Advertisement

Investigation of the Aging Behavior of a Cu–Ni–Si Rolled Alloy

  • Paul Stavroulakis
  • Anagnostis Toulfatzis
  • Athanasios Vazdirvanidis
  • George PantazopoulosEmail author
  • Spyros Papaefthymiou
Article
  • 18 Downloads

Abstract

The effect of the aging heat treatment on the mechanical properties and the microstructure of a medium strength high electrical conductivity Cu–Ni–Si alloy was investigated within the frame of this work. Tensile, bend and hardness testing, in addition to optical, scanning electron microscopy and electron backscatter diffraction, were employed as the main analytical techniques, in the context of the present investigation. Results showed that the average grain size did not exhibit major differences for different aging conditions, while the formation of a more oriented texture with the progression of the aging treatment was observed. Superior mechanical properties were identified in the peak-aged condition for the specimens aged at the lowest temperature. Post-necking and total elongation values increased substantially after extreme overaging. The bending surfaces exhibited a degradation up to the point of peak aging from where on an improvement of the bending folds’ quality was observed.

Keywords

Cu–Ni–Si alloys Aging treatment Mechanical properties Microstructure EBSD 

Notes

Acknowledgements

The authors wish to express special thanks to Mr. Andreas Rikos (ELKEME S.A.) for his assistance and technical support in metallographic sample preparation.

