Advertisement

Metallography, Microstructure, and Analysis

, Volume 8, Issue 4, pp 545–557 | Cite as

Dry Sliding Wear Behavior of Al0.4FeCrNiCox(x = 0, 0.25, 0.5, 1.0 mol) High-Entropy Alloys

  • Saurav Kumar
  • Amar PatnaikEmail author
  • Ajaya Kumar Pradhan
  • Vinod Kumar
Technical Article
  • 69 Downloads

Abstract

This study aims to investigate the dry sliding wear behavior of Al0.4FeCrNiCox(x = 0, 0.25, 0.5, 1.0 mol) high-entropy alloys (HEAs) at room temperature by varying sliding speed and normal load. X-ray diffraction studies indicate that the BCC phase decreases and completely disappears as cobalt content increases from x = 0–1.0 mol. Correspondingly, the hardness of the proposed alloys decreases from 377.7 to 199.5 HV with the addition of cobalt content from x = 0–1.0 mol. The wear analysis indicates that the highest specific wear rate occurs in the case of Al0.4FeCrNiCox=1 HEA with varying sliding velocity and normal load, respectively. The worn surface was analyzed by using scanning electron microscopy with attached energy-dispersive X-ray spectroscopy, 3D profiling, and X-ray photoelectron spectroscopy (XPS) in order to understand the wear mechanism and oxides formed during the wear process. Results indicated that the wear occurred due to adhesion along with delamination, plastic flow, and oxidative wear. XPS results indicate that the presence of Al2O3, Fe2O3, Cr2O3, and Co3O4 oxides formed on the worn surface.

Keywords

High-entropy alloy Microstructure Hardness Wear 

Notes

Acknowledgements

The author is thankful to the Advanced Research Laboratory for Tribology, Department of Mechanical Engineering MNIT Jaipur, Material Research Centre, MNIT Jaipur for carrying out the experimental work.

