Advertisement

Effect of Complex Modification on Microstructure and Mechanical Properties of Hypoeutectic Al–Si

  • Jianhua Wang
  • Yaling Liu
  • Jiaqing Zhu
  • Ya Liu
  • Xuping SuEmail author
Technical Article
  • 8 Downloads

Abstract

Hypoeutectic Al–Si alloy was modified by Al–5Ti and Al–3P alloys. The microstructure, fracture morphology, and mechanical properties of the alloys were characterized using optical microscopy, scanning electron microscopy, and a universal electronic testing machine. The results show that there was more primary α-Al phase in the Al–7Si alloy modified with 0.5 wt.% Al–5Ti and Al–3P compared to that modified with 0.5 wt.% Al–5Ti alone. With increased Al–3P, the area fraction of α-Al phase in the complex modified Al–7Si alloy decreased. For 0.1 wt.% Al–3P, eutectic silicon appeared as short rods or flakes, distributed uniformly in the Al–7Si alloy. Compared with hypoeutectic Al–Si alloy modified with 0.5 wt.% Al–5Ti, the relative amount of α-Al phase decreased and the amount of eutectic microstructure increased in the complex modified alloy with increased Si content. The complex modified Al–7Si alloy exhibited 10% higher tensile strength, 21% higher elongation, and presented ductile fracture.

Keywords

Hypoeutectic Al–Si Complex modification Microstructure Mechanical properties 

Notes

Acknowledgements

The authors gratefully acknowledge the financial support from National Natural Science Foundation of China (No. 51571039).

