Advertisement

Effect of Cooling Rate on the Microstructure of a Pressure Vessel Steel

  • Arpan DasEmail author
  • Saurav Sunil
  • Rajeev Kapoor
Technical Article
  • 14 Downloads

Abstract

The present article thoroughly explores the effect of cooling rate on various microstructural features of a reactor pressure vessel steel (20MnMoNi55). For this, dilatometric experiments were performed at different cooling rates. Optical microscopy and electron backscatter diffraction were used to measure different microstructural parameters. Continuous cooling from 0.15 to 0.3 °C/s revealed ferrite and bainite; only bainite is seen from 1 to 2 °C/s, both bainite and martensite were found in the regime 5 to 15 °C/s, and complete martensitic transformation was observed at cooling rate 20 °C/s and above. With increase in cooling rate, the fraction of low angle boundary decreased and that of high angle boundary increased. The nature of grain size distribution was found to be cooling rate sensitive.

Keywords

20MnMoNi55 steel Cooling rate Grain size Electron backscatter diffraction Misorientation 

Notes

Disclosures

No potential conflict of interest was reported by the authors.

References

  1. 1.
    R.O. Ritchie, W.L. Server, R.A. Wullaert, Critical fracture stress and fracture strain models for the prediction of lower and upper shelf toughness in nuclear pressure vessel steels. Metall. Trans. A 10(10), 1557–1570 (1979)CrossRefGoogle Scholar
  2. 2.
    G.R. Odette, G.E. Lucas, Recent progress in understanding reactor pressure vessel steel embrittlement. Radiat. Eff. Defects Solids 144(1–4), 189–231 (1998)CrossRefGoogle Scholar
  3. 3.
    T.S. Byun, J.H. Hong, F.M. Haggag, K. Farrell, E.H. Lee, Measurement of through-the-thickness variations of mechanical properties in SA508 Gr. 3 pressure vessel steels using ball indentation test technique. Int. J. Press. Vessels Pip. 74(3), 231–238 (1997)CrossRefGoogle Scholar
  4. 4.
    K.D. Haverkamp, K. Forch, K.H. Piehl, W. Witte, Effect of heat treatment and precipitation state on toughness of heavy section Mn–Mo–Ni-steel for nuclear power plants components. Nucl. Eng. Des. 81(2), 207–217 (1984)CrossRefGoogle Scholar
  5. 5.
    H. Pous-Romero, H.K.D.H. Bhadeshia, Continuous cooling transformations in nuclear pressure vessel steels. Metall. Mater. Trans. A 45(11), 4897–4906 (2014)CrossRefGoogle Scholar
  6. 6.
    P. Bowen, C.A. Hippsley, J.F. Knott, Effects of segregation on brittle fracture and fatigue crack growth in coarse-grained, martensitic A533B pressure vessel steel. Acta Metall. 32(5), 637–647 (1984)CrossRefGoogle Scholar
  7. 7.
    A. Pineau, Development of the local approach to fracture over the past 25 years: theory and applications. Int. J. Fract. 138(1–4), 139–166 (2006)CrossRefGoogle Scholar
  8. 8.
    A. Gopalan, M.K. Samal, J.K. Chakravartty, Fracture toughness evaluation of 20MnMoNi55 pressure vessel steel in the ductile to brittle transition regime: experiment & numerical simulations. J. Nucl. Mater. 465, 424–432 (2015)CrossRefGoogle Scholar
  9. 9.
    M.S. Joo, D.W. Suh, J.H. Bae, N.S. Mourino, R. Petrov, L.A.I. Kestens, H.K.D.H. Bhadeshia, Experiments to separate the effect of texture on anisotropy of pipeline steel. Mater. Sci. Eng. A 556, 601–606 (2012)CrossRefGoogle Scholar
  10. 10.
    K. Zhu, D. Barbier, T. Iung, Characterization and quantification methods of complex BCC matrix microstructures in advanced high strength steels. J. Mater. Sci. 48(1), 413–423 (2013)CrossRefGoogle Scholar
  11. 11.
    P. Van Houtte, L. Delannay, I. Samajdar, Quantitative prediction of cold rolling textures in low-carbon steel by means of the LAMEL model. Texture Stress Microstruct. 31(3), 109–149 (1999)CrossRefGoogle Scholar
  12. 12.
    A. Das, Calculation of crystallographic texture of BCC steels during cold rolling. J. Mater. Eng. Perform. 26(6), 2708–2720 (2017)CrossRefGoogle Scholar