References

  1. 1.
    D. Zhao, Q.M. Dong, P. Liu, B.X. Kang, J.L. Huang, Z.H. Jin, Aging behavior of Cu–Ni–Si alloy. Mater. Sci. Eng. A 361, 93–99 (2003)CrossRefGoogle Scholar
  2. 2.
    P. Liu, B.X. Kang, X.G. Cao, J.L. Huang, H.C. Gu, Strengthening mechanisms in a rapidly solidified and aged Cu–Cr alloy. J. Mater. Sci. 35, 1691–1694 (2000)CrossRefGoogle Scholar
  3. 3.
    Copper Development Association, Copper Beryllium—Health & Safety Notes, publication 104, (2003)Google Scholar
  4. 4.
    P. Liu, B.X. Kang et al., Aging precipitation and recrystallization of rapidly solidified Cu–Cr–Zr–Mg alloy. Mater. Sci. Eng. A 265, 262–267 (1999)CrossRefGoogle Scholar
  5. 5.
    H. Fernee, J. Nairn, A. Atrens, Precipitation hardening of Cu–Fe–Cr alloys part I mechanical and electrical properties. J. Mater. Sci. 36, 2711–2719 (2001)CrossRefGoogle Scholar
  6. 6.
    H.J. Ryu, H.K. Baik, S.H. Hong, Effect of thermomechanical treatments on microstructure and properties of Cu-base leadframe. J. Mater. Sci. 35, 3641–3646 (2000)CrossRefGoogle Scholar
  7. 7.
    Q. Lei, Z. Li, T. Xiao, Z.Q. Xiang, W.T. Qiu, Z. Xiao, A new ultrahigh strength Cu–Ni–Si alloy. Intermetallics 42, 77–84 (2013)CrossRefGoogle Scholar
  8. 8.
    ASM International, ASM Specialty Handbook Copper and Copper Alloys, (2001)Google Scholar
  9. 9.
    I. Altenberger, H.A. Kuhn, H.R. Muller, Material properties of high-strength beryllium-free copper alloys. Int. J. Mater. Prod. Technol. 50, 124–146 (2015)CrossRefGoogle Scholar
  10. 10.
    Q. Lei, Z. Li, Y. Gao, X. Peng, B. Derby, Microstructure and mechanical properties of a high strength Cu-Ni–Si alloy treated by combined aging processes. J. Alloy. Compd. 695, 2413–2423 (2017)CrossRefGoogle Scholar
  11. 11.
    S. Suzuki, N. Shibutani, K. Mimura, M. Isshiki, Y. Waseda, Improvement in strength and electrical conductivity of Cu–Ni–Si alloys by aging and cold rolling. J. Alloy. Compd. 417, 116–120 (2006)CrossRefGoogle Scholar
  12. 12.
    L. Jia, X. Lin, H. Xie, Z. Lu, X. Wang, Abnormal improvement on electrical conductivity of Cu–Ni–Si alloys resulting from semi-isothermal treatment. Mater. Lett. 77, 107–109 (2012)CrossRefGoogle Scholar
  13. 13.
    X.-P. Xiao, B.-Q. Xiong, Q.-S. Wang, G.-L. Xie, L.-J. Peng, G.-X. Huang, Microstructure and properties of Cu–Ni–Si–Zr alloy after thermomechanical treatments. Rare Met. 32, 144–149 (2013)CrossRefGoogle Scholar
  14. 14.
    M.G. Corson, Copper hardened by a new method. J. Brass World Platers’ Guide. 23, 77-79595 (1927)Google Scholar
  15. 15.
    I. Altenberger, H.-A. Kuhn, M. Gholami, M. Mhaede, M. Wollmann, L. Wagner, Ultrafine-grained high strength Cu–Ni–Si alloys. Mater. Sci. Forum. 892, 64–69 (2017)CrossRefGoogle Scholar
  16. 16.
    S. Semboshi, S. Sato, A. Iwase, T. Takasugi, Discontinuous precipitates in age-hardening Cu–Ni–Si alloys. Mater. Character 115, 39–45 (2016)CrossRefGoogle Scholar
  17. 17.
    H. Zhou, T. Gu, D. Yang, Z. Jiang, J. Zeng, Effect of aging precipitation on properties of Cu–Ni–Si–Mg Alloy. Adv. Mater. Res. 197–198, 1315–1320 (2011)CrossRefGoogle Scholar
  18. 18.
    J.Y. Cheng, B.B. Tang, F.X. Yu, B. Shen, Evaluation of nanoscaled precipitates in a Cu–Ni–Si–Cr alloy during aging. J. Alloy. Compd. 614, 189–195 (2014)CrossRefGoogle Scholar
  19. 19.
    Chichiro Watanabe, Ryoichi Monzen, Coarsening of δ-Ni2Si precipitates in a Cu–Ni–Si alloy. J. Mater. Sci. 46, 4327–4335 (2011)CrossRefGoogle Scholar
  20. 20.
    Q. Wang, G. Xie, X. Mi, B. Xiong, X. Xiao, The precipitation and strengthening mechanism of Cu–Ni–Si–Co Alloy. Mater. Sci. Forum 749, 294–298 (2013)CrossRefGoogle Scholar
  21. 21.
    T.B. Massalski, L.H. Bennett, J.L. Murray, H. Baker, Binary Alloy Phase Diagrams (American Society for Metals, Metals Park, 1986)Google Scholar
  22. 22.
    M.E. Schlesinger, Thermodynamics of solid transition-metal silicides. Chem. Rev. 90, 607–628 (1990)CrossRefGoogle Scholar
  23. 23.
    H. Azzeddine, B. Mehdi, L. Hennet, D. Thiaudiere, B. Alili, M. Kawasaki, D. Bradai, T.G. Langdon, An in situ synchrotron X-ray diffraction study of precipitation kinetics in a severely deformed Cu–Ni–Si alloy. Mater. Sci. Eng. A 597, 288–294 (2014)CrossRefGoogle Scholar
