. Taiab Abu, M. Matin, Avicenna J. Phytomed. 3, 302–312 (2013)PubMedPubMedCentralGoogle Scholar
  291. 291.
    D.A. Ibarrola, M.C.H. Ibarrola, Y. Montalbetti, O. Heinichen, M.A. Campuzano, Phytomedicine 18, 634–640 (2011)Google Scholar
  292. 292.
    D.A. Ibarrola, M.C.I. Hellion, Y. Montalbetti, O. Heinichen, N. Alvarenga, J. Ethnopharmacol. 70, 301–307 (2000)Google Scholar
  293. 293.
    V.K. Gupta, A. Simlai, M. Tiwari, K. Bhattacharya, A. Roy, J. Appl. Pharm. Sci. 4, 75–80 (2014)Google Scholar
  294. 294.
    K. Chauhan, N. Sheth, V. Ranpariya, S. Parmar, Pharm. Biol. 49, 194–199 (2011)Google Scholar
  295. 295.
    J.J.M. Bagalwa, V.N. Laurence, C. Sayagh, A.S. Bashwira, Fitoterapia 81, 767–771 (2010)Google Scholar
  296. 296.
    T.O. Siddiqi, J. Ahmad, S.U. Khan, K. Javed, M.S.Y. Khan, Philipp. J. Sci. 119, 41–47 (1990)Google Scholar
  297. 297.
    S. Keawsa-ard, S. Natakankitkul, S. Liawruangrath, A. Teerawutgulrag, Chiang Mai J. Sci. 39, 445–454 (2012)Google Scholar
  298. 298.
    K.A. Sukanya, B. Liawruangrath, S. Liawruangrath, A. Teerawutgulrag, Nat. Prod. Commun. 7, 955–958 (2012)Google Scholar
  299. 299.
    T. Payum, A.K. Das, R. Shankar, C. Tamuly, M. Hazarika, Am. J. PharmTech Res. 5, 307–314 (2015)Google Scholar
  300. 300.
  301. 301.
  302. 302.
  303. 303.
    S.A. Patil, S.N. Sambrekar, Int. J. Res. Pharma. Biomed. Sci. 3, 1559–1566 (2012)Google Scholar
  304. 304.
    T. Ahmed, R. Kanwal, N. Ayub, M. Hassan, Hum. Ecol. Risk Assess. 15, 624–635 (2009)Google Scholar
  305. 305.
    Y. Lu, J. Luo, L. Kong, Phytochemistry 72, 668–673 (2011)Google Scholar
  306. 306.
    M. Qasim, Z. Abideen, M.Y. Adnan, S. Gulzar, B. Gul, M. Rasheed, S. Afr. J. Bot. 110, 240–250 (2017)Google Scholar
  307. 307.
    A. Yadav, R. Bhardwaj, R.A. Sharma, Int. J. Pharm. Pharm. Sci. 5, 489–493 (2013)Google Scholar
  308. 308.
    M.M. Ahmed, S. Andleeb, F. Saqib, B.A. Ch, M. Hussain, M.N. Khatun, H. Rahman, B.M.C. Comp, Altern. Med. 16, 166 (2016)Google Scholar
  309. 309.
    A. Ramazani, S. Zakeri, S. Sardari, N. Khodakarim, N.D. Djadidt, Malaria J. 9, 124 (2010)Google Scholar
  310. 310.
  311. 311.
  312. 312.
  313. 313.
    W.H. Maser, N.D. Yuliana, N. Andarwulan, J. Liq. Chrom. Rel. Technol. 38, 1230–1235 (2015)Google Scholar
  314. 314.
    S.B. Paul, M.D. Choudhury, R. Choudhury, Asian J. Chem. 21, 581–588 (2009)Google Scholar
  315. 315.
    C. Balachandran, N. Emi, Y. Arun, Y. Yamamoto, B. Ahilan, B. Sangeetha, Chem.-Biol. Inter. 242, 81–90 (2015)Google Scholar
  316. 316.
    Y. Lu, J. Luo, X. Huang, L. Kong, Steroids 74, 95–101 (2009)Google Scholar
  317. 317.
    J. Li, L. Zhang, C. Huang, F. Guo, Y. Li, Fitoterapia 93, 209–215 (2014)Google Scholar
  318. 318.
    R.U. Abhishek, S. Thippeswamy, K. Manjunath, D.C. Mohana, J. Appl. Microbiol. 119, 1624–1636 (2015)Google Scholar
  319. 319.
    K.F. Chah, K.N. Muko, S.I. Oboegbulem, Fitoterapia 71, 187–189 (2000)Google Scholar
  320. 320.
    C. Balachandran, V. Duraipandiyan, N.A. Al-Dhabi, K. Balakrishna, Indian J. Microbiol. 52, 676–681 (2012)PubMedPubMedCentralGoogle Scholar
  321. 321.
    T.B. Nguelefack, C.B. Feumebo, G. Ateufack, P. Watcho, S. Tatsimo, J. Ethnopharmacol. 119, 135–140 (2008)Google Scholar
  322. 322.
    D. Arthan, J. Svasti, P. Kittakoop, D. Pittayakhachonwut, M. Tanticharoen, Phytochemistry 59, 459–463 (2002)Google Scholar
  323. 323.
