Advertisement

Metallography, Microstructure, and Analysis

, Volume 5, Issue 4, pp 278–293 | Cite as

Friction Stir Processing as a Novel Technique to Achieve Superplasticity in Aluminum Alloys: Process Variables, Variants, and Applications

  • Vivek V. Patel
  • Vishvesh Badheka
  • Abhishek Kumar
Review

Abstract

This article provides an overview of the potential for superplasticity of aluminum alloys using friction stir processing (FSP). FSP is a variant of friction stir welding (FSW), and FSP is an effective technique to alter the metallurgical and mechanical properties of the material, which results in superplastic properties at high strain rate and low temperature. This makes FSP as an attractive and cost-effective method to produce superplastic materials. A detailed summary of previously reported superplasticity in all aluminum alloys using FSP is tabulated in this review. It reveals the influence of tool design, machine variables, number of passes, active cooling, grain size, superplastic temperature, strain rate, and elongation on the superplastic properties of FSP aluminum alloys. Variants of FSP to achieve superplasticity at optimized conditions are proposed based on dual rotation of tool and additional cooing during the process. Applications of superplastic forming in aerospace and automotive are discussed. The direction of research in friction stir-processed superplasticity is covered in future scope.

Keywords

Aluminum Forming Friction Processing Recrystallization Strain Stir Superplasticity 

Notes

Acknowledgments

Authors are thankful to the RESPOND project (ISRO/RES/4/567/09-10) of ISRO and ORSP, PDPU project (ORSP/R&D/SRP/2015/SPVP) for motivating to write this review article. Authors would also like to thank the technical reviewer(s) for reviewing this research paper.

