Metallography, Microstructure, and Analysis

, Volume 3, Issue 1, pp 46–57 | Cite as

Influence of Thermomechanical Treatment on Structure and Crack Propagation in Nanostructured Ti–50.26 at%Ni Alloy

  • A. Kreitcberg
  • V. BrailovskiEmail author
  • S. Prokoshkin
  • K. Inaekyan
Technical Article


The fatigue propagation of processing-induced microcracks in severely deformed Ti–50.26 at%Ni alloy’s samples was investigated. The processing schedules included cold rolling (CR) with logarithmic strains of ɛ = 0.75 and 1.2, and a combination of CR(ɛ = 1), intermediate annealing (400 °C, 1 h), and warm rolling (ɛ = 0.2, T = 150 °C). The final step of the thermomechanical processing schedules consisted of post-deformation annealing at 400 °C, 1 h. The resulting microstructures were studied using transmission electron microscopy. Using optical microscopy, the processing-induced edge cracks’ lengths and concentrations were measured before and after multicycle superelastic and stress generation/relaxation testing. From the functional fatigue point of view, nanocrystalline (NC) microstructure demonstrated higher tolerance to small cracks than mixed NC + nanosubgrained structure.


Rolling Electron microscopy Mechanical testing Optical microscopy Failure analysis 



The authors are grateful to the Natural Sciences and Engineering Research Council of Canada and to the Ministry of Education and Science of the Russian Federation for their financial support of the present work.