References

  1. 1.
    J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299–303 (2004)CrossRefGoogle Scholar
  2. 2.
    J.W. Yeh, Physical metallurgy of high-entropy alloys. JOM 67, 2254–2261 (2015)CrossRefGoogle Scholar
  3. 3.
    B.S. Murty, J.W. Yeh, S. Ranganathan, High-Entropy Alloys, 1st edn. (Elsevier, London, 2014)Google Scholar
  4. 4.
    D. Kumar, O. Maulik, S. Kumar, Y.V.S.S. Prasad, V. Kumar, Phase and thermal study of equiatomic AlCuCrFeMnW high entropy alloy processed via spark plasma sintering. Mater. Chem. Phys. 210, 71–77 (2017)CrossRefGoogle Scholar
  5. 5.
    A. Munitz, S. Salhov, S. Hayun, N. Frage, Heat treatment impacts the micro-structure and mechanical properties of AlCoCrFeNi high entropy alloy. J. Alloys Compd. 683, 221–230 (2016)CrossRefGoogle Scholar
  6. 6.
    T.T. Shun, Y.C. Du, Microstructure and tensile behaviors of FCC Al0.3CoCrFeNi high entropy alloy. J. Alloys Compd. 479, 157–160 (2009)CrossRefGoogle Scholar
  7. 7.
    R. Wang, K. Zhang, C. Davies, X. Wu, Evolution of microstructure, mechanical and corrosion properties of AlCoCrFeNi high-entropy alloy prepared by direct laser fabrication. J. Alloys Compd. 694, 971–981 (2017)CrossRefGoogle Scholar
  8. 8.
    T.M. Butler, M.L. Weaver, Oxidation behavior of arc melted AlCoCrFeNi multi-component high-entropy alloys. J. Alloys Compd. 674, 229–244 (2016)CrossRefGoogle Scholar
  9. 9.
    Y. Wang, Y. Yang, H. Yang, M. Zhang, J. Qiao, Effect of nitriding on the tribological properties of Al1.3CoCuFeNi2 high-entropy alloy. J. Alloys Compd. 725, 365–372 (2017)CrossRefGoogle Scholar
  10. 10.
    T.M. Butler, M.L. Weaver, Investigation of the phase stabilities in AlNiCoCrFe high entropy alloys. J. Alloys Compd. 691, 119–129 (2016)CrossRefGoogle Scholar
  11. 11.
    W. Chen, Z. Fu, S. Fang, H. Xiao, D. Zhu, Alloying behavior, microstructure and mechanical properties in a FeNiCrCo0.3Al0.7 high entropy alloy. Mater. Des. 51, 854–860 (2013)CrossRefGoogle Scholar
  12. 12.
    S. Fang, W. Chen, Z. Fu, Microstructure and mechanical properties of twinned Al0.5CrFeNiCo0.3C0.2 high entropy alloy processed by mechanical alloying and spark plasma sintering. Mater. Des. 54, 973–979 (2014)CrossRefGoogle Scholar
  13. 13.
    G. Qin, W. Xue, C. Fan, R. Chen, L. Wang, Y. Su, H. Ding, J. Guo, Effect of Co content on phase formation and mechanical properties of (AlCoCrFeNi)100–x Cox high-entropy alloys. Mater. Sci. Eng., A 710, 200–205 (2018)CrossRefGoogle Scholar
  14. 14.
    C.J. Tong, M.R. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, S.J. Lin, S.Y. Chang, Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 36, 1263–1271 (2005)CrossRefGoogle Scholar
  15. 15.
    C.Y. Hsu, J.W. Yeh, S.K. Chen, T.T. Shun, Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl0.5Fe alloy with boron addition. Metall. Mater. Trans. A 35, 1465–1469 (2004)CrossRefGoogle Scholar
  16. 16.
    M.R. Chen, S.J. Lin, J.W. Yeh, S.K. Chen, Y.S. Huang, M.H. Chuang, Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al0.5CoCrCuFeNi high-entropy alloy. Metall. Mater. Trans. A 37, 1363–1369 (2006)CrossRefGoogle Scholar
  17. 17.
    M.R. Chen, S.J. Lin, J.W. Yeh, S.K. Chen, Y.S. Huang, C.P. Tu, Microstructure and properties of Al0.5CoCrCuFeNiTix (x = 0–2.0) high-entropy alloys. Mater. Trans. 47, 1395–1401 (2006)CrossRefGoogle Scholar
  18. 18.
    X. Liu, W. Lei, L. Ma, J. Liu, J. Liu, J. Cui, On the microstructures, phase assemblages and properties of Al0.5CoCrCuFeNiSix high-entropy alloys. J. Alloys Compd. 630, 151–157 (2015)CrossRefGoogle Scholar
  19. 19.
    Y. Wang, Y. Yang, H. Yang, M. Zhang, S. Ma, J. Qiao, Microstructure and wear properties of nitrided AlCoCrFeNi high-entropy alloy. Mater. Chem. Phys. 210, 233–239 (2018)CrossRefGoogle Scholar
  20. 20.
    L.M. Du, L.W. Lan, S. Zhu, H.J. Yang, X.H. Shi, P.K. Liaw, J.W. Qiao, Effects of temperature on the tribological behavior of Al0.25CoCrFeNi high-entropy alloy. J. Mater. Sci. Technol. 35, 917–925 (2019)CrossRefGoogle Scholar
  21. 21.
    L. Ma, L. Wang, Z. Nie, F. Wang, Y. Xue, J. Zhou, T. Cao, Y. Wang, Y. Ren, Reversible deformation-induced martensitic transformation in Al0.6CoCrFeNi high-entropy alloy investigated by in situ synchrotron- based high-energy X-ray diffraction. Acta Mater. 128, 12–21 (2017)CrossRefGoogle Scholar