References

  1. 1.
    Vol. JIS-H-7007 3 (Glossary of Terms Used in Metallic Superplastic Materials, 1995)Google Scholar
  2. 2.
    R.S. Mishra, P.S. De, N. Kumar, Friction Stir Processing (Springer, Berlin, 2014)CrossRefGoogle Scholar
  3. 3.
    T.-G. Nieh, J. Wadsworth, O.D. Sherby, Superplasticity in Metals and Ceramics (Cambridge University Press, Cambridge, 2005)Google Scholar
  4. 4.
    F. Liu, Z. Ma, Low-temperature superplasticity of friction stir processed Al–Zn–Mg–Cu alloy. Scripta Mater. 58, 667–670 (2008)CrossRefGoogle Scholar
  5. 5.
    N. Tsuji, K. Shiotsuki, Y. Saito, Superplasticity of ultra-fine grained Al-Mg alloy produced by accumulative roll-bonding. JIM Mater. Trans. 40, 765–771 (1999)CrossRefGoogle Scholar
  6. 6.
    R.Z. Valiev, D.A. Salimonenko, N.K. Tsenev, P.B. Berbon, T.G. Langdon, Observations of high strain rate superplasticity in commercial aluminum alloys with ultrafine grain sizes. Scripta Mater. 37, 1945–1950 (1997)CrossRefGoogle Scholar
  7. 7.
    A. Barnes, Industrial applications of superplastic forming: trends and prospects, Materials Science Forum, vol. 357 (Trans Tech Publications, Durnten Zurich, 2001), pp. 3–16Google Scholar
  8. 8.
    B. Dunwoody, The production of automotive body panels in 5083 SPF aluminium alloy, Materials Science Forum, vol. 357 (Trans Tech Publ, Durnten Zurich, 2001), pp. 59–64Google Scholar
  9. 9.
    R.S. Mishra, M. Mahoney, S. McFadden, N. Mara, A. Mukherjee, High strain rate superplasticity in a friction stir processed 7075 Al alloy. Scripta Mater. 42, 163–168 (1999)CrossRefGoogle Scholar
  10. 10.
    R. Kaibyshev, O. Sitdikov, S. Olenyov, Ultrafine grain formation during equal-channel angular extrusion in an Al–Mg–Sc alloy. Ultrafine Grained Mater. II, 65–74 (2013)CrossRefGoogle Scholar
  11. 11.
    G.A. Salischev, S.V. Zherebtsov, R.M. Galeyev, Evolution of microstructure and mechanical behavior of titanium during warm multiple deformation, in Ultrafine Grained Materials II, ed. by Y.T. Zhu, T.G. Langdon, R.S. Mishra, S.L. Semiatin, M.J. Saran, T.C. Lowe (TMS, Warrendale, 2002), pp. 123–132Google Scholar
  12. 12.
    A. Dutta, A.V. Rao, Short communication Low temperature forgeability of Ti–48Al–2Cr–2Nb alloy. Mater. Sci. Technol. 16, 231–232 (2000)CrossRefGoogle Scholar
  13. 13.
    N. Tsuji, Y. Ito, Y. Koizumi, Y. Minamino, Y. Saito, Mechanical properties of ultrafine grained aluminum and ultra low carbon steel produced by ARB process, in Ultrafine Grained Materials II, ed. by Y.T. Zhu, T.G. Langdon, R.S. Mishra, S.L. Semiatin, M.J. Saran, T.C. Lowe (TMS, Warrendale, 2002), pp. 389–398Google Scholar
  14. 14.
    S.-H. Kim, J.K. Lee, D.N. Lee, Grain refinement and texture development in asymmetrically rolled aluminum alloy sheets, in Ultrafine Grained Materials II, ed. by Y.T. Zhu, T.G. Langdon, R.S. Mishra, S.L. Semiatin, M.J. Saran, T.C. Lowe (TMS, Warrendale, 2002), pp. 55–64Google Scholar
  15. 15.
    A.P. Zhilyaev, T.G. Langdon, Using high-pressure torsion for metal processing: Fundamentals and applications. Prog. Mater Sci. 53, 893–979 (2008)CrossRefGoogle Scholar
  16. 16.
    R.S. Mishra, M.W. Mahoney, Friction stir processing: a new grain refinement technique to achieve high strain rate superplasticity in commercial alloys. Mater. Sci. Forum 357, 507–514 (2001)CrossRefGoogle Scholar
  17. 17.
    N.E. Paton, C.H. Hamilton, J.A. Wert, M.W. Mahoney, Characterization of fine-grained superplastic aluminum alloys. JOM 34, 21–27 (1982)CrossRefGoogle Scholar
  18. 18.