    S. Challal, O.E.M. Buenafe, E.F. Queiroz, S. Maljevic, L. Marcourt, M. Bock, A.C.S. Chem, Neuroscience 5, 993–1004 (2014)Google Scholar
  324. 324.
    T.B. Nguelefack, H. Mekhfi, T. Dimo, S. Afkir, M. Nguelefack, P. Elvine, A. Legssyer, A. Ziyyat, J. Comp. Integ. Med. 5, (2008)Google Scholar
  325. 325.
    M. Mohan, B.S. Jaiswal, S. Kasture, J. Ethnopharmacol. 126, 86–89 (2009)Google Scholar
  326. 326.
    M. Mohan, S. Kamble, P. Gadhi, S. Kasture, F. Chem, Toxicology 48, 436–440 (2010)Google Scholar
  327. 327.
    C.H. Ramamurthy, A. Subastri, A. Suyavaran, C. Thirunavukkarasu, Environ. Sci. Pollut. Res. Int. 23, 7919–7929 (2016)Google Scholar
  328. 328.
    C. Lalmuanthanga, C. Lalchhandama, M.C. Lallianchhunga, M.A. Ali, World J. Pharm. Res. 4, 1752–1759 (2015)Google Scholar
  329. 329.
    W. Kusirisin, C. Jaikang, C. Chaiyasut, P. Narongchai, Med. Chem. 5, 583–588 (2009)Google Scholar
  330. 330.
    C.H. Ramamurthy, M.S. Kumar, V.S.A. Suyavaran, J. Food Sci. 77, 907–913 (2012)Google Scholar
  331. 331.
    C.L. Lee, T.L. Hwang, W.J. He, Y.H. Tsai, C.T. Yen, H.F. Yen, C.J. Chen, Phytochemistry 95, 315–321 (2013)Google Scholar
  332. 332.
    M. Mohan, D. Attarde, R. Momin, S. Kasture, Nat. Prod. Res. 27, 2140–2143 (2013)Google Scholar
  333. 333.
    R. Momin, M. Mohan, Nat. Prod. Res. 26, 416–422 (2012)Google Scholar
  334. 334.
    C. Kamaraj, N.K. Kaushik, D. Mohanakrishnan, G. Elango, A. Bagavan, Parasit. Res. 111, 703–715 (2012)Google Scholar
  335. 335.
    G.R. Gandhi, S. Ignacimuthu, M.G. Paulraj, P. Sasikumar, Eur. J. Pharmacol. 670, 623–631 (2011)Google Scholar
  336. 336.
    G.R. Gandhi, S. Ignacimuthu, M.G. Paulraj, Food Chem. Toxicol. 49, 2725–2733 (2011)Google Scholar
  337. 337.
    K. Takahashi, Y. Yoshioka, E. Kato, S. Katsuki, K. Hosokawa, J. Kawabata, Biosci. Biotechnol. Biochem. 74, 741–745 (2010)Google Scholar
  338. 338.
    C. Kamaraj, A.A. Rahuman, G. Elango, A. Bagavan, A.A. Zahir, Parasit. Res. 109, 37–45 (2011)Google Scholar
  339. 339.
  340. 340.
  341. 341.
    L. Brito, F. Wendy, S. Mejia, M. Gaspar, C.M. Francisco, Afinidad 52, 49–52 (1995)Google Scholar
  342. 342.
  343. 343.
  344. 344.
    A. Kanchana, C. Panneerselavam, Int. J. Curr. Res. Rev. 3, 37–51 (2011)Google Scholar
  345. 345.
    R.R. Thanigaiarassu, K. Kannabiran, V.G. Khanna, J. Pharm. Res. 2, 273–276 (2009)Google Scholar
  346. 346.
    K. Kannabiran, R.R. Thanigaiarassu, G.K. Venkatesan, J. Appl. Biol. Sci. 2, 109–112 (2008)Google Scholar
  347. 347.
    M. Vanaja, K. Paulkumar, G. Gnanajobitha, S. Rajeshkumar, C. Malarkodi, G. Annadurai, (International Journal of Metals 2014), pp. 1–9Google Scholar
  348. 348.
    A.K. Zameer, S.S.Z. Ahmed, P. Ponnusamy, K.B. Senthil, Pak. J. Pharm. Sci. 29, 1578 (2016)Google Scholar
  349. 349.
    M.B. Kanchana, Int. J. Pharm. Pharm. Sci. 3, 356–364 (2011)Google Scholar
  350. 350.
    P.V. Mohanan, K.S. Devi, Cancer Lett. 110, 71–76 (1996)Google Scholar
  351. 351.
    P.V. Mohanan, K.S. Devi, Cancer Lett. 112, 219–223 (1997)Google Scholar
  352. 352.
    M. Shahjahan, G. Vani, C.S. Shyamaladevi, Chem.-Biol. Int. 156, 113–123 (2005)Google Scholar
  353. 353.
    P. Jagadeesan, D.A. Prasad, P. Pandikumar, S. Ignacimuthu, Indian J. Nat. Prod. Res. 2, 156–163 (2011)Google Scholar
  354. 354.
    P.V. Mohanan, K.S. Devi, J. Exp. Clin. Cancer Res. 17, 159–164 (1998)Google Scholar
  355. 355.
    P. Govindarajan, C. Chinnachamy, Pak. J. Pharm. Sci. 27, 2101–2107 (2014)Google Scholar
  356. 356.
