Deformation Influences on Microstructure, Mechanical Properties, and Shape Memory Behavior of Cu–Al–Ni–xTi Shape Memory Alloys

  • M. Firdaus Shuwadi
  • Safaa N. Saud
  • Esah HamzahEmail author


The effects of different deformation percentages on the microstructure and mechanical properties of Cu–Al–Ni–xTi shape memory alloys (SMAs) were investigated. The experimental results demonstrated that the mechanical properties varied in accordance with the parent and precipitate phase formations, morphologies, and orientations. Furthermore, an increase in deformation can cause an effect on the density and movement of dislocations and thus influences the functional properties of the shape memory features. The results revealed that applied deformations of 2% and 4% on Cu–Al–Ni–0.5 wt% Ti SMAs attained the highest fracture and recovery strains by the shape memory effect, respectively. It can be also concluded that the significant features of shape memory alloys are susceptible to changes of the dislocation density and movements with respect to deformation and also depend mainly on the Ti concentration of the matrix, which can be modified via the formation and volume fraction of x-phase precipitates.


Cu–Al–Ni Ti addition Deformation Shape memory effects 



The authors would like to thank the Ministry of Higher Education of Malaysia and Universiti Teknologi Malaysia for providing the financial support under the University Research Grant No. Q.J130000.3024.00M57 and research facilities.