  1. 1.
    V. Brailovski, S.D. Prokoshkin, I.Y. Khmelevskaya et al., Structure and properties of the Ti–50.0 at% Ni alloy after strain hardening and nanocrystallizing thermomechanical processing. Mater. Trans. 47(3), 795–804 (2006)CrossRefGoogle Scholar
  2. 2.
    N.N. Kuranova, D.V. Gunderov, A.N. Uksusnikov et al., Effect of heat treatment on the structural and phase transformations and mechanical properties of TiNi alloy subjected to severe plastic deformation by torsion. Phys. Met. Metall. 108(6), 556–568 (2009)CrossRefGoogle Scholar
  3. 3.
    A.V. Sergueeva, C. Song, R.Z. Valiev et al., Structure and properties of amorphous and nanocrystalline NiTi prepared by severe plastic deformation and annealing. Mater. Sci. Eng. A A339(1–2), 159–165 (2003)CrossRefGoogle Scholar
  4. 4.
    K. Tsuchiya, M. Ohnuma, K. Nakajima et al., Microstructures and enhanced properties of SPD-processed TiNi shape memory alloy. Mater. Devices Smart Syst. 3, 113–124 (2009)Google Scholar
  5. 5.
    V. Brailovski, S. Prokoshkin, K. Inaekyan et al., Functional properties of nanocrystalline, submicrocrystalline and polygonized Ti–Ni alloys processed by cold rolling and post-deformation annealing. J. Alloys Compd. 509(5), 2066–2075 (2011)CrossRefGoogle Scholar
  6. 6.
    V. Demers, V. Brailovski, S.D. Prokoshkin et al., Thermomechanical fatigue of nanostructured Ti–Ni shape memory alloys. Mater. Sci. Eng. A 513–514(1–7), 185–196 (2009)CrossRefGoogle Scholar
  7. 7.
    Y. Facchinello, V. Brailovski, S.D. Prokoshkin et al., Manufacturing of nanostructured Ti–Ni shape memory alloys by means of cold/warm rolling and annealing thermal treatment. J. Mater. Process. Technol. 212(11), 2294–2304 (2012)CrossRefGoogle Scholar
  8. 8.
    A. Kreitcberg, V. Brailovski, S. Prokoshkin et al., Microstructure and functional fatigue of nanostructured Ti–50.26 at%Ni alloy after thermomechanical treatment with warm rolling and intermediate annealing. Mater. Sci. Eng. A 562, 118–127 (2013)CrossRefGoogle Scholar
  9. 9.
    S. Miyazaki, K. Mizukoshi, T. Ueki et al., Fatigue life of Ti–50 at.% Ni and Ti–40Ni–10Cu (at.%) shape memory alloy wires. Mater. Sci. Eng. A 273, 658–663 (1999)CrossRefGoogle Scholar
  10. 10.
    N. Nayan, D. Roy, V. Buravalla et al., Unnotched fatigue behavior of an austenitic Ni–Ti shape memory alloy. Mater. Sci. Eng. A 497(1–2), 333–340 (2008)CrossRefGoogle Scholar
  11. 11.
    H.A. Padilla II, B.L. Boyce, A review of fatigue behavior in nanocrystalline metals. Proc. Soc. Exp. Mech. 67, 5–23 (2010)CrossRefGoogle Scholar
  12. 12.
    X.Z. Liao, Y.H. Zhao, Y.T. Zhu et al., Grain-size effect on the deformation mechanisms of nanostructured copper processed by high-pressure torsion. J. Appl. Phys. 96(1), 636–640 (2004)CrossRefGoogle Scholar
  13. 13.
    X.Z. Liao, F. Zhou, E.J. Lavernia et al., Deformation mechanism in nanocrystalline Al: partial dislocation slip. Appl. Phys. Lett. 83(4), 632–634 (2003)CrossRefGoogle Scholar
  14. 14.
    V.H. Swygenhoven, P.M. Derlet, A.G. Froseth, Stacking fault energies and slip in nanocrystalline metals. Nat. Mater. 3(6), 399–403 (2004)CrossRefGoogle Scholar
  15. 15.
    D. Wolf, V. Yamakov, S.R. Phillpot et al., Deformation of nanocrystalline materials by molecular-dynamics simulation: relationship to experiments? Acta Mater. 53(1), 1–40 (2005)CrossRefGoogle Scholar
  16. 16.
    K.S. Kumar, S. Suresh, M.F. Chisholm et al., Deformation of electrodeposited nanocrystalline nickel. Acta Mater. 51(2), 387–405 (2003)CrossRefGoogle Scholar
  17. 17.
    X.Z. Liao, A.R. Kilmametov, R.Z. Valiev et al., High-pressure torsion-induced grain growth in electrodeposited nanocrystalline Ni. Appl. Phys. Lett. 88(2), 1–21909 (2006)CrossRefGoogle Scholar
  18. 18.
    Z. Shan, E.A. Stach, J.M.K. Wiezorek et al., Grain boundary-mediated plasticity in nanocrystalline nickel. Science 305(5684), 654–657 (2004)CrossRefGoogle Scholar
  19. 19.
    T. Hanlon, E.D. Tabachnikova, S. Suresh, Fatigue behavior of nanocrystalline metals and alloys. Int. J. Fatigue 27(10–12), 1147–1158 (2005)CrossRefGoogle Scholar
  20. 20.
    T. Hanlon, Y.N. Kwon, S. Suresh, Grain size effects on the fatigue response of nanocrystalline metals. Scripta Mater. 49(7), 675–680 (2003)CrossRefGoogle Scholar
  21. 21.
    J.R. Rice, R. Thomson, Ductile versus brittle behaviour of crystals. Philos. Mag. 29(1), 73–97 (1974)CrossRefGoogle Scholar
  22. 22.
    I.A. Ovid’ko, A.G. Sheinerman, Grain size effect on crack blunting in nanocrystalline materials. Scripta Mater. 60(8), 627–630 (2009)CrossRefGoogle Scholar
  23. 23.
    P. Cavaliere, Fatigue properties and crack behavior of ultra-fine and nanocrystalline pure metals. Int. J. Fatigue 31(10), 1476–1489 (2009)CrossRefGoogle Scholar
  24. 24.
    M.D. Sangid, G.J. Pataky, H. Sehitoglu et al., Superior fatigue crack growth resistance, irreversibility, and fatigue crack growth–microstructure relationship of nanocrystalline alloys. Acta Mater. 59(19), 7340–7355 (2011)CrossRefGoogle Scholar
  25. 25.
    R.L. Holtz, K. Sadananda, M.A. Imam, Fatigue thresholds of Ni–Ti alloy near the shape memory transition temperature. Int. J. Fatigue 21, S137–S145 (1999)CrossRefGoogle Scholar
  26. 26.
    K.N. Melton, O. Mercier, Fatigue of NiTi thermoelastic martensites. Acta Metall. 27(1), 137–144 (1979)CrossRefGoogle Scholar
  27. 27.
    J.F. Luo, S.C. Mao, X.D. Han et al., Crystallographic mechanisms of fracture in a textured polycrystalline TiNi shape memory alloy. J. Appl. Phys. 102(4), 1–043526 (2007)CrossRefGoogle Scholar
  28. 28.
    Y.S. Umanskiy, Y.A. Skakov, A.N. Ivanov et al., Crystallography, X-ray Diffraction and Electron Microscopy (Metallurgy, Moscow, 1983)Google Scholar
  29. 29.
    S.D. Prokoshkin, V. Brailovski, A.V. Korotitskiy et al., Specific features of the formation of the microstructure of titanium nickelide upon thermomechanical treatment including cold plastic deformation to degrees from moderate to severe. Phys. Met. Metall. 110(3), 289–303 (2010)CrossRefGoogle Scholar
  30. 30.
    S.D. Prokoshkin, I.Y. Khmelevskaya, S.V. Dobatkin et al., Alloy composition, deformation temperature, pressure and post-deformation annealing effects in severely deformed Ti–Ni based shape memory alloys. Acta Mater. 53(9), 2703–2714 (2005)CrossRefGoogle Scholar
  31. 31.
    R.L. Carlson, D.L. Steadman, D.S. Dancila et al., Fatigue growth of small corner cracks in aluminum 6061-T651. Int. J. Fatigue 19(1), 119–125 (1997)CrossRefGoogle Scholar
  32. 32.
    M.F. Horstemeyer, D. Farkas, S. Kim et al., Nanostructurally small cracks (NSC): a review on atomistic modeling of fatigue. Int. J. Fatigue 32(9), 1473–1502 (2010)CrossRefGoogle Scholar
  33. 33.
    K. Tokaji, T. Ogawa, K. Ohya, The effect of grain size on small fatigue crack growth in pure titanium. Int. J. Fatigue 16(8), 571–578 (1994)CrossRefGoogle Scholar
  34. 34.
    K.S. Ravichandran, L. Xu-Dong, Fracture mechanical character of small cracks in polycrystalline materials: concept and numerical K calculations. Acta Mater. 48(2), 525–540 (2000)CrossRefGoogle Scholar
  35. 