    P.N. Venkatesan, P. Rajendran, G. Ekambaram, D. Sakthisekaran, Nat. Prod. Res. 22, 1094–1106 (2008)Google Scholar
  357. 357.
    S. Rajkumar, A. Jebanesan, J. Ins. Sci. 5, 15 (2005)Google Scholar
  358. 358.
    A. Pandurangan, R.L. Khosa, S. Hemalatha, Nat. Prod. Res. 25, 1132–1141 (2011)Google Scholar
  359. 359.
    A. Pandurangan, R.L. Khosa, S. Hemalatha, J. Asian Nat. Prod. Res. 12, 691–695 (2010)Google Scholar
  360. 360.
    M. Shahjahan, K.E. Sabitha, M. Jainu, D.C.S. Shyamala, Indian J. Med. Res. 120, 194–198 (2004)Google Scholar
  361. 361.
  362. 362.
    A. Maxwell, M. Seepersaud, R. Pingal, D.R. Mootoo, W.F. Reynolds, J. Nat. Prod. 59, 200–201 (1996)Google Scholar
  363. 363.
  364. 364.
  365. 365.
    K.D. Chandrashekara, S.M. Dharmesh, J. Pharm. Res. 8, 1148–1157 (2014)Google Scholar
  366. 366.
    A.A.A. Mohdaly, M.A. Sarhan, I. Smetanska, A. Mahmoud, J. Sci. Food Agric. 90, 218–226 (2010)Google Scholar
  367. 367.
    D. Paik, P. Das, T. De, T. Chakraborti, Exp. Parasit. 146, 11–19 (2014)Google Scholar
  368. 368.
    D. Paik, P. Das, P.K. Pramanik, K. Naskar, T. Chakraborti, Biomed. Pharmacother. 83, 1295–1302 (2016)Google Scholar
  369. 369.
    T. Zuber, D. Holm, P. Byrne, L. Ducreux, M. Taylor, M. Kaiser, C. Stushnoff, Food Funct. 6, 72–83 (2015)Google Scholar
  370. 370.
    E. Langner, F.M. Nunes, P. Pozarowski, M. Kandefer-Szerszen, Food Chem. Toxicol. 57, 246–255 (2013)Google Scholar
  371. 371.
    L. Reddivari, J. Vanamala, S. Chintharlapalli, S.H. Safe, J.C. Miller Jr., Carcinogenesis 28, 2227–2235 (2007)Google Scholar
  372. 372.
    M. Friedman, K.R. Lee, H.J. Kim, I.S. Lee, N. Kozukue, J. Agric. Food Chem. 53, 8420 (2005)Google Scholar
  373. 373.
    J.A.O. Ojewole, D.R. Kamadyaapa, C.T. Musabayane, Cardiovasc. J. S. Afr. 17, 166–171 (2006)Google Scholar
  374. 374.
  375. 375.
  376. 376.
  377. 377.
  378. 378.
  379. 379.
  380. 380.
    Y.C. Kim, Q.M. Che, A.A.L. Gunatilaka, D.G.I. Kingston, J. Nat. Prod. 59, 283–285 (1996)Google Scholar
  381. 381.
  382. 382.
  383. 383.
  384. 384.
    H. Ripperger, Phytochemistry 44, 731–734 (1997)Google Scholar
  385. 385.
    L.E.C. Suarez, D.R.M. Cendales, I.O.P. Clara, Rev. Colomb. Quimica 35, 59–65 (2006)Google Scholar
  386. 386.
  387. 387.
  388. 388.
  389. 389.
  390. 390.
  391. 391.
    F.R. Chang, C.T. Yen, M. El-Shazly, C.Y. Yu, Bioorg. Med. Chem. Lett. 23, 2738–2742 (2013)Google Scholar
  392. 392.
    C.T. Yen, C.L. Lee, F.R. Chang, T.L. Hwang, H.F. Yen, C.J. Chen, S.L. Chen, J. Nat. Prod. 75, 636–643 (2012)Google Scholar
  393. 393.
    G.S. Raju, M.R. Moghal, S.M.R. Dewan, M.N. Amin, M. Billah, Avic. J. Phytomed. 3, 313–320 (2013)Google Scholar
  394. 394.
  395. 395.
  396. 396.
  397. 397.
    D. Rani, P.K. Dantu, Nat. Acad. Sci. Lett. 38, 275–279 (2015)Google Scholar
  398. 398.
    S. Khanam, R. Sultana, Int. J. Pharm. Sci. Res. 3, 1057–1060 (2012)Google Scholar
  399. 399.
    G.P. Vadnere, R.S. Gaud, A.K. Singhai, Pharmacol. 1, 513–522 (2008)Google Scholar
  400. 400.
    S. Govindan, S. Viswanathan, V. Vijayasekaran, R. Alagappan, J. Ethnopharmacol. 66, 205–210 (1999)Google Scholar
  401. 401.
    O.M. Singh, K. Subharani, N.I. Singh, N.B. Devi, L. Nevidita, Nat. Prod. Res. 21, 585–590 (2007)Google Scholar
  402. 402.
    G. Shiv, S. Gaherwal, C.S. Shrivastava, N. Wast, Eur. J. Exp. Biol. 5, 81–89 (2015)Google Scholar
  403. 403.