    X. Jiang, Q. Wu, J. Cui, L. Ma, A study of the improvement. Metall. Mater. Trans. A 24, 2596–2598 (1993)CrossRefGoogle Scholar
  19. 19.
    J. Xinggang, C. Jianzhong, M. Longxiang, The influence of the rolling direction on the mechanical behavior and cavity formation during superplastic deformation of 7075 A1 alloy. Acta Metall. Mater. 41, 2721–2727 (1993)CrossRefGoogle Scholar
  20. 20.
    S. Komura, Z. Horita, M. Furukawa, M. Nemoto, T.G. Langdon, An evaluation of the flow behavior during high strain rate superplasticity in an Al-Mg-Sc alloy. Metall. Mater. Trans. A 32, 707–716 (2001)Google Scholar
  21. 21.
    K.-T. Park, D.-Y. Hwang, S.-Y. Chang, D.H. Shin, Low-temperature superplastic behavior of a submicrometer-grained 5083 Al alloy fabricated by severe plastic deformation. Metall. Mater. Trans. A 33, 2859–2867 (2002)CrossRefGoogle Scholar
  22. 22.
    P. Apps, C.P. Heason, P.B. Prangnell, Ultrafine-grain structures produced by severe deformation processing, Materials Science Forum, vol. 447 (Trans Tech Publ, Durnten Zurich, 2004), pp. 423–428Google Scholar
  23. 23.
    Q. Cui, K. Ohori, Grain refinement of high purity aluminium by asymmetric rolling. Mater. Sci. Technol. 16, 1095–1101 (2000)CrossRefGoogle Scholar
  24. 24.
    S. Mousavi, S. Ebrahimi, R. Madoliat, Three dimensional numerical analyses of asymmetric rolling. J. Mater. Process. Technol. 187, 725–729 (2007)CrossRefGoogle Scholar
  25. 25.
    A. Padap, G. Chaudhari, V. Pancholi, S. Nath, Warm multiaxial forging of AISI 1016 steel. Mater. Des. 31, 3816–3824 (2010)CrossRefGoogle Scholar
  26. 26.
    R. Kapoor et al., Softening of Al during multi-axial forging in a channel die. Mater. Sci. Eng. A 560, 404–412 (2013)CrossRefGoogle Scholar
  27. 27.
    M. Noda, M. Hirohashi, K. Funami, Low temperature superplasticity and its deformation mechanism in grain refinement of AI-Mg alloy by multi-axial alternative forging. Mater. Trans. 44, 2288–2297 (2003)CrossRefGoogle Scholar
  28. 28.
    R.Z. Valiev, A. Korznikov, R. Mulyukov, Structure and properties of ultrafine-grained materials produced by severe plastic deformation. Mater. Sci. Eng. A 168, 141–148 (1993)CrossRefGoogle Scholar
  29. 29.
    A. Dutta, I. Charit, L.B. Johannes, R.S. Mishra, Deep cup forming by superplastic punch stretching of friction stir processed 7075 Al alloy. Mater. Sci. Eng. A 395, 173–179 (2005)CrossRefGoogle Scholar
  30. 30.
    W. Thomas et al. (December, 1991)Google Scholar
  31. 31.
    V.V. Patel et al., Effect of tool rotation speed on friction stir spot welded AA5052-H32 and AA6082-T6 dissimilar aluminum alloys. Metallogr. Microstruct. Anal. 5, 142–148 (2016)CrossRefGoogle Scholar
  32. 32.
    B. Gibson, D.H. Lammlein, T.J. Prater, W.R. Longhurst, C.D. Cox, M.C. Ballun, K.J. Dharmaraj, G.E. Cook, A.M. Strauss, Friction stir welding: Process, automation, and control. J. Manuf. Process. 16, 56–73 (2014)CrossRefGoogle Scholar
  33. 33.
    P. Threadgill, Terminology in friction stir welding. Sci. Technol. Weld. Joining 12, 357–360 (2007)CrossRefGoogle Scholar
  34. 34.
    R.S. Mishra, Z. Ma, Friction stir welding and processing. Mater. Sci.Eng. R 50, 1–78 (2005)CrossRefGoogle Scholar
  35. 35.
    M. Mahoney, S. Lynch, S. Friction-Stir Processing. pp. 1–15 (DTIC Document, 2006)Google Scholar
  36. 36.
    N. Sun, D. Apelian, Friction stir processing of aluminum cast alloys for high performance applications. JOM 63, 44–50 (2011)CrossRefGoogle Scholar
  37. 37.
