A Dislocation Density-Based Model for Analyzing Mechanical Behavior of Dual-Phase Steels

  • Mohammad Jafari
  • Saeed Ziaei-Rad
  • Noushin Torabian
Technical Article

Abstract

The aim of this work is to develop a microstructural analysis of the mechanical behavior of dual-phase steels. Finite element simulations were conducted, and the results were validated by experimental observations. A dislocation density constitutive formulation was used for the ferrite phase, while the Gurson–Tvergaard–Needleman damage model and an elastic–plastic model with isotropic hardening were used for the grain boundaries and martensite, respectively. The deformation and failure behavior of the material predicted by the model developed here showed good agreement with experimental observations. Moreover, the investigation on the effect of grain size and martensite volume fraction revealed that the microstructural inhomogeneity plays an important role in material behavior.

Keywords

Dual-phase steels Dislocation density Finite element method Voronoi tessellation 

References

  1. 1.
    J. Kadkhodapour, A. Butz, S. Ziaei-Rad, A micro mechanical study on failure initiation of dual phase steels under tension using single crystal plasticity model. Int. J. Plast. 31, 1103–1125 (2011)CrossRefGoogle Scholar
  2. 2.
    S. Hayami, T. Furukawa, A family of high strength. Cold-rolled steels. in Proceedings of the Conference of Microalloying 75 (Vanitec, London, 1975), pp. 78–87Google Scholar
  3. 3.
    O. Bouaziz, J.D. Embury, Microstructural design for advanced structural steels. Mater. Sci. Forum 539, 42–50 (2007)CrossRefGoogle Scholar
  4. 4.
    A. Kumar, S.B. Singh, K.K. Ray, Influence of bainite/martensite-content on the tensile properties of low carbon dual-phase steels. Mater. Sci. Eng. A 474, 270–282 (2008)CrossRefGoogle Scholar
  5. 5.
    H. Riedel, Fracture Mechanisms (Fraunhofer-Inst. für Werkstoffmechanik, Freiburg, 1992)Google Scholar
  6. 6.
    A.L. Gurson, Theory of ductile rupture by void nucleation and growth: Part I—yield criteria and flow rules for porous ductile media. J. Eng. Mater. Technol. 99, 2–15 (1997)CrossRefGoogle Scholar
  7. 7.
    F.M. Al-Abbasi, J.A. Nemes, Micromechanical modeling of dual phase steels. Int. J. Mech. Sci. 45(9), 1449–1465 (2003)CrossRefGoogle Scholar
  8. 8.
    M. Ohata, M. Suzuki, 3D-Simulation of ductile failure in two-phase structural steel with heterogeneous microstructure. Int. J. Plastic. 17, 1393–1417 (2001)CrossRefGoogle Scholar
  9. 9.
    V. Uthaisangsuk, U. Prahl, W. Bleck, Micromechanical modeling of damage behavior of multiphase steels. Comput. Mater. Sci. 43, 27–35 (2008)CrossRefGoogle Scholar
  10. 10.
    X. Sun, K.S. Choi, A. Soulami, W.N. Liu, M.A. Khaleel, On key factors influencing ductile fractures of dual phase (DP) steels. Mater. Sci. Eng. A 526, 140–149 (2009)CrossRefGoogle Scholar
  11. 11.
    X. Sun, K.S. Choi, W.N. Liu, M.A. Khaleel, Predicting failure modes and ductility of dual phase steels using plastic strain localization. Int. J. Plast. 5(10), 1888–1909 (2009)CrossRefGoogle Scholar
  12. 12.
    S. Katani, S. Ziaei-Rad, N. Nouri, N. Saeidi, J. Kadkhodapour., N. Torabian, S. Schmauder, Microstructure modelling of dual-phase steel using SEM micrographs and voronoi polycrystal models. Metallogr. Microstruct. Anal. 2, 156–169 (2013)CrossRefGoogle Scholar
  13. 13.
    N. Nouri, V. Ziaei-Rad, S. Ziaei-Rad, An approach for simulating microstructure of polycrystalline materials. Comput. Mech. 52, 181–192 (2013)CrossRefGoogle Scholar
  14. 14.
    M. Delince, Y. Brechet, J.D. Embury, M.G.D. Geers, P.J. Jacques, T. Pardoen, Structure–property optimization of ultrafine-grained dual-phase steels using a micro structure-based strain hardening model. Acta Mater. 55, 2337–2350 (2007)CrossRefGoogle Scholar
  15. 15.
    Y. Estrin, H. Mecking, A unified phenomenological description of work-hardening and creep based on one-parameter models. Acta Metall. 32, 57–70 (1984)CrossRefGoogle Scholar
  16. 16.
    J. Li, A.K. Soh, Modeling of the plastic deformation of nanostructured materials with grain size gradient. Int. J. Plastic. 39, 88–102 (2012)CrossRefGoogle Scholar
  17. 17.
    C.W. Sinclair, W.J. Poole, Y. Brechet, A model for the grain size dependent work hardening of copper. Scripta Mater. 55, 739–742 (2006)CrossRefGoogle Scholar
  18. 18.
    J. Kadkhodapour, S. Schmauder, D. Raabe, S. Ziaei-Rad, U. Weber, M. Calcagnotto, Experimental and numerical study on geometrically necessary dislocations and non-homogeneous mechanical properties of the ferrite phase in dual phase steels. Acta Mater. 59, 4387–4394 (2011)CrossRefGoogle Scholar
  19. 19.
    V. Tvergaard, A. Needleman, Analysis of the cup-cone fracture in a round tensile bar. Acta Metall. 32, 157–169 (1984)CrossRefGoogle Scholar
  20. 20.
    R. Rodriguez, I. Gutierrez, M. Lamberigts (ed.), in Proceedings of the TMP’2004 (VerlagStahleisen GMBH, Düsseldorf, 2004), p. 356Google Scholar

Copyright information

© Springer Science+Business Media New York and ASM International 2014

Authors and Affiliations

  • Mohammad Jafari
    • 1
  • Saeed Ziaei-Rad
    • 1
  • Noushin Torabian
    • 1
  1. 1.Mechanical Engineering DepartmentIsfahan University of TechnologyIsfahanIran

Personalised recommendations