    L.N.C.J. Packia, B.M.S. Bharath, M.A. Anita, B.J. Raja, S. Jeeva, Int. J. Inv. Pharm. Sci. 1, 433–437 (2013)Google Scholar
  404. 404.
    K. Abbas, U. Niaz, T. Hussain, M.A. Saeed, Z. Javaid, A. Idrees, S. Rasool, Acta Poloniae Pharm. 71, 415–421 (2014)Google Scholar
  405. 405.
    D.K. Kajaria, M. Gangwar, D. Kumar, S.A. Kumar, R. Tilak, G. Nath, Asian Pac. J Trop. Biomed. 2, 905–909 (2012)PubMedPubMedCentralGoogle Scholar
  406. 406.
    Z. Li, X. Cheng, C.J. Wang, G.L. Li, S.Z. Xia, F.H. Wei, Chin. J. Parasitol. Parasit. Diseases 23, 206–208 (2005)Google Scholar
  407. 407.
    W. Li, X. Huang, C. Qi, S. Liu, O. Kodama, K. Utaka, China Pest. 46, 591–593 (2007)Google Scholar
  408. 408.
    T. Changbunjong, W. Wongwit, S. Leemingsawat, Y. Tongtokit, V. Deesin, S. Asian J. Trop. Med. Pubic Health 41, 320–325 (2010)Google Scholar
  409. 409.
    T. Hussain, R.K. Gupta, K. Sweety, M.S. Khan, M.D. Hussain, A.M.D. Sarfaraj, Asian Pac. J Trop. Biomed. 2, 454–460 (2012)PubMedPubMedCentralGoogle Scholar
  410. 410.
    G.B. Jalali, H. Ghaffari, H.S. Prakash, K.R. Kini, Pharm. Biol. 52, 1060–1068 (2014)Google Scholar
  411. 411.
    R.K. Gupta, T. Hussain, G. Panigrahi, A. Das, G.N. Singh, K. Sweety, Asian Pac. J Trop. Med. 4, 964–968 (2011)Google Scholar
  412. 412.
    K. Poongothai, P. Ponmurugan, K.S.Z. Ahmed, B.S. Kumar, Asian Pac. J Trop. Med. 4, 778–785 (2011)Google Scholar
  413. 413.
    D.M. Kar, L. Maharana, S. Pattnaik, G.K. Dash, J. Ethnopharmacol. 108, 251–256 (2006)Google Scholar
  414. 414.
    C. Archana, J. Jacob, Asian J. Phytomed Clin. Res. 3, 32–36 (2015)Google Scholar
  415. 415.
    P. Velu, P. Iyappan, A. Vijayalakshmi, D. Indumathi, Biomed. Pharmacother. 84, 430–437 (2016)Google Scholar
  416. 416.
    S. Kumar, A.K. Pandey, BMC Comp. Altern. Med. 14, 112 (2014)Google Scholar
  417. 417.
    S. Kumar, U.K. Sharma, A.K. Sharma, A.K. Pandey, Cell. Mol. Biol. 58, 174–181 (2012)Google Scholar
  418. 418.
    K.K. Bhutani, A.T. Paul, W. Fayad, S. Linder, Phytomedicine 17, 789–793 (2010)Google Scholar
  419. 419.
    M.T. Rahman, M. Ahmed, M. Alimuzzaman, J.A. Shilpi, Fitoterapia 74, 119–121 (2003)Google Scholar
  420. 420.
    T. Hussain, R.K. Gupta, K. Sweety, B. Eswaran, M. Vijayakumar, C.V. Rao, Asian Pac. J. Trop. Med. 5, 686–691 (2012)Google Scholar
  421. 421.
    K.P. Mahesh, K. Murugan, K. Kovendan, J. Subramaniam, D. Amaresan, Parasit. Res. 110, 2541–2550 (2012)Google Scholar
  422. 422.
    K.P. Mahesh, K. Murugan, K. Kovendan, C. Panneerselvam, Parasit. Res. 111, 609–618 (2012)Google Scholar
  423. 423.
    S.K. Bansal, K.V. Singh, S. Kumar, J. Environ. Biol. 30, 221–226 (2009)Google Scholar
  424. 424.
    L. Mohan, P. Sharma, C.N. Srivastava, J. Environ. Biol. 26, 366–401 (2005)Google Scholar
  425. 425.
    K.M. Parmar, P.R. Itankar, A. Joshi, S.K. Prasad, J. Ethnopharmacol. 198, 158–166 (2017)Google Scholar
  426. 426.
    D. Ranka, M. Aswar, U. Aswar, B.S. Bodhankar, Indian J. Exp. Biol. 51, 833–839 (2013)Google Scholar
  427. 427.
    B. Bhatt, J. Chem. Pharm. Res. 3, 176–181 (2011)Google Scholar
  428. 428.
    P.K. Patel, M.A. Patel, B.A. Vyas, D.R. Shah, T.R. Gandhi, J. Ethnopharmacol. 144, 160–170 (2012)Google Scholar
  429. 429.
    O.M. Singh, T.P. Singh, J. Sci. Ind. Res. 69, 732–740 (2010)Google Scholar
  430. 430.
    A.C. Cuervo, B. Gerald, A.V. Patel, Phytochemistry 30, 1339–1341 (1991)Google Scholar
  431. 431.