    M. El-Rayes, E. El-Danaf, M. Soliman, Friction stir processing: an effective technique to refine grain structure and enhance ductility. Mater. Des. 31, 1231–1236 (2009)Google Scholar
  38. 38.
    E.A. El-Danaf, M.M. El-Rayes, M.S. Soliman, Friction stir processing: an effective technique to refine grain structure and enhance ductility. Mater. Des. 31, 1231–1236 (2010)CrossRefGoogle Scholar
  39. 39.
    N. Kumar, R. Mishra, Thermal stability of friction stir processed ultrafine grained Al Mg Sc alloy. Mater. Charact. 74, 1–10 (2012)CrossRefGoogle Scholar
  40. 40.
    N. Kumar, R.S. Mishra, C. Huskamp, K.K. Sankaran, Microstructure and mechanical behavior of friction stir processed ultrafine grained Al–Mg–Sc alloy. Mater. Sci. Eng. A 528, 5883–5887 (2011)CrossRefGoogle Scholar
  41. 41.
    N. Kumar, R.S. Mishra, C. Huskamp, K.K. Sankaran, Critical grain size for change in deformation behavior in ultrafine grained Al–Mg–Sc alloy. Scripta Mater. 64, 576–579 (2011)CrossRefGoogle Scholar
  42. 42.
    C.B. Smith, R.S. Mishra, Friction Stir Processing for Enhanced Low Temperature Formability: A Volume in the Friction Stir Welding and Processing Book Series (Butterworth-Heinemann, Oxford, 2014)Google Scholar
  43. 43.
    S. Pasebani, I. Charit, R.S. Mishra, Effect of tool rotation rate on constituent particles in a friction stir processed 2024Al alloy. Mater. Lett. 160, 64–67 (2015)CrossRefGoogle Scholar
  44. 44.
    R. Kapoor, K. Kandasamy, R. Mishra, J. Baumann, G. Grant, Effect of friction stir processing on the tensile and fatigue behavior of a cast A206 alloy. Mater. Sci. Eng. A 561, 159–166 (2013)CrossRefGoogle Scholar
  45. 45.
    W.-Y. Gan, Z. Zheng, H. Zhang, P. Tao, Evolution of microstructure and hardness of aluminum after friction stir processing. Trans. Nonferr. Met. Soc. China 24, 975–981 (2014)CrossRefGoogle Scholar
  46. 46.
    M.S. Węglowski, S. Dymek, Relationship between friction stir processing parameters and torque, temperature and the penetration depth of the tool. Arch Civil Mech. Eng. 13, 186–191 (2013)CrossRefGoogle Scholar
  47. 47.
    R.A. Behnagh, M. Besharati Givi, R.A. Akbari, Mechanical properties, corrosion resistance, and microstructural changes during friction stir processing of 5083 aluminum rolled plates. Mater. Manuf. Processes 27, 636–640 (2012)CrossRefGoogle Scholar
  48. 48.
    S.A. Alidokht, A. Abdollah-zadeh, S. Soleymani, T. Saeid, H. Assadi, Evaluation of microstructure and wear behavior of friction stir processed cast aluminum alloy. Mater. Charact. 63, 90–97 (2012)CrossRefGoogle Scholar
  49. 49.
    T. Mahmoud, S. Mohamed, Improvement of microstructural, mechanical and tribological characteristics of A413 cast Al alloys using friction stir processing. Mater. Sci. Eng. A 558, 502–509 (2012)CrossRefGoogle Scholar
  50. 50.
    C. Langlade, A., Roman, A., D. Schlegel, E. Gete, & M. Folea, Formation of a tribologically transformed surface (TTS) on AISI 1045 Steel by Friction Stir Processing. Mater. Manuf. Process. (2015)Google Scholar
  51. 51.
    V. Sharma, U. Prakash, B.M. Kumar, surface composites by friction stir processing: a review. J. Mater. Process. Technol. 224, 117–134 (2015)CrossRefGoogle Scholar
  52. 52.
    V. Sharma, Y. Gupta, U. Prakash, Friction stir processing strategies for uniform distribution of reinforcement in a surface composite. Mater. Manuf. Proces. (2015)Google Scholar
  53. 53.
    H. Akramifard, M. Shamanian, M. Sabbaghian, M. Esmailzadeh, Microstructure and mechanical properties of Cu/SiC metal matrix composite fabricated via friction stir processing. Mater. Des. 54, 838–844 (2014)CrossRefGoogle Scholar