  24. 24.
    C. Wang, J. Zhu, Y. Lu, Y. Guo, X. Liu, Thermodynamic description of the Cu–Ni–Si system. J. Phase Equilib. Diffus. 35, 93–104 (2014)CrossRefGoogle Scholar
  25. 25.
    D. Li, Q. Wang, B. Jiang, X. Li, W. Zhou, C. Dong, H. Wang, Q. Chen, Minor-alloyed Cu–Ni–Si alloys with high hardness and electric conductivity designed by a cluster formula approach. Prog. Nat. Sci. Mater. Int. 27, 467–473 (2017)CrossRefGoogle Scholar
  26. 26.
    J. Lei, X. Hui, T. Shiping, Z. Rong, L. Zhenlin, Microstructure and selection of grain boundary phase of Cu–Ni–Si ternary alloys. Rare Met. Mater. Eng. 44, 3050–3054 (2015)CrossRefGoogle Scholar
  27. 27.
    Z. Li, Z.Y. Pan, Y.Y. Zhao, Z. Xiao, M.P. Wang, Microstructure and properties of high-conductivity, super-high strength Cu-8.0Ni-1.8Si-0.6Sn-0.15Mg alloy. J. Mater. Res. 24, 2123–2129 (2009)CrossRefGoogle Scholar
  28. 28.
    M. Gholami, I. Altenberger, J. Vesely, H.-A. Kuhn, M. Wollmann, M. Janecek, Effects of severe plastic deformation on transformation kinetics of precipitates in CuNi3Si1Mg. Mater. Sci. Eng. A 676, 156–164 (2016)CrossRefGoogle Scholar
  29. 29.
    G. Dieter, Mechanical Metallurgy (McGraw-Hill, New York, 1988)Google Scholar
  30. 30.
    P. Stavroulakis, A. Toulfatzis, A. Vazdirvanidis, G. Pantazopoulos, S. Papaefthymiou, Mechanical behaviour and microstructure of heat-treated Cu–Ni–Si alloy. Mater. Sci. Technol. (2018).  https://doi.org/10.1080/02670836.2018.1498433 Google Scholar
  31. 31.
    Y. Zhang, A.A. Volinsky, Q. Xu, Z. Chai, B. Tian, P. Liu, H.T. Tran, Deformation behavior and microstructure evolution of the Cu-2Ni-0.5Si-0.15Ag alloy during hot compression. Metall. Mater. Trans. Part A 46, 5871–5876 (2015)CrossRefGoogle Scholar
  32. 32.
    I. Altenberger, H.A. Kuhn, M. Gholami, M. Mhaede, L. Wagner, Characterization of ultrafine grained Cu–Ni–Si alloys by electron backscatter diffraction. IOP Conf. Ser. Mater. Sci. Eng. 63, 012135 (2014).  https://doi.org/10.1088/1757-899X/63/1/012135 CrossRefGoogle Scholar
  33. 33.
    Y. Zhang, B. Tian, A. Volinsky, H. Sun, Z. Chai, P. Liu, X. Chen, Y. Liu, Microstructure and precipitate’s characterization of the Cu–Ni–Si–P alloy. J. Mater. Eng. Perform. 25, 1336–1341 (2016)CrossRefGoogle Scholar
  34. 34.
    J. Lei, J. Huang, P. Liu, X. Jing, D. Zhao, X. Zhi, The effects of aging precipitation on the recrystallization of CuNiSiCr alloy. J. Wuhan Univ. Technol. 20, 21–24 (2005)CrossRefGoogle Scholar
  35. 35.
    J.E. Bailey, P.B. Hirsch, The dislocation distribution, flow stress and stored energy in cold-work polycrystalline silver. Philis. Mag. 5, 485–497 (1960)CrossRefGoogle Scholar
  36. 36.
    G. Mandal, S.K. Ghosh, D. Chakrabarti, S. Chatterjee, Effects of thermo-mechanical process parameters on microstructure and crystallographic texture of high Ni–Mo ultrahigh strength steel. Metallogr. Microstruct. Anal. 7, 222–238 (2018)CrossRefGoogle Scholar
  37. 37.
    T.R. Prabhu, Effects of ageing time on the mechanical and conductivity properties for various round bar diameters of AA 2219 Al alloy. Eng. Sci. Technol. Int. J. 20, 133–142 (2017)CrossRefGoogle Scholar
  38. 38.
    S. Saha, MdSH Tareq, R.H. Galib, Effect of overageing conditions on microstructure and mechanical properties in Al–Si–Mg alloy. J. Mater. Sci. Eng. 5, 581–585 (2016)Google Scholar
  39. 39.
    G.I. Taylor, Plastic strain in metals. J. Inst. Met. 62, 307–324 (1938)Google Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Paul Stavroulakis
    • 1
  • Anagnostis Toulfatzis
    • 2
  • Athanasios Vazdirvanidis
    • 2
  • George Pantazopoulos
    • 2
    Email author
  • Spyros Papaefthymiou
    • 1
    • 2
  1. 1.Division of Metallurgy and Materials Science, School of Mining and Metallurgical EngineeringNational Technical University of Athens (NTUA)Zografou, AttikiGreece
  2. 2.ELKEME Hellenic Research Centre for Metals S.A.Oinofyta ViotiasGreece

Personalised recommendations