    W. Putalun, L.J. Xuan, H. Tanaka, Y. Shoyama, J. Nat. Prod. 62, 181–183 (1999)Google Scholar
  432. 432.
    X.M. Zuo, L.Z. Guo, F. Cheng, Z.Y. Guo, K. Zou, Nat. Prod. Res. Dev. 25, 1205–1208 (2013)Google Scholar
  433. 433.
    Y.Y. Lee, F. Hashimoto, S. Yahara, T. Nohara, N. Yoshida, Chem. Pharm. Bull. 42, 707–709 (1994)Google Scholar
  434. 434.
    A. Mohy-ud-din, Z. Khan, M. Ahmad, M.A. Kashmiri, Asian J. Chem. 22, 2919–2927 (2010)Google Scholar
  435. 435.
    W. Shu, Y. Zhang, W. Ye, G. Zhou, J. Jinnan Univ. Nat. Sci. Med. 32, 493–497 (2011)Google Scholar
  436. 436.
    W. Shu, C. Wu, Y. Zhang, W.C. Ye, G. Zhou, Nat. Prod. Res. 27, 1982–1986 (2013)Google Scholar
  437. 437.
    L.J. Hao, S. Wang, J.J. Zhu, Z.M. Wang, S.H. Wei, China J. Chin. Mat. Med. 39, 2034–2038 (2014)Google Scholar
  438. 438.
    R.H. Al-Sofany, O.A. Rashwan, Bull. Fac. Pharm. 39, 99–101 (2001)Google Scholar
  439. 439.
    K.M. Ahmed, Egyptian J. Pharm. Sci. 37, 37–44 (1996)Google Scholar
  440. 440.
    A.C. Suthar, R.M. Mulani, Pharmacogn. Mag. 4, 112–115 (2008)Google Scholar
  441. 441.
    K.E. Hellenas, A. Nyman, P. Slanina, L. Loof, J. Gabrielsson, J. Chromatogr. 573, 69–78 (1992)Google Scholar
  442. 442.
    R.F. Keeler, D.C. Baker, W. Gaffield, Offic. J. Int. Soc Toxicon. 28, 873–884 (1990)Google Scholar
  443. 443.
    E.A. Mona, H. Miyashita, T. Ikeda, J.H. Lee, H. Yoshimitsu, T. Nohara, K. Murakami, Chem. Pharm. Bull. 57, 747–748 (2009)Google Scholar
  444. 444.
    X. Teng, Y.J. Zhang, C. Yang, Acta Bot. Yunnan. 30, 239–242 (2008)Google Scholar
  445. 445.
    Y. Lu, J. Luo, L. Kong, Mag. Reson. Chem. 47, 808–812 (2009)Google Scholar
  446. 446.
    E.A. Ferro, N.L. Alvarenga, D.A. Ibarrola, I.M.C. Hellion, A.G. Ravelo, Fitoterapia 76, 577–579 (2005)Google Scholar
  447. 447.
    S. Nakamura, M. Hongo, S. Sugimoto, H. Matsuda, M. Yoshikawa, Phytochemistry 69, 1565–1572 (2008)Google Scholar
  448. 448.
    Y.Y. Lu, J.G. Luo, L.Y. Kong, Chin. J. Nat. Med. 9, 30–32 (2011)Google Scholar
  449. 449.
    S. Yahara, T. Yamashita, N. Nozawa, T. Nohara, Phytochemistry 43, 1069–1074 (1996)Google Scholar
  450. 450.
    W. Shu, G. Zhou, W. Ye, Chin. Trad. Herb. Drugs 42, 424–427 (2011)Google Scholar
  451. 451.
    A.P. Colmenares, L.B. Rojas, O.A.C. Mitaine, L. Pouysegu, S. Quideau, T. Miyamoto, C. Tanaka, T. Paululat, Phytochemistry 86, 137–143 (2013)Google Scholar
  452. 452.
    Y. Iida, Y. Yanai, M. Ono, T. Ikeda, T. Nohara, Chem. Pharm. Bull. 53, 1122–1125 (2005)Google Scholar
  453. 453.
    M. Ohno, K. Murakami, M. El-Aasr, J.R. Zhou, K. Yokomizo, M. Ono, T. Nohara, J. Nat. Med. 66, 658–663 (2012)Google Scholar
  454. 454.
    H. Nawaz, E. Ahmed, A. Sharif, M. Arshad, N. Batool, M.A. Rasool, U.H. Mukhtar, Chem. Nat. Comp. 49, 1091–1094 (2014)Google Scholar
  455. 455.
    H.T. Nguyen, V.T. Nguyen, D.T. Nguyen, V.M. Chau, Tap Chi Duoc Hoc 48, 31–36 (2008)Google Scholar
  456. 456.
    W. Putalun, N. Fukuda, H. Tanaka, Y. Shoyama, J. Liq. Chrom. Rel. Technol. 25, 2387–2398 (2002)Google Scholar
  457. 457.
    A. Schwarz, E. Pinto, M. Haraguchi, C.A. de Oliveira, M.M. Bernardi, S.H. Souza, Phytother. Res. 21, 1025–1028 (2007)Google Scholar
  458. 458.
    J.J. Jared, L.K. Murungi, B. Torto, Pest Manag. Sci. 72, 828–836 (2016)Google Scholar
  459. 459.