  54. 54.
    K.J. Al-Fadhalah, A.I. Almazrouee, A.S. Aloraier, Microstructure and mechanical properties of multi-pass friction stir processed aluminum alloy 6063. Mater. Des. 53, 550–560 (2014)CrossRefGoogle Scholar
  55. 55.
    M.M. El-Rayes, E.A. El-Danaf, The influence of multi-pass friction stir processing on the microstructural and mechanical properties of Aluminum Alloy 6082. J. Mater. Process. Technol. 212, 1157–1168 (2012)CrossRefGoogle Scholar
  56. 56.
    K. Surekha, B. Murty, K.P. Rao, Microstructural characterization and corrosion behavior of multipass friction stir processed AA2219 aluminium alloy. Surf. Coat. Technol. 202, 4057–4068 (2008)CrossRefGoogle Scholar
  57. 57.
    A. Rao et al., Effect of multipass friction stir processing on corrosion resistance of hypereutectic Al–30Si alloy. Corros. Sci. 83, 198–208 (2014)CrossRefGoogle Scholar
  58. 58.
    L. Borrego, J. Costa, J. Jesus, A. Loureiro, J. Ferreira, Fatigue life improvement by friction stir processing of 5083 aluminium alloy MIG butt welds. Theoret. Appl. Fract. Mech. 70, 68–74 (2014)CrossRefGoogle Scholar
  59. 59.
    J. Costa, J. Jesus, A. Loureiro, J. Ferreira, L. Borrego, Fatigue life improvement of mig welded aluminium T-joints by friction stir processing. Int. J. Fatigue 61, 244–254 (2014)CrossRefGoogle Scholar
  60. 60.
    J. de Jesus, A. Loureiro, J. Costa, J. Ferreira, Effect of tool geometry on friction stir processing and fatigue strength of MIG T welds on Al alloys. J. Mater. Process. Technol. 214, 2450–2460 (2014)CrossRefGoogle Scholar
  61. 61.
    F. Chai, D. Zhang, Y. Li, W. Zhang, High strain rate superplasticity of a fine-grained AZ91 magnesium alloy prepared by submerged friction stir processing. Mater. Sci. Eng. A 568, 40–48 (2013)CrossRefGoogle Scholar
  62. 62.
    S.R. Babu, V.S. Kumar, L. Karunamoorthy, G.M. Reddy, Investigation on the effect of friction stir processing on the superplastic forming of AZ31B alloy. Mater. Des. 53, 338–348 (2014)CrossRefGoogle Scholar
  63. 63.
    V. Jain, R. Mishra, R. Verma, E. Essadiqi, Superplasticity and microstructural stability in a Mg alloy processed by hot rolling and friction stir processing. Scripta Mater. 68, 447–450 (2013)CrossRefGoogle Scholar
  64. 64.
    Q. Yang, B. Xiao, Z. Ma, Enhanced superplasticity in friction stir processed Mg–Gd–Y–Zr alloy. J. Alloy. Compd. 551, 61–66 (2013)CrossRefGoogle Scholar
  65. 65.
    R.S. Mishra, M.W. Mahoney, Metal superplasticity enhancement and forming process (US Patent, 2004)Google Scholar
  66. 66.
    A.K. Jha, K. Sreekumar, Metallurgical studies on cracked Al–5.5 Zn–2.5Mg–1.5 Cu aluminum alloy injector disc of turbine rotor. J. Fail. Anal. Prev. 8, 327–332 (2008)CrossRefGoogle Scholar
  67. 67.
    B. Smith, The Boeing 777. Adv. Mater. Process. 161, 41–44 (2003)Google Scholar
  68. 68.
    S. Karabay, M. Bayraklılar, E. Balcı, Influence of different heat treatments on the solid particle erosion behavior of Aluminum Alloy AA 7075 in industrial applications. Acta Phys. Pol. A 127, 1052–1054 (2015)CrossRefGoogle Scholar
  69. 69.
    S. Gopalakannan, T. Senthilvelan, Synthesis and Characterisation of Al 7075 reinforced with SiC and B4C nano particles fabricated by ultrasonic cavitation method. J. Sci. Ind. Res. 74, 281–285 (2015)Google Scholar
  70. 70.
    V. Balasubramanian, V. Ravisankar, G.M. Reddy, Effect of postweld aging treatment on fatigue behavior of pulsed current welded AA7075 aluminum alloy joints. J. Mater. Eng. Perform. 17, 224–233 (2008)CrossRefGoogle Scholar