  1. 1.
    R. Kousbroek, Shape Memory Alloys. Metal and Ceramic Biomaterials (CRC Press, Boca Raton, 2018), pp. 63–90CrossRefGoogle Scholar
  2. 2.
    A. Biesiekierski, J. Wang, M.A. Gepreel, C. Wen, A new look at biomedical Ti-based shape memory alloys. Acta Biomater. 8, 1661–1669 (2012)CrossRefGoogle Scholar
  3. 3.
    J. Ma, I. Karaman, R.D. Noebe, High temperature shape memory alloys. Int. Mater. Rev. 55, 257–315 (2010)CrossRefGoogle Scholar
  4. 4.
    S. Saud, E. Hamzah, T. Abubakar, S. Farahany, Structure-property relationship of Cu–Al–Ni–Fe shape memory alloys in different quenching media. J. Mater. Eng. Perform. 23, 255–261 (2013)CrossRefGoogle Scholar
  5. 5.
    J. San Juan, M.L. Nó, C.A. Schuh, Superelastic cycling of Cu–Al–Ni shape memory alloy micropillars. Acta Mater. 60, 4093–4106 (2012)CrossRefGoogle Scholar
  6. 6.
    M. Schwartz, Smart Materials (CRC Press, Boca Raton, 2008)CrossRefGoogle Scholar
  7. 7.
    J. Chen, Z. Li, Y.Y. Zhao, A high-working-temperature CuAlMnZr shape memory alloy. J. Alloy. Compd. 480, 481–484 (2009)CrossRefGoogle Scholar
  8. 8.
    V. Sanchez-Alarcos, J.I. Perez-Landazabal, V. Recarte, J.A. Rodriguez-Velamazan, V.A. Chernenko, Effect of atomic order on the martensitic and magnetic transformations in Ni–Mn–Ga ferromagnetic shape memory alloys. J. Phys. Condens. Matter 22, 166001 (2010)CrossRefGoogle Scholar
  9. 9.
    J. Fernández, A.V. Benedetti, J.M. Guilemany, X.M. Zhang, Thermal stability of the martensitic transformation of Cu–Al–Ni–Mn–Ti. Mater. Sci. Eng. A 438–440, 723–725 (2006)CrossRefGoogle Scholar
  10. 10.
    C. Chung, C. Lam, Cu-based shape memory alloys with enhanced thermal stability and mechanical properties. Mater. Sci. Eng. A 273, 622–624 (1999)CrossRefGoogle Scholar
  11. 11.
    M. Benke, V. Mertinger, L. Daróczi, High-temperature transformation processes in Cu–13.4Al–5Ni shape memory alloy single crystals. J. Mater. Eng. Perform. 18, 496–499 (2009)CrossRefGoogle Scholar
  12. 12.
    V. Recarte, J.I. Pérez-Landazábal, A. Ibarra, M.L. Nó, Juan J. San, High temperature β phase decomposition process in a Cu–Al–Ni shape memory alloy. Mater. Sci. Eng. A 378, 238–242 (2004)CrossRefGoogle Scholar
  13. 13.
    W. Badawy, M. El-Rabiei, H. Nady, Synergistic effects of alloying elements in Cu-ternary alloys in chloride solutions. Electrochim. Acta 120, 39–45 (2014)CrossRefGoogle Scholar
  14. 14.
    Z. Karagoz, C.A. Canbay, Relationship between transformation temperatures and alloying elements in Cu–Al–Ni shape memory alloys. J. Therm. Anal. Calorim. 114, 1069–1074 (2013)CrossRefGoogle Scholar
  15. 15.
    K. Yildiz, M. Kok, Study of martensite transformation and microstructural evolution of Cu–Al–Ni–Fe shape memory alloys. J. Therm. Anal. Calorim. 115, 1509–1514 (2014)CrossRefGoogle Scholar
  16. 16.
    M.A. Morris, S. Gunter, Effect of heat treatment and thermal cycling on transformation temperatures of ductile Cu–Al–Ni–Mn–B alloys. Scr Metall Mater 26(11), 1663–1668 (1992)CrossRefGoogle Scholar
  17. 17.
    S. Saud, E. Hamzah, T. Abubakar, M. Zamri, M. Tanemura, Influence of Ti additions on the martensitic phase transformation and mechanical properties of Cu–Al–Ni shape memory alloys. J. Therm. Anal. Calorim. 118, 111–112 (2014)CrossRefGoogle Scholar
  18. 18.
    J.S. Lee, C.M. Wayman, Grain refinement of a Cu–Al–Ni shape memory alloy by Ti and Zr additions. Trans. Jpn. Inst. Met. 27, 584–591 (1986)CrossRefGoogle Scholar
  19. 19.
    K. Sugimoto, K. Kamei, H. Matsumoto, S. Komatsu, K. Akamatsu, T. Sugimoto, Grain-refinement and the related phenomena in quaternary Cu–Al–Ni–Ti shape memory alloys. J. Phys. Colloq. 43, C4-761–C4-766 (1982)CrossRefGoogle Scholar
  20. 20.
    J.W. Xu, Effects of Gd addition on microstructure and shape memory effect of Cu–Zn–Al alloy. J. Alloy. Compd. 448, 331–335 (2008)CrossRefGoogle Scholar
  21. 21.
    H. Liu, N. Si, G. Xu, Influence of process factors on shape memory effect of CuZnAl alloys. Trans. Nonferr. Met. Soc. China 16, 1402–1409 (2006)CrossRefGoogle Scholar
  22. 22.
    H.W. Kim, A study of the two-way shape memory effect in Cu–Zn–Al alloys by the thermomechanical cycling method. J. Mater. Process. Technol. 146, 326–329 (2004)CrossRefGoogle Scholar
  23. 23.
    K. Bhattacharya, Microstructure of Martensite: Why it Forms and How it Gives Rise to the Shape-Memory Effect (OUP, Oxford, 2003)Google Scholar
  24. 24.
    M. Zare, M. Ketabchi, Effect of chromium element on transformation, mechanical and corrosion behavior of thermomechanically induced Cu–Al–Ni shape-memory alloys. J. Therm. Anal. Calorim. 127, 2113–2123 (2017)CrossRefGoogle Scholar
  25. 25.
    A. Agrawal, R.K. Dube, Methods of fabricating Cu–Al–Ni shape memory alloys. J. Alloys Compd. 750, 235–247 (2018)CrossRefGoogle Scholar
  26. 26.
    S. Vajpai, R. Dube, S. Sangal, Application of rapid solidification powder metallurgy processing to prepare Cu–Al–Ni high temperature shape memory alloy strips with high strength and high ductility. Mater. Sci. Eng. A 570, 32–42 (2013)CrossRefGoogle Scholar
  27. 27.
    D. Tarnita, D.N. Tarnita, N. Bizdoaca, I. Mindrila, M. Vasilescu, Properties and medical applications of shape memory alloys. Rom. J. Morphol. Embryol. 50, 15–21 (2009)Google Scholar