    M.T.F. Cornelius, C.C.F. Alves, T.M.S. da Silva, K.Z. Alves, M.G. de Carvalho, Rev. Bras. Farmacia 85, 57–59 (2004)Google Scholar
  460. 460.
    F.J.M. Barbosa, M.F. Agra, R.A. Oliveira, M.Q. Paulo, G. Trolin, Memo. Inst. Oswaldo Cruz 86, 189–191 (1991)Google Scholar
  461. 461.
    J. Manosroi, A. Manosroi, P. Sripalakit, Acta Hort. 679, 105–111 (2005)Google Scholar
  462. 462.
    T. Purwanti, Majalah Farmasi Indon. 8, 115–122 (1997)Google Scholar
  463. 463.
    H. Zhou, F. Wang, Z. Fang, China J. Chin. Mat. Med. 36, 2096–2098 (2011)Google Scholar
  464. 464.
    J. Bhattacharyya, I.J.L.D. Basilio, L.C.S.L. Morais, M.F. Agra, Biochem. Syst. Ecol. 37, 228–229 (2009)Google Scholar
  465. 465.
    F. Njeh, H. Feki, I. Koubaa, N. Hamed, M. Damak, Pharm. Biol. 54, 726–731 (2016)Google Scholar
  466. 466.
    A. Cristea, M. Tanasescu, P.M. Adelina, Farmacia 40, 25–30 (1992)Google Scholar
  467. 467.
    C. Butnaru, L. Vlase, D. Lazar, L. Agoroaei, Farmacia 59, 172–178 (2011)Google Scholar
  468. 468.
    H. Wintoch, A. Morales, C. Duque, P. Schreier, Nat. Food Chem. 41, 1311–1314 (1993)Google Scholar
  469. 469.
    A. Sammani, E. Shammaa, F. Chehna, Int. J. Pharm. Sci. Rev. Res. 23, 23–27 (2013)Google Scholar
  470. 470.
    H. Ripperger, Phytochemistry 43, 705–707 (1996)Google Scholar
  471. 471.
    A. Maxwell, M. Seepersaud, R. Pingal, D.R. Mootoo, W.F. Reynolds, J. Nat. Prod. 58, 625–628 (1995)Google Scholar
  472. 472.
    C.A. Coy-Barrera, L.E. Cuca-Suarez, I.O. Clara, Acta Biol. 27, 131–134 (2005)Google Scholar
  473. 473.
    E.C.S. Luis, A.C.B. Carlos, C.I. Orozco, Rev. Colomb. Quimica 33, 7–12 (2004)Google Scholar
  474. 474.
    D. Li, Y.L. Zhao, X.J. Qin, L. Liu, X.W. Yang, Y.Y. Chen, X.D. Luo, Nat. Prod. Bioprospect. 6, 225–231 (2016)PubMedPubMedCentralGoogle Scholar
  475. 475.
    J.L. Liu, S.C. Chen, F.L. Lu, D.P. Li, Guangxi Plant Catal. 32, 415–418 (2012)Google Scholar
  476. 476.
    X.L. Zhou, X.J. He, G.X. Zhou, W.C. Ye, X.S. Yao, J. Asian Nat. Prod. Res. 9, 517–523 (2007)Google Scholar
  477. 477.
    M. Xie, Y. Zhou, K. Zou, F. Cheng, R. Liu, J. Chin. Med. Mat. 31, 1332–1334 (2008)Google Scholar
  478. 478.
    J. Luo, B. Zhang, D. Deng, J. Chin. Cereals Oils 30, 125–128 (2015)Google Scholar
  479. 479.
    R. Venkatesh, R. Vidya, K. Kalaivani, Int. J. Pharm. Sci. Res. 5, 5283–5287 (2014)Google Scholar
  480. 480.
    H. Li, S.Y. Peng, D.P. Yang, B. Bai, L.P. Zhu, Z.M. Zhao, Chirality 28, 259–263 (2016)Google Scholar
  481. 481.
    R. Mahadev, H. Ramakrishnaiah, V. Krishna, N.N. Kumar, Don. J. Ess. Oil-Bear. Plants 15, 387–391 (2012)Google Scholar
  482. 482.
    X. Nie, L. Zhang, F. Yao, K. Xiao, S. Dai, China J. Chin. Mat. Med. 40, 1514–1517 (2015)Google Scholar
  483. 483.
    L. Zhang, H. Lei, H.Q. Lin, G.S. Li, X.D. Yue, S.J. Dai, Nat. Prod. Res. 29, 1889–1893 (2015)Google Scholar
  484. 484.
    X.D. Yue, F. Yao, L. Zhang, G.S. Li, S.J. Dai, China J. Chin. Mat. Med. 39, 453–456 (2014)Google Scholar
  485. 485.
    S.J. Dai, L. Shen, Y. Ren, Nat. Prod. Res. 23, 1196–1200 (2009)Google Scholar
  486. 486.
    S.M. Yu, H.J. Kim, E.R. Woo, H. Park, Arch. Pharm. Res. 17, 1–4 (1994)Google Scholar
  487. 487.
    P. Yuan, F. Guo, K. Zheng, K. Chen, Q. Jia, Y. Li, Nat. Prod. Res. 30, 1682–1689 (2016)Google Scholar
  488. 488.
    F. Marx, E.H.A. Andrade, J.G. Maia, Food Res. Technol. 206, 364–366 (1998)Google Scholar
  489. 489.