  71. 71.
    R. Gupta, P. Ramkumar, B. Ghosh, Investigation of internal cracks in aluminium alloy AA7075 forging. Eng. Fail. Anal. 13, 1–8 (2006)CrossRefGoogle Scholar
  72. 72.
    M. Węglowski, Friction stir processing technology–new opportunities. Weld. Int. 28, 583–592 (2014)CrossRefGoogle Scholar
  73. 73.
    I. Charit, R.S. Mishra, Evaluation of microstructure and superplasticity in friction stir processed 5083 Al alloy. J. Mater. Res. 19, 3329–3342 (2004)CrossRefGoogle Scholar
  74. 74.
    E.A. El-Danaf, M.M. El-Rayes, M.S. Soliman, Low temperature enhanced ductility of friction stir processed 5083 aluminum alloy. Bull. Mater. Sci. 34, 1447–1453 (2011)CrossRefGoogle Scholar
  75. 75.
    L. Johannes, I. Charit, R.S. Mishra, R. Verma, Enhanced superplasticity through friction stir processing in continuous cast AA5083 aluminum. Mater. Sci. Eng. A 464, 351–357 (2007)CrossRefGoogle Scholar
  76. 76.
    S. Pradeep, V. Pancholi, Effect of microstructural inhomogeneity on superplastic behaviour of multipass friction stir processed aluminium alloy. Mater. Sci. Eng. A 561, 78–87 (2013)CrossRefGoogle Scholar
  77. 77.
    Z. Ma, R.S. Mishra, M.W. Mahoney, Superplasticity in cast A356 induced via friction stir processing. Scripta Mater. 50, 931–935 (2004)CrossRefGoogle Scholar
  78. 78.
    F. Liu, B. Xiao, K. Wang, Z. Ma, Investigation of superplasticity in friction stir processed 2219Al alloy. Mater. Sci. Eng. A 527, 4191–4196 (2010)CrossRefGoogle Scholar
  79. 79.
    I. Charit, R.S. Mishra, High strain rate superplasticity in a commercial 2024 Al alloy via friction stir processing. Mater. Sci. Eng. A 359, 290–296 (2003)CrossRefGoogle Scholar
  80. 80.
    F. Liu, Z. Ma, Achieving exceptionally high superplasticity at high strain rates in a micrograined Al–Mg–Sc alloy produced by friction stir processing. Scripta Mater. 59, 882–885 (2008)CrossRefGoogle Scholar
  81. 81.
    F. Liu, Z. Ma, Superplasticity governed by effective grain size and its distribution in fine-grained aluminum alloys. Mater. Sci. Eng. A 530, 548–558 (2011)CrossRefGoogle Scholar
  82. 82.
    F. Liu, Z. Ma, F. Zhang, High strain rate superplasticity in a micro-grained Al–Mg–Sc alloy with predominant high angle grain boundaries. J. Mater. Sci. Technol. 28, 1025–1030 (2012)CrossRefGoogle Scholar
  83. 83.
    F. Liu, Z. Ma, L. Chen, Low-temperature superplasticity of Al–Mg–Sc alloy produced by friction stir processing. Scripta Mater. 60, 968–971 (2009)CrossRefGoogle Scholar
  84. 84.
    F. Liu, Z. Ma, Contribution of grain boundary sliding in low-temperature superplasticity of ultrafine-grained aluminum alloys. Scripta Mater. 62, 125–128 (2010)CrossRefGoogle Scholar
  85. 85.
    A. Smolej et al., Superplasticity of the rolled and friction stir processed Al–4.5Mg–0.35 Sc–0.15 Zr alloy. Mater. Sci. Eng. A 590, 239–245 (2014)CrossRefGoogle Scholar
  86. 86.
    I. Charit, R.S. Mishra, Low temperature superplasticity in a friction-stir-processed ultrafine grained Al–Zn–Mg–Sc alloy. Acta Mater. 53, 4211–4223 (2005)CrossRefGoogle Scholar
  87. 87.
    Z. Ma, F. Liu, R. Mishra, Superplastic deformation mechanism of an ultrafine-grained aluminum alloy produced by friction stir processing. Acta Mater. 58, 4693–4704 (2010)CrossRefGoogle Scholar
  88. 88.
    Z. Ma, R.S. Mishra, Development of ultrafine-grained microstructure and low temperature (0.48T m) superplasticity in friction stir processed Al–Mg–Zr. Scripta Mater. 53, 75–80 (2005)CrossRefGoogle Scholar
  89. 89.