  22. 22.
    Y.F. Kao, T.J. Chen, S.K. Chen, J.W. Yeh, Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0 ≤ x≤2) high-entropy alloys. J. Alloys Compd. 488, 57–64 (2009)CrossRefGoogle Scholar
  23. 23.
    S. Kumar, A. Patnaik, A.K. Pradhan, V. Kumar, Room temperature wear study of Al0.4FeCrNiCox(x = 0, 0.25, 0.5, 1.0 mol) high-entropy alloys under oil lubricating conditions. J. Mater. Res. 34, 841–853 (2019)CrossRefGoogle Scholar
  24. 24.
    F. He, Z. Wang, Q. Wu, S. Niu, J. Li, J. Wang, C.T. Liu, Solid solution island of the Co–Cr–Fe–Ni high entropy alloy system. Scr. Mater. 131, 42–46 (2017)CrossRefGoogle Scholar
  25. 25.
    M.M. Khruschov, Principles of abrasive wear. Wear 28, 69–88 (1974)CrossRefGoogle Scholar
  26. 26.
    I. Hutching, Tribology; Friction And Wear of Engineering Materials (Elsevier, London, 2017)Google Scholar
  27. 27.
    G. Rasool, M.M. Stack, Mapping the role of Cr content in dry sliding of steels: comparison between maps for material and counterface. Tribiol. Int. 80, 49–57 (2014)CrossRefGoogle Scholar
  28. 28.
    A. Gaard, N. Hallback, P. Krakhmalev, J. Bergstrom, Temperature effects on adhesive wear in dry sliding contacts. Wear 268, 968–975 (2010)CrossRefGoogle Scholar
  29. 29.
    P.C. Okonkwo, G. Kelly, B.F. Rolfe, M.P. Pereira, The effect of sliding speed on the wear of steel—tool steel pairs. Tribiol. Int. 97, 218–227 (2016)CrossRefGoogle Scholar
  30. 30.
    M.K. Mondal, K. Biswas, J. Maity, Dry sliding wear behaviour of a novel 6351 Al–Al4 SiC4 composite at high loads. Can. Metall. Q. 55, 75–93 (2016)CrossRefGoogle Scholar
  31. 31.
    P. Heilmann, J. Don, T.C. Sun, D.A. Rigney, Sliding wear and transfer. Wear 91, 171–190 (1983)CrossRefGoogle Scholar
  32. 32.
    A.F. Smith, The influenc of surface oxidation and sliding speed on the unlubricated wear of 316 stainless steel at low load. Wear 105, 91–107 (1985)CrossRefGoogle Scholar
  33. 33.
    X. Ji, S.H. Alavi, S.P. Harimkar, Y. Zhang, Sliding wear of spark plasma sintered CrFeCoNiCu high-entropy alloy coatings: effect of aluminum addition. J. Mater. Eng. Perform. 27, 5815–5822 (2018)CrossRefGoogle Scholar
  34. 34.
    J.M. Wu, S.J. Lin, J.W. Yeh, S.K. Chen, Y.S. Huang, H.C. Chen, Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content. Wear 261, 513–519 (2006)CrossRefGoogle Scholar
  35. 35.
    L.D. Conceicao, A.S.C.M. D’Oliveira, The effect of oxidation on the tribolayer and sliding wear of a Co-based coating. Surf. Coat. Technol. 288, 69–78 (2016)CrossRefGoogle Scholar
  36. 36.
    E.S. Zanoria, S. Danyluk, M.J. Mcnallan, Formation of cylindrical sliding-wear debris on silicon in humid conditions and elevated temperatures. Tribol. Trans. 38, 721–727 (1995)CrossRefGoogle Scholar
  37. 37.
    A. Zmitrowicz, Wear debris: a review of properties and constitutive models. J. Theor. Appl. Mech. 43, 3–35 (2005)Google Scholar
  38. 38.
    D. Mandal, B.K. Dutta, S.C. Panigrahi, Wear and friction behavior of stir cast aluminium-base short steel fiber reinforced composites. Wear 257, 654–664 (2004)CrossRefGoogle Scholar
  39. 39.
    V. Singh, K. Marchev, C.V. Cooper, E.I. Meletis, Intensified plasma-assisted nitriding of AISI 316L stainless steel. Surf. Coat. Technol. 160, 249–258 (2002)CrossRefGoogle Scholar
  40. 40.
    M.R. Andres, A. Conde, J.D. Damborenea, I. Garcia, Friction and wear behaviour of dual phase steels in discontinuous sliding contact conditions as a function of sliding speed and contact frequency. Tribol. Int. 90, 32–42 (2015)CrossRefGoogle Scholar
  41. 41.
    H. So, C.T. Chen, Y.A. Chen, Wear behaviours of laser-clad stellite alloy 6. Wear 192, 78–84 (1996)CrossRefGoogle Scholar
  42. 42.
    I. Velkavrh, F. Ausserer, S. Klien, J. Brenner, P. Foret, A. Diem, The effect of gaseous atmospheres on friction and wear of steel–steel contacts. Tribol. Int. 79, 99–110 (2014)CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Saurav Kumar
    • 1
  • Amar Patnaik
    • 2
    Email author
  • Ajaya Kumar Pradhan
    • 1
  • Vinod Kumar
    • 3
  1. 1.Department of Metallurgical and Materials EngineeringMNITJaipurIndia
  2. 2.Department of Mechanical EngineeringMNITJaipurIndia
  3. 3.Discipline of Metallurgy Engineering and Materials ScienceIITIndoreIndia

Personalised recommendations