    M. Suarez, C. Duque, H. Wintoch, P. Schreier, J. Agric. Food Chem. 39, 1643–1645 (1991)Google Scholar
  490. 490.
    M. Suarez, C. Duque, J. Agric. Food Chem. 39, 1498–1500 (1991)Google Scholar
  491. 491.
    M. Suarez, C. Duque, C. Bicchi, H. Wintoch, G. Full, P. Schreier, Flavour Frag. J. 8, 215–220 (1993)Google Scholar
  492. 492.
    C. Duque, H. Wintoch, M. Suarez, P. Schreier, Linalool glycosides as aroma precursors in lulo (Solanum vestissimum D.) fruit peelings (Prog. Flavour Precursor. Stud. Proc. Int. Conf. 1993), pp. 279–281Google Scholar
  493. 493.
    H. Feki, I. Koubaa, M. Damak, Mediter. J. Chem. 2, 639–647 (2014)Google Scholar
  494. 494.
    Y.L. Lin, W.Y. Wang, Y.H. Kuo, C.F. Chen, J. Chin. Chem. Soc. 47, 247–251 (2000)Google Scholar
  495. 495.
    S.A. Nirmal, A.P. Patel, S.B. Bhawar, S.R. Pattan, J. Ethnopharmacol. 142, 91–97 (2012)Google Scholar
  496. 496.
    Y. Zhao, F. Liu, H. Lou, Chin. Trad. Herb. Drugs 33, 555–556 (2010)Google Scholar
  497. 497.
    A. Mohy-Ud-Din, Z. Khan, M. Ahmad, M.A. Kashmiri, S. Yasmin, H. Mazhar, J. Chilean Chem. Soc. 54, 486–490 (2009)Google Scholar
  498. 498.
    W.W. Tang, X.L. Liu, D.Q. Zeng, J. Jiangxi Agric. Univ. 34, 483–486 (2012)Google Scholar
  499. 499.
    Y. Ji, Y. Sun, C. Hui, Lishizen Med. Mat. Med. Res 20, 2431–2432 (2009)Google Scholar
  500. 500.
    D. Lin, Y. Sun, L. Zhang, X. Zeng, Lishizen Med. Mat. Med. Res 20, C3–C4 (2009)Google Scholar
  501. 501.
    A.C. Ramos, R.O. Rodrigo, Nat. Prod. Res. 31, 2405–2412 (2017)Google Scholar
  502. 502.
    U.W. Hawas, G.M. Soliman, L.T.E. Abou, A.R.H. Farrag, J. Biosci. 68, 19–28 (2013)Google Scholar
  503. 503.
    M.M. Radwan, A. Badawy, R. Zayed, H. Hassanin, M.A. ElSohly, Med. Chem. Res. 24, 1326–1330 (2015)Google Scholar
  504. 504.
    A. Badawy, R. Zayed, S. Ahmed, H. Hassanean, J. Nat. Prod. 6, 156–167 (2013)Google Scholar
  505. 505.
    Y. Wang, Z. Li, J. Yang, J. Yunnan Univ. 20, 396–398 (1998)Google Scholar
  506. 506.
  507. 507.
    Y. Ren, L. Shen, S. Dai, China J. Chin. Mat. Med. 34, 721–723 (2009)Google Scholar
  508. 508.
    G. Ishii, M. Mori, Y. Umemura, S. Takigawa, S. Tahara, Nippon Shokuhin Kagaku Kogaku Kaishi 43, 887–895 (1996)Google Scholar
  509. 509.
    W. Dan, G.W. Chen, C.R. Han, W.J. Liu, H.Z. Yang, Chin. Trad. Herb. Drugs 43, 1068–1070 (2012)Google Scholar
  510. 510.
    J. Cardona, E.C. Juliana, S. Cuca, E. Luis, G. Barrera, A. Jaime, Rev. Colomb. Quimica 40, 185–200 (2011)Google Scholar
  511. 511.
    M. Ono, Y. Shiono, T. Tanaka, C. Masuoka, S. Yasuda, T. Ikeda, T. Nohara, J. Nat. Med. 64, 500–505 (2010)Google Scholar
  512. 512.
    S. Siqueira, F.S. Vivyanne, M.F. Agra, C. Dariva, S.J.P. Siqueira, J. Sup. Flu. 58, 391–397 (2011)Google Scholar
  513. 513.
    S.T.M.S. Silva, R. Braz-Filho, M.G. Carvalho, M.F. Agra, Biochem. Syst. Ecol. 30, 479–481 (2002)Google Scholar
  514. 514.
    H.L. Yin, J. Li, Q.S. Li, J.X. Dong, Bull. Acad. Milit. Med. Sci. 34, 65–67 (2010)Google Scholar
  515. 515.
    H.J. Huang, H.M. Wang, A.C. Cao, C.X. Zhang, S.H. Wei, T.J. Ling, Nat. Prod. Res. 31, 1831–1835 (2014)Google Scholar
  516. 516.
    Q. Shao, L. Chang, Y. Wei, Z. Wei, J. Chromatogr. Sci. 56, 695–701 (2018)Google Scholar
  517. 517.
    J. He, X.J. Zhang, B.Z. Ma, F. Liu, Chin. Pharm. J. 50, 2035–2038 (2015)Google Scholar
  518. 518.
