Microstructure Evolution and Phase Transitions of the Annealed Cu–11%Al Alloy with Sn and Gd Additions

  • J. S. SouzaEmail author
  • R. A. G. Silva
Technical Article


The effects of Sn or Gd additions on the microstructure and phases transitions of the Cu–11%Al alloy (composition in wt.) were studied by Vickers microhardness measurements as a function of quenching temperature, optical microscopy (OM), scanning electronic microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and differential scanning calorimetry (DSC). The results showed that the addition of Sn stabilizes the \( \beta \) phases, whereas the addition of Gd modifies the alloy microstructure, but it does not significantly interfere on the phase transitions observed in the Cu–11%Al alloy.


Gd addition Sn addition Phase transitions Cu–Al alloys 



This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. The authors thank FAPESP (2012/050570-5 and 2019/06717-0) and CNPq for financial support.


  1. 1.
    H.H. Kuo, W.H. Wang, Y.F. Hsu, C.A. Huang, The corrosion behavior of Cu–Al and Cu–Al–Be shape-memory alloys in 0.5 M H2SO4 solution. Corros. Sci. 48, 4352–4364 (2006). CrossRefGoogle Scholar
  2. 2.
    M.A. Shaik, K.H. Syed, B.R. Golla, Electrochemical behavior of mechanically alloyed hard Cu–Al alloys in marine environment. Corros. Sci. 153, 249–257 (2019). CrossRefGoogle Scholar
  3. 3.
    S. Montecinos, S. Simison, Corrosion behavior of Cu–Al–Be shape memory alloys with different compositions and microstructures. Corros. Sci. 74, 387–395 (2013). CrossRefGoogle Scholar
  4. 4.
    M.A. Haidar, S.N. Saud, E. Hamzah, Microstructure, mechanical properties, and shape memory effect of annealed Cu–Al–Ni–xCo shape memory alloys. Metallogr. Microstruct. Anal. 7, 57–64 (2017). CrossRefGoogle Scholar
  5. 5.
    J.P. Oliveira, B. Crispim, Z. Zeng, T. Omori, F.M. Braz Fernande, R.M. Miranda, Microstructure and mechanical properties of gas tungsten arc welded Cu–Al–Mn shape memory alloy rods. J. Mater. Process. Technol. 271, 93–100 (2019). CrossRefGoogle Scholar
  6. 6.
    M.F. Shuwadi, S.N. Saud, E. Hamzah, Deformation influences on microstructure, mechanical properties, and shape memory behavior of Cu–Al–Ni–xTi shape memory alloys. Metallogr. Microstruct. Anal. 8, 406–414 (2019). CrossRefGoogle Scholar
  7. 7.
    A. Agrawala, R. Kumar Dube, Methods of fabricating Cu–Al–Ni shape memory alloys. J. Alloys Compd. 750, 235–247 (2018). CrossRefGoogle Scholar
  8. 8.
    J.L. Murray, The aluminium–copper system. Int. Met. 30, 211–233 (1985)CrossRefGoogle Scholar
  9. 9.
    J.R. Davis, ASM Speciality Handbook: Copper and Copper Alloys (ASM International, Cleveland, 2001)Google Scholar
  10. 10.
    G.F. Brazolin, C. Aksu Canbay, S. Ozgen, A.B. Oliveira, R.A.G. Silva, Effects of Gd addition on the thermal and microstructural behaviors of the as-cast Cu–9%Al and Cu–9%Al–10%Mn alloys. Appl. Phys. A 122, 928 (2016). CrossRefGoogle Scholar
  11. 11.
    G.F. Brazolin, C.C.S. Silva, L.S. Silva, R.A.G. Silva, Phase transformations in an annealed Cu–9Al–10Mn–3Gd alloy. J. Therm. Anal. Calorim. (2018). CrossRefGoogle Scholar
  12. 12.
    A.B. Oliveira, R.A.G. Silva, Thermomagnetic behavior of an as-quenched Cu–Al–Mn–Gd alloy. Mater. Chem. Phys. 209, 112–120 (2018). CrossRefGoogle Scholar
  13. 13.
    A.B. Oliveira, A. Paganotti, R.A.G. Silva, Kinetics of martensite decomposition in a Gd-modified Cu–Al alloy. J. Phys. Chem. Solids (2019). CrossRefGoogle Scholar
  14. 14.
    S.L. Leach, G.V. Raynor, The constitution of the copper-rich copper–aluminium–tin alloys, with special reference to ternary compound formation, W. Hume-Rothery. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 12, 251–259 (1954)Google Scholar
  15. 15.