    Z. Ma, R.S. Mishra, M.W. Mahoney, Superplastic deformation behaviour of friction stir processed 7075Al alloy. Acta Mater. 50, 4419–4430 (2002)CrossRefGoogle Scholar
  90. 90.
    P. Cavaliere, A. Squillace, High temperature deformation of friction stir processed 7075 aluminium alloy. Mater. Charact. 55, 136–142 (2005)CrossRefGoogle Scholar
  91. 91.
    J.-Q. Su, T.W. Nelson, C.J. Sterling, Friction stir processing of large-area bulk UFG aluminum alloys. Scripta Mater. 52, 135–140 (2005)CrossRefGoogle Scholar
  92. 92.
    L. Johannes, R. Mishra, Multiple passes of friction stir processing for the creation of superplastic 7075 aluminum. Mater. Sci. Eng. A 464, 255–260 (2007)CrossRefGoogle Scholar
  93. 93.
    Z. Ma, R.S. Mishra, F. Liu, Superplastic behavior of micro-regions in two-pass friction stir processed 7075Al alloy. Mater. Sci. Eng. A 505, 70–78 (2009)CrossRefGoogle Scholar
  94. 94.
    F. Liu, Z. Ma, Achieving high strain rate superplasticity in cast 7075Al alloy via friction stir processing. J. Mater. Sci. 44, 2647–2655 (2009)CrossRefGoogle Scholar
  95. 95.
    K. Wang, F. Liu, Z. Ma, F. Zhang, Realization of exceptionally high elongation at high strain rate in a friction stir processed Al–Zn–Mg–Cu alloy with the presence of liquid phase. Scripta Mater. 64, 572–575 (2011)CrossRefGoogle Scholar
  96. 96.
    M.-H. Ku, F.-Y. Hung, T.-S. Lui, C. Li-Hui, Embrittlement mechanism on tensile fracture of 7075 Al alloy with friction stir process (FSP). Mater. Trans. 52, 112–117 (2011)CrossRefGoogle Scholar
  97. 97.
    A. Burgueño, T. Dieguez, H. Svoboda, Effect of processing parameters on superplastic and corrosion behavior of aluminum alloy friction stir processed, Materials Science Forum, vol. 706 (Trans Tech Publications, Durnten Zurich, 2012), pp. 965–970Google Scholar
  98. 98.
    T. Dieguez, A. Burgueño, H. Svoboda, Superplasticity of a friction stir processed 7075-T651 aluminum alloy. Procedia Mater. Sci. 1, 110–117 (2012)CrossRefGoogle Scholar
  99. 99.
    A. Orozco-Caballero et al., Lowering the temperature for high strain rate superplasticity in an Al–Mg–Zn–Cu alloy via cooled friction stir processing. Mater. Chem. Phys. 142, 182–185 (2013)CrossRefGoogle Scholar
  100. 100.
    Y. Takayama, T. Tozawa, H. Kato, Superplasticity and thickness of liquid phase in the vicinity of solidus temperature in a 7475 aluminum alloy. Acta Mater. 47, 1263–1270 (1999)CrossRefGoogle Scholar
  101. 101.
    K. Wang, F. Liu, P. Xue, B. Xiao, Z. Ma, Effects of heating rates on microstructure and superplastic behavior of friction stir processed 7075 aluminum alloy. J. Mater. Sci. 50, 1006–1015 (2015)CrossRefGoogle Scholar
  102. 102.
    P. Colegrove, H. Shercliff, Experimental and numerical analysis of aluminium alloy 7075-T7351 friction stir welds. Sci. Technol. Weld. Join. 8, 360–368 (2003)CrossRefGoogle Scholar
  103. 103.
    K. Colligan, J. Xu, J. Pickens, Welding tool and process parameter effects in friction stir welding of aluminum alloys. Friction Stir Weld. Process. II, 181–190 (2003)Google Scholar
  104. 104.
    W. Thomas, E. Nicholas, Friction stir welding for the transportation industries. Mater. Des. 18, 269–273 (1997)CrossRefGoogle Scholar
  105. 105.
    K. Elangovan, V. Balasubramanian, Influences of pin profile and rotational speed of the tool on the formation of friction stir processing zone in AA2219 aluminium alloy. Mater. Sci. Eng. A 459, 7–18 (2007)CrossRefGoogle Scholar
  106. 106.
    V.V. Patel, V.J. Badheka, A. Kumar, Effect of velocity index on grain size of friction stir processed Al-Zn-Mg-Cu alloy. Procedia Technol. 23, 537–542 (2016)CrossRefGoogle Scholar