    J.H. Li, H.L. Yin, J.X. Dong, Acad. Milit. Med. Sci. 37, 130–134 (2013)Google Scholar
  519. 519.
    A.K. Chakravarty, S. Mukhopadhyay, S. Saha, S.C. Pakrashi, Phytochemistry 41, 935–939 (1996)Google Scholar
  520. 520.
    L. Wang, N. Wang, X. Yao, Chin. Trad. Herb. Drugs 30, 792–794 (2007)Google Scholar
  521. 521.
    A. Simaratanamongkol, K. Umehara, H. Niki, H. Noguchi, P. Panichayupakaranant, J. Funct. Foods 11, 557–562 (2014)Google Scholar
  522. 522.
    X. Zuo, Z. Deng, Z. Guo, K. Zou, F. Cheng, J. Cent, China Norm. Univ. 46, 322–324 (2012)Google Scholar
  523. 523.
    G. Xie, W. Duan, B. Tao, C. Li, Nat. Prod. Res. Dev. 20(627–629), 643 (2008)Google Scholar
  524. 524.
    H. Zhou, F. Wang, Y. He, J. Tang, Z. Fang, West China J. Pharm. Sci. 26, 522–524 (2011)Google Scholar
  525. 525.
    E. Rodrigues, L.R.B. Mariutti, A.Z. Mercadante, J. Agric. Food Chem. 61, 3022–3029 (2013)Google Scholar
  526. 526.
    D. Wu, Z. Fang, Guangdong Med. Coll. J. 24, 139–140 (2008)Google Scholar
  527. 527.
    A.K. Sharma, M.C. Sharma, M.P. Dobhal, Pharm. Lett. 5, 355–361 (2013)Google Scholar
  528. 528.
    V. Aeri, Rajkumari, M. Mujeeb, M. Ali, Indian J. Nat. Prod. 21, 40–42 (2005)Google Scholar
  529. 529.
    G.A. Mathis, A. Toggenburger, R. Pokorny, S. Autzen, R. Ibanez, J. Steroid Biochem. Mol. Biol. 144, 40–43 (2014)Google Scholar
  530. 530.
    H. Bachmann, S. Autzen, U. Frey, U. Wehr, Brit. Poultry Sci. 54, 642–652 (2013)Google Scholar
  531. 531.
    D.R. Baek, M.J. Lee, N.I. Baek, K.H. Seo, Y.H. Lee, J. Appl. Biol. Chem. 59, 103–106 (2016)Google Scholar
  532. 532.
    M.G. Morais, A.F.C. Guilherme, A.A. Aleixo, L.A.R.S. Lima, Nat. Prod. Res. 29, 480–483 (2015)Google Scholar
  533. 533.
    P.L. Yuan, X.P. Wang, K.X. Chen, Y.M. Li, Q. Jia, Chin. Patent Med. 38, 104–107 (2016)Google Scholar
  534. 534.
    M.C.D. Ricardo, C.S.L. Enrique, P. Orozco, I. Clara, Actual. Biol. 27, 49–52 (2005)Google Scholar
  535. 535.
    Y.H. Long, J.H. Li, J. Li, B. Li, L. Chen, J.X. Dong, Fitoterapia 84, 360–365 (2013)Google Scholar
  536. 536.
    Y.H. Long, L.J. Hui, B. Li, L. Chen, J.X. Dong, J. Asian Nat. Prod. Res. 16, 153–157 (2014)Google Scholar
  537. 537.
    J.M. Antonio, J.S. Gracioso, W. Toma, L.C. Lopez, F. Oliveira, A.R.M.S. Brito, J. Ethnopharmacol. 95, 83–88 (2004)Google Scholar
  538. 538.
    T. Chen, J. Zhang, X. Sun, X. Xu, S. Zhang, Fine Chem. 26, 47–50 (2009)Google Scholar
  539. 539.
  540. 540.
  541. 541.
  542. 542.
  543. 543.
  544. 544.
  545. 545.
  546. 546.
  547. 547.
  548. 548.
    P.M. Veira, L.P.M. Marinho, S.C.S. Ferri, C.C. Lee, Anais Acad. Bras. Cienc. 85, 553–560 (2013)Google Scholar
  549. 549.
  550. 550.
    D.R.L.H. Mascato, M. M. Passarinho, D.M.L. Galeno, R. P. Carvalho, J. Nutr. Met. 364185/1–364185/8 (2015)Google Scholar
  551. 551.
  552. 552.
  553. 553.
    T.B. Nguelefack, H. Mekhfi, A.B. Dongmo, T. Dimo, P. Watcho, J. Zoheir, J. Ethnopharmacol. 124, 592–599 (2009)Google Scholar
  554. 554.
    G.T. El-Sherbini, R.A. Zayed, E.T. El-Sherbini, J. Parasit. Res. 2009, (2009)Google Scholar
  555. 555.
    N. Chowdhury, A. Ghosh, G. Chandra, B.M.C. Comp, Altern. Med. 8, 10 (2008)Google Scholar

Copyright information

© The Author(s) 2019

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of BotanyChinese Academy of SciencesKunmingPeople’s Republic of China
  2. 2.Graduate School of the Chinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of BotanyChinese Academy of SciencesKunmingPeople’s Republic of China

Personalised recommendations