  13. 13.
    X. Wan, K. Wu, G. Huang, R. Wei, In-situ observations of the formation of fine-grained mixed microstructures of acicular ferrite and bainite in the simulated coarse-grained heated-affected zone. Steel Res. Int. 85(2), 243–250 (2014)CrossRefGoogle Scholar
  14. 14.
    A.-F. Gourgues, H.M. Flower, T.C. Lindley, Electron backscattering diffraction study of acicular ferrite, bainite, and martensite steel microstructures. Mater. Sci. Technol. 16(1), 26–40 (2000)CrossRefGoogle Scholar
  15. 15.
    S.F. Di Martino, G. Thewlis, Transformation characteristics of ferrite/carbide aggregate in continuously cooled, low carbon-manganese steels. Metall. Mater. Trans. A 45(2), 579–594 (2014)CrossRefGoogle Scholar
  16. 16.
    T. Watanabe, Grain boundary design and control for high temperature materials. Mater. Sci. Eng. A 166(1–2), 11–28 (1993)CrossRefGoogle Scholar
  17. 17.
    A. Das, Fracture complexity of pressure vessel steels. Philos. Mag. 97(33), 3084–3141 (2017)CrossRefGoogle Scholar
  18. 18.
    A. Grajcar, W. Zalecki, P. Skrzypczyk, A. Kilarski, A. Kowalski, S. Kolodziej, Dilatometric study of phase transformations in advanced high-strength bainitic steel. J. Therm. Anal. Calorim. 118(2), 739–748 (2014)CrossRefGoogle Scholar
  19. 19.
    S. Tsurekawa, S. Nakamichi, T. Watanabe, Correlation of grain boundary connectivity with grain boundary character distribution in austenitic stainless steel. Acta Mater. 54(13), 3617–3626 (2006)CrossRefGoogle Scholar
  20. 20.
    D.G. Brandon, The structure of high-angle grain boundaries. Acta Metall. 14(11), 1479–1484 (1966)CrossRefGoogle Scholar
  21. 21.
    A.G. Haynes, W. Steven, The temperature of formation of martensite and bainite in low–alloy steel. J. Iron Steel Inst. 183, 349–359 (1956)Google Scholar
  22. 22.
    K.W. Andrews, Empirical formulae for the calculation of some transformation temperatures. J. Iron Steel Inst. 203, 721–727 (1965)Google Scholar
  23. 23.
    K. Suzuki, Neutron irradiation embrittlement of ASME SA508, C1. 3 steel. J. Nucl. Mater. 108, 443–450 (1982)CrossRefGoogle Scholar
  24. 24.
    K. Suzuki, I. Kurihara, T. Sasaki, Y. Koyoma, Y. Tanaka, Application of high strength MnMoNi steel to pressure vessels for nuclear power plant. Nucl. Eng. Des. 206(2–3), 261–277 (2001)CrossRefGoogle Scholar
  25. 25.
    C.J. Duffy, Modelling the electron beam welding of nuclear reactor pressure vessel steel (University of Cambridge, Cambridge, 2014)Google Scholar
  26. 26.
    H.K.D.H. Bhadeshia, J.W. Christian, Bainite in steels. Metall. Trans. A 21(3), 767–797 (1990)CrossRefGoogle Scholar
  27. 27.
    X. Liang, A.J. DeArdo, A study of the influence of thermomechanical controlled processing on the microstructure of bainite in high strength plate steel. Metall. Mater. Trans. A 45(11), 5173–5184 (2014)CrossRefGoogle Scholar
  28. 28.
    I.W. Chen, Y.H. Chiao, K. Tsuzaki, Statistics of martensitic nucleation. Acta Metall. 33(10), 1847–1859 (1985)CrossRefGoogle Scholar
  29. 29.
    A. Das, Crystallographic variant selection of martensite at high stress/strain. Philos. Mag. 95(20), 2210–2227 (2015)CrossRefGoogle Scholar
  30. 30.
    A. Das, Crystallographic variant selection of martensite during fatigue deformation. Philos. Mag. 95(8), 844–860 (2015)CrossRefGoogle Scholar
  31. 31.
    A. Das, Spatial martensite. Mater. Sci. Eng. A 658, 484–489 (2016)CrossRefGoogle Scholar
  32. 32.
    J. Wang, S. van der Zwaag, Z. Yang, H.S. Fang, Aspect ratio of bainite in steels. Mater. Lett. 45(3–4), 228–234 (2000)CrossRefGoogle Scholar
  33. 33.
    L. Lan, X. Kong, C. Qiu, Characterization of coarse bainite transformation in low carbon steel during simulated welding thermal cycles. Mater. Charact. 105, 95–103 (2015)CrossRefGoogle Scholar