  107. 107.
    Patel, V., Badheka, V. & Kumar, A. Influence of friction stir processed parameters on superplasticity of Al-Zn-Mg-Cu alloy. Mater. Manuf. Process. (2015)Google Scholar
  108. 108.
    V. Sharma, U. Prakash, B.M. Kumar, Surface composites by friction stir processing: a review. J. Mater. Process. Technol. 224, 117–134 (2015)CrossRefGoogle Scholar
  109. 109.
    K. Ross, C. Sorensen, Advances in temperature control for FSP. Frict. Stir Weld. Process. VII, 301–310 (2013)CrossRefGoogle Scholar
  110. 110.
    D. Marshall, C. Sorensen, System parameter identification for friction stir processing. Frict. Stir Weld. Process. VII, 289 (2013)CrossRefGoogle Scholar
  111. 111.
    W. Arbegast, P. Hartley, Friction Stir Weld Technology Development at Lockheed Martin Michoud Space System—An Overview. Trends in Welding Research (ASM International, Materials Park, 1999), pp. 541–546Google Scholar
  112. 112.
    R.-D. Fu et al., Effect of welding heat input and post-welding natural aging on hardness of stir zone for friction stir-welded 2024-T3 aluminum alloy thin-sheet. Mater. Sci. Eng. A 559, 319–324 (2013)CrossRefGoogle Scholar
  113. 113.
    Ø. Frigaard, Ø. Grong, O. Midling, A process model for friction stir welding of age hardening aluminum alloys. Metall. Mater. Trans. A 32, 1189–1200 (2001)CrossRefGoogle Scholar
  114. 114.
    C. Chen, R. Kovacevic, Finite element modeling of friction stir welding—thermal and thermomechanical analysis. Int. J. Mach. Tools Manuf 43, 1319–1326 (2003)CrossRefGoogle Scholar
  115. 115.
    H. Salem, A. Reynolds, J. Lyons, Effect of friction stir welding on the superplastic behavior of weldalite alloys. in Lightweight Alloys for Aerospace Application, pp. 141–150 (2001)Google Scholar
  116. 116.
    V. Patel, V. Badheka, A. Kumar, Friction Stir Processing as a Grain Refinement Technique for aluminium 7075 alloy. in International Conference on Friction Based Processes (IISc, Bangalore, 2014)Google Scholar
  117. 117.
    M. Karlsen, S. Tangen, J. Hjelen, O. Frigaard, O. Grong, Characterization of deformation microstructure in friction stir welded aa7075 aluminum alloy using SEM-EBSD technique. in 3rd International FSW Symposium, Kobe (2001)Google Scholar
  118. 118.
    I. Charit, Z. Ma, R.S. Mishra, High strain rate superplasticity in aluminum alloys via friction stir processing. Adv. Superplast. Superplast. Form. (2004)Google Scholar
  119. 119.
    I. Charit, R.S. Mishra, M.W. Mahoney, Multi-sheet structures in 7475 aluminum by friction stir welding in concert with post-weld superplastic forming. Scripta Mater. 47, 631–636 (2002)CrossRefGoogle Scholar
  120. 120.
    X. Feng, H. Liu, J.C. Lippold, Microstructure characterization of the stir zone of submerged friction stir processed aluminum alloy 2219. Mater. Charact. 82, 97–102 (2013)CrossRefGoogle Scholar
  121. 121.
    H.J. Liu, X.L. Feng, Effect of post-processing heat treatment on microstructure and microhardness of water-submerged friction stir processed 2219-T6 aluminum alloy. Mater. Des. 47, 101–105 (2013)CrossRefGoogle Scholar
  122. 122.
    Superpform, http://www.superforming.com/. Accessed 18 Apr 2016
  123. 123.
    Superpform, http://www.superforming.com/aerospace. Accessed 18 Apr 2016

Copyright information

© Springer Science+Business Media New York and ASM International 2016

Authors and Affiliations

  1. 1.Pandit Deendayal Petroleum UniversityGandhinagarIndia

Personalised recommendations