    D.F. Soares, M. Abreu, D. Barros, F. Castro, Experimental study of the Cu–Al–Sn phase equilibria, close to the copper zone. J. Min. Met. Sect. B Metall. 53, 209–213 (2017). CrossRefGoogle Scholar
  16. 16.
    A.K. Chakrabarty, K.T. Jacob, Isothermal transformation of β-phase in Cu-rich Cu–Al–Sn alloys. Int. J. Mater. Res. 104, 430–444 (2013). CrossRefGoogle Scholar
  17. 17.
    J. Miettinen, Thermodynamic description of the Cu–Al–Sn system in the copper-rich corner. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 33A, 1639–1648 (2002). CrossRefGoogle Scholar
  18. 18.
    A.G. Magdalena, A.T. Adorno, T.M. Carvalho, R.A.G. Silva, β phase transformations in the Cu-11mass % Al alloy with Ag additions. J. Therm. Anal. Calorim. 106, 339–342 (2011). CrossRefGoogle Scholar
  19. 19.
    R.A.G. Silva, A. Paganotti, S. Gama, A.T. Adorno, T.M. Carvalho, C.M.A. Santos, Investigation of thermal, mechanical and magnetic behaviors of the Cu–11%Al alloy with Ag and Mn additions. Mater. Charact. 75, 194–199 (2013). CrossRefGoogle Scholar
  20. 20.
    A.T. Adorno, T.M. Carvalho, A.G. Magdalena, C.M.A. Santos, R.A.G. Silva, Activation energy for the reverse eutectoid reaction in hypo-eutectoid Cu–Al alloys. Thermochim. Acta 531, 35–41 (2012). CrossRefGoogle Scholar
  21. 21.
    L.B. McCusker, R.B. Von Dreele, D.E. Cox, D. Louer, P. Scardi, Rietveld refinement guidelines. J. Appl. Crystallogr. 32, 36–50 (1999). CrossRefGoogle Scholar
  22. 22.
    D. Balzar, N.C. Popa, Analyzing microstructure by Rietveld refinement *. Rigaku J. 22, 16–25 (2005)Google Scholar
  23. 23.
    A.A. Coelho, J. Evans, I. Evans, A. Kern, S. Parsons, The TOPAS symbolic computation system. Powder Diffr. S 26, S22–S25 (2011). CrossRefGoogle Scholar
  24. 24.
    B.H. Toby, R factors in Rietveld analysis: how good is good enough? Powder Diffr. 21, 67–70 (2006). CrossRefGoogle Scholar
  25. 25.
    S. Holgersson, X-ray investigation of alloys. Ann. Der Phys. 4, 35–54 (1926). CrossRefGoogle Scholar
  26. 26.
    J.S. Llewelyn Leach, On the structure of a phase formed in copper-aluminum alloys at low temperatures. J. Inst. Met. 92, 93–94 (1964)Google Scholar
  27. 27.
    A.J. Bradley, P. Jones, An X-ray investigation of the copper-aluminium alloys, J. Inst. Met. 625, 131–162 (1933)Google Scholar
  28. 28.
    G. Kurdjumov, V. Mireckij, T. Stelleckaja, Transformations in eutectoid alloys of Cu - Al. V. Structure of the martensitic phase gamma’ and the mechanism of the beta1 - gamma’ transformation. Zhurnal Tekhnicheskoi Fiz. 8, 1959–1972 (1938)Google Scholar
  29. 29.
    K.H. Buschow, A.S. Van der Goot, Composition and crystal structure of hexagonal Cu-rich rare earth - copper compounds. Acta Crystallogr. B. 27 1085–1088 (1971). CrossRefGoogle Scholar
  30. 30.
    N. Hoang Luong, J.J.M. Franse, T. Duc Hien, Specific heat and thermal expansion in GdxY1-xCu2. J. Phys. F. 15, 1751–1763 (1985). CrossRefGoogle Scholar
  31. 31.
    H. Kwarciak, J. Bojarski, Z. Morawiec, Phase transformation in martensite of Cu-12.4% Al. J. Mater. Sci. 21, 788–792 (1986). CrossRefGoogle Scholar
  32. 32.
    I. Tarora, The transformation process of β-phase of Cu-Al system and the effect of Mn addition upon it (fouth report). J. Japan Inst. Met. 13, 13–18 (1979). CrossRefGoogle Scholar
  33. 33.
    H. Hendus, H. Knoedler, Die Überstruktur der gamma-Hoch temperature phase in System Kupfer-Zinn. Acta Crystallogr. 9, 1036 (1956). CrossRefGoogle Scholar
  34. 34.
    V.T. Deshpande, D.B. Sirdeshmukh, Thermal expansion of tetragonal tin. Acta Crystallogr. 14, 355–356 (1961). CrossRefGoogle Scholar
  35. 35.
    D. Hull, T.W. Clyne, An Introduction to Composite Materials, 2nd edn. (Cambridge University Press, Cambridge, 1996)CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.Instituto de Ciências Ambientais, Químicas e Farmacêuticas – ICAQFUniversidade Federal de São PauloDiademaBrazil

Personalised recommendations