References

  1. 1.
    V. Kumar, B. Lukas, Effect of TiC addition on the microstructure and mechanical properties of B319 alloy. Trans. Indian Met. 68, 195–202 (2015)CrossRefGoogle Scholar
  2. 2.
    L. Lu, A.K. Dahle, Effects of combined additions of Sr and AlTiB grain refiners in hypoeutectic Al–Si foundry alloys. Mater. Sci. Eng. A 435–436, 288–296 (2006)CrossRefGoogle Scholar
  3. 3.
    W.B. Lei, X.T. Liu, W.M. Wang et al., On the influences of Li on the microstructure and properties of hypoeutectic Al–7Si alloy. J. Alloys Compd. 729, 703–709 (2017)CrossRefGoogle Scholar
  4. 4.
    R. Gholizadeh, S.G. Shabestari, Investigation of the effects of Ni, Fe, and Mn on the formation of complex intermetallic compounds in Al–Si–Cu–Mg–Ni alloys. Met. Mater. Trans. A 42, 3447–3458 (2011)CrossRefGoogle Scholar
  5. 5.
    J.G. Jung, S.H. Lee, Y.H. Cho et al., Effect of transition elements on the microstructure and tensile properties of Al–12Si alloy cast under ultrasonic melt treatment. J. Alloys Compd. 712, 277 (2017)CrossRefGoogle Scholar
  6. 6.
    S. Wang, Y. Liu, H.P. Peng et al., Microstructure and mechanical properties of Al–12.6Si eutectic alloy modified with Al–5Ti master alloy. Adv. Eng. Mater. 255, 1–5 (2017)Google Scholar
  7. 7.
    M. Nowak, B.N. Hari, Novel grain refiner for hypo-and hyper-eutectic Al–Si alloys. Mater. Sci. For. 690, 49–52 (2011)Google Scholar
  8. 8.
    Y. Liu, C. Ding, L.I. Yan-Xiang, Grain refining mechanism of Al–3B master alloy on hypoeutectic Al–Si alloys. Trans. Nonferrous Met. Soc. 21, 1435–1440 (2011)CrossRefGoogle Scholar
  9. 9.
    D.H. Lu, Y.H. Jiang, G.S. Guan et al., Refinement of primary Si in hypereutectic Al-Si alloy by electromagnetic stirring. J. Mater. Process. Technol. 189, 13–18 (2007)CrossRefGoogle Scholar
  10. 10.
    G. Chen, M. Yang, Y. Jin et al., Ultrasonic assisted squeeze casting of a wrought aluminum alloy. J. Mater. Process. Tech. 266, 19–25 (2019)CrossRefGoogle Scholar
  11. 11.
    A. Darlapudi, S.D. Mcdonald, S. Terzi et al., The influence of ternary alloying elements on the Al–Si eutectic microstructure and the Si morphology. J. Cryst. Growth 433, 63–73 (2016)CrossRefGoogle Scholar
  12. 12.
    A.I. Averkin, B.N. Korchunov, S.P. Nikanorov et al., The effect of strontium on the mechanical properties of aluminum–silicon alloy. Tech. Phys. Lett. 42, 201–203 (2016)CrossRefGoogle Scholar
  13. 13.
    T.F. Ma, Z.Y. Chen, Z.R. Nie et al., Microstructure of Al–Ti–B–Er refiner and its grain refining performance. Rare Met. 31, 622–627 (2013)Google Scholar
  14. 14.
    Y.D. He, X.M. Zhang, Z.Q. Cao, Effect of minor Cr, Mn, Zr, Ti and B on grain refinement of as-cast Al–Zn–Mg–Cu alloys. Rare Met. Mater. Eng. 39, 1135–1140 (2010)CrossRefGoogle Scholar
  15. 15.
    C. Xu, W.L. Xiao, W.T. Zhao et al., Microstructure and formation mechanism of grain-refining particles in Al–Ti–C–RE grain refiners. J. Rare Earth. 33(5), 553–560 (2015)CrossRefGoogle Scholar
  16. 16.
    R. Ahmad, M.B.A. Asmael, Influence of lanthanum on solidification, microstructure, and mechanical properties of eutectic Al–Si piston alloy. J. Mater. Eng. Perform. 25, 2799–2813 (2016)CrossRefGoogle Scholar
  17. 17.
    M. Colombo, E. Gariboldi, A. Morri, Er addition to Al–Si–Mg-based casting alloy: effects on microstructure, room and high temperature mechanical properties. J. Alloys Compd. 708, 1234 (2017)CrossRefGoogle Scholar
  18. 18.
    K. Jia, W.B. Yu, J.M. Yao et al., Al-9.00% Si-0.25% Mg alloys modified by ytterbium. Rare Met. 36, 1–6 (2017)CrossRefGoogle Scholar
  19. 19.
    B.M. Thall, B. Chalmers, Modification in aluminium silicon alloys. J. Inst. Met. 77(1), 79–97 (1950)Google Scholar
  20. 20.
    S. Joseph, S. Kumar, A systematic investigation of fracture mechanisms in Al–Si based eutectic alloy-effect of Si modification. Mater. Sci. Eng. A: Struct. Mater. Prop. Microstruct. Process. 588, 111–124 (2013)CrossRefGoogle Scholar
  21. 21.
    S. Wang, M. Fu, X.Z. Li et al., Microstructure and mechanical properties of Al–Si eutectic alloy modified with Al–3P master alloy. J. Mater. Process. Tech. 255, 105–109 (2018)CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Jianhua Wang
    • 1
    • 2
    • 3
  • Yaling Liu
    • 1
    • 2
    • 3
  • Jiaqing Zhu
    • 1
    • 2
    • 3
  • Ya Liu
    • 1
    • 2
    • 3
  • Xuping Su
    • 1
    • 2
    • 3
    Email author
  1. 1.Jiangsu Key Laboratory of Material Surface Science and Technology, School of Materials Science and EngineeringChangzhou UniversityChangzhouChina
  2. 2.National experimental Teaching Demonstration Center of Materials Science and EngineeringChangzhou UniversityChangzhouChina
  3. 3.Jiangsu Collaborative Innovation Center of Photovoltaic Science and EngineeringChangzhou UniversityChangzhouChina

Personalised recommendations