  28. 28.
    D.C. Lagoudas, Shape Memory Alloys: Modeling and Engineering Applications (Springer, Berlin, 2008)Google Scholar
  29. 29.
    S.N. Saud, E. Hamzah, H. Bakhsheshi-Rad, T. Abubakar, Effect of Ta additions on the microstructure, damping, and shape memory behaviour of prealloyed Cu–Al–Ni shape memory alloys. Scanning 2017, 1789454 (2017)Google Scholar
  30. 30.
    U. Sarı, İ. Aksoy, Electron microscopy study of 2H and 18R martensites in Cu–11.92wt% Al–3.78wt% Ni shape memory alloy. J. Alloys Compd. 417, 138–142 (2006)CrossRefGoogle Scholar
  31. 31.
    U. Sari, Influences of 2.5wt% Mn addition on the microstructure and mechanical properties of Cu–Al–Ni shape memory alloys. Int. J. Miner. Metall. Mater. 17, 192–198 (2010)CrossRefGoogle Scholar
  32. 32.
    S.H. Chang, Influence of chemical composition on the damping characteristics of Cu–Al–Ni shape memory alloys. Mater. Chem. Phys. 125, 358–363 (2011)CrossRefGoogle Scholar
  33. 33.
    E. Patoor, D.C. Lagoudas, P.B. Entchev, L.C. Brinson, X. Gao, Shape memory alloys, part I: general properties and modeling of single crystals. Mech. Mater. 38, 391–429 (2006)CrossRefGoogle Scholar
  34. 34.
    K. Adachi, K. Shoji, Y. Hamada, Formation of (X) phases and origin of grain refinement effect in Cu–Al–Ni shape memory alloys added with titanium. ISIJ Int. 29, 378–387 (1989)CrossRefGoogle Scholar
  35. 35.
    K. Adachi, Y. Hamada, Y. Tagawa, Crystal structure of the X-phase in grain-refined Cu–Al–Ni–Ti shape memory alloys. Scr. Metall. 21, 453–458 (1987)CrossRefGoogle Scholar
  36. 36.
    K. Otsuka, C. Wayman, K. Nakai, H. Sakamoto, K. Shimizu, Superelasticity effects and stress-induced martensitic transformations in Cu–Al–Ni alloys. Acta Metall. 24, 207–226 (1976)CrossRefGoogle Scholar
  37. 37.
    E. Vives, J. Baró, M.C. Gallardo, J.-M. Martín-Olalla, F.J. Romero, S.L. Driver et al., Avalanche criticalities and elastic and calorimetric anomalies of the transition from cubic Cu–Al–Ni to a mixture of 18 R and 2 H structures. Phys. Rev. B 94, 024102 (2016)CrossRefGoogle Scholar
  38. 38.
    M. Lai, Y. Li, L. Lillpopp, D. Ponge, S. Will, D. Raabe, On the origin of the improvement of shape memory effect by precipitating VC in Fe–Mn–Si-based shape memory alloys. Acta Mater. 155, 222–235 (2018)CrossRefGoogle Scholar
  39. 39.
    R.D. Dar, H. Yan, Y. Chen, Grain boundary engineering of Co–Ni–Al, Cu–Zn–Al, and Cu–Al–Ni shape memory alloys by intergranular precipitation of a ductile solid solution phase. Scr. Mater. 115, 113–117 (2016)CrossRefGoogle Scholar
  40. 40.
    M.R. da Silva, P. Gargarella, T. Gustmann, W.J. Botta Filho, C.S. Kiminami, J. Eckert et al., Laser surface remelting of a Cu–Al–Ni–Mn shape memory alloy. Mater. Sci. Eng. A 661, 61–67 (2016)CrossRefGoogle Scholar
  41. 41.
    U. Sarı, T. Kırındı, Effects of deformation on microstructure and mechanical properties of a Cu–Al–Ni shape memory alloy. Mater. Charact. 59, 920–929 (2008)CrossRefGoogle Scholar
  42. 42.
    J. Pelegrina, A. Yawny, M. Sade, Diffusive phenomena and the austenite/martensite relative stability in Cu-based shape-memory alloys. Shape Mem. Superelast. 4, 48–60 (2018)CrossRefGoogle Scholar
  43. 43.
    J. Wang, H. Sehitoglu, H. Maier, Dislocation slip stress prediction in shape memory alloys. Int. J. Plast 54, 247–266 (2014)CrossRefGoogle Scholar
  44. 44.
    C. Figueroa, F. Garcia-Castillo, V. Jacobo, J. Cortés-Pérez, R. Schouwenaars, Microstructural and superficial modification in a Cu–Al–Be shape memory alloy due to superficial severe plastic deformation under sliding wear conditions, in IOP Conference Series: Materials Science and Engineering, p. 012011. IOP Publishing (2017)Google Scholar
  45. 45.
    L. Hu, S. Jiang, Y. Zhang, Y. Zhao, S. Liu, C. Zhao, Multiple plastic deformation mechanisms of NiTi shape memory alloy based on local canning compression at various temperatures. Intermetallics 70, 45–52 (2016)CrossRefGoogle Scholar
  46. 46.
    G. Tadayyon, Y. Guo, M. Mazinani, S.M. Zebarjad, P. Tiernan, S.A. Tofail et al., Effect of different stages of deformation on the microstructure evolution of Ti-rich NiTi shape memory alloy. Mater. Charact. 125, 51–66 (2017)CrossRefGoogle Scholar
  47. 47.
    K. Melton, Ni-Ti based shape memory alloys. Eng. Asp. Shape Mem. Alloys 344, 21–25 (1990)CrossRefGoogle Scholar
  48. 48.
    K. Melton, O. Mercier, The mechanical properties of NiTi-based shape memory alloys. Acta Metall. 29, 393–398 (1981)CrossRefGoogle Scholar
  49. 49.
    Y. Sutou, T. Omori, J. Wang, R. Kainuma, K. Ishida, Characteristics of Cu–Al–Mn-based shape memory alloys and their applications. Mater. Sci. Eng. A 378, 278–282 (2004)CrossRefGoogle Scholar
  50. 50.
    S. Wu, H. Lin, Recent development of TiNi-based shape memory alloys in Taiwan. Mater. Chem. Phys. 64, 81–92 (2000)CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.Faculty of Mechanical EngineeringUniversiti Teknologi MalaysiaJohor BahruMalaysia
  2. 2.Faculty of Information Sciences and EngineeringManagement and Science UniversityShah AlamMalaysia

Personalised recommendations