  34. 34.
    S.G. Druce, G. Gage, G. Jordan, Effect of ageing on properties of pressure vessel steels. Acta Metall. 34(4), 641–652 (1986)CrossRefGoogle Scholar
  35. 35.
    J.R.C. Guimarães, P.R. Rios, Spatial aspects of martensite. Metall. Mater. Trans. A 43(7), 2218–2224 (2012)CrossRefGoogle Scholar
  36. 36.
    C.S. Kim, A.D. Rollett, G.S. Rohrer, Grain boundary planes: new dimensions in the grain boundary character distribution. Scr. Mater. 54(6), 1005–1009 (2006)CrossRefGoogle Scholar
  37. 37.
    T. Watanabe, S. Tsurekawa, S. Kobayashi, S.I. Yamaura, Structure-dependent grain boundary deformation and fracture at high temperatures. Mater. Sci. Eng. A 410, 140–147 (2005)CrossRefGoogle Scholar
  38. 38.
    S. Ratanaphan, D.L. Olmsted, V.V. Bulatov, E.A. Holm, A.D. Rollett, G.S. Rohrer, Grain boundary energies in body-centered cubic metals. Acta Mater. 88, 346–354 (2015)CrossRefGoogle Scholar
  39. 39.
    R. Viswanathan, C.L. Bauer, Formation of annealing twins, faceting, and grain boundary pinning in copper bicrystals. Metall. Trans. 4(11), 2645–2650 (1973)CrossRefGoogle Scholar
  40. 40.
    S.E. Offerman, N.H. Van Dijk, J. Sietsma, S. Grigull, E.M. Lauridsen, L. Margulies, H.F. Poulsen, M.T. Rekveldt, S. Van der Zwaag, Grain nucleation and growth during phase transformations. Science 298(5595), 1003–1005 (2002)CrossRefGoogle Scholar
  41. 41.
    S. Zhao, D. Wei, R. Li, L. Zhang, Effect of cooling rate on phase transformation and microstructure of Nb–Ti microalloyed steel. Mater. Trans. 55, 1274–1279 (2014)CrossRefGoogle Scholar
  42. 42.
    N. Haghdadi, P. Cizek, H. Beladi, P.D. Hodgson, A novel high-strain-rate ferrite dynamic softening mechanism facilitated by the interphase in the austenite/ferrite microstructure. Acta Mater. 126, 44–57 (2017)CrossRefGoogle Scholar
  43. 43.
    P. Lin, G. Palumbo, K.T. Aust, Experimental assessment of the contribution of annealing twins to CSL distributions in FCC materials. Scr. Mater. 36(10), 1145–1149 (1997)CrossRefGoogle Scholar
  44. 44.
    A. Das, Revisiting stacking fault energy of steels. Metall. Mater. Trans. A 47(2), 748–768 (2016)CrossRefGoogle Scholar
  45. 45.
    V. Randle, Twinning-related grain boundary engineering. Acta Mater. 52(14), 4067–4081 (2004)CrossRefGoogle Scholar
  46. 46.
    H. Terasaki, Y.I. Komizo, Morphology and crystallography of bainite transformation in a single prior-austenite grain of low-carbon steel. Metall. Mater. Trans. A 44(6), 2683–2689 (2013)CrossRefGoogle Scholar
  47. 47.
    S. Zaefferer, J. Ohlert, W. Bleck, A study of microstructure, transformation mechanisms and correlation between microstructure and mechanical properties of a low alloyed TRIP steel. Acta Mater. 52(9), 2765–2778 (2004)CrossRefGoogle Scholar
  48. 48.
    E. Keehan, L. Karlsson, H.K.D.H. Bhadeshia, M. Thuvander, Electron backscattering diffraction study of coalesced bainite in high strength steel weld metals. Mater. Sci. Technol. 24(10), 1183–1188 (2008)CrossRefGoogle Scholar
  49. 49.
    A. Das, Grain boundary engineering: fatigue fracture. Philos. Mag. 97(11), 867–916 (2017)CrossRefGoogle Scholar
  50. 50.
    A. Das, Cyclic plasticity induced transformation of austenitic stainless steels. Mater. Charact. 149, 1–25 (2019)CrossRefGoogle Scholar
  51. 51.
    J.A. Nucci, R.R. Keller, D.P. Field, Y. Shacham-Diamand, Grain boundary misorientation angles and stress-induced voiding in oxide passivated copper interconnects. Appl. Phys. Lett. 70(10), 1242–1244 (1997)CrossRefGoogle Scholar
  52. 52.
    N.L. Peterson, Grain-boundary diffusion in metals. Int. Met. Rev. 28(1), 65–91 (1983)CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.Mechanical Metallurgy Division, Materials GroupBhabha Atomic Research Centre (Department of Atomic Energy)Trombay, MumbaiIndia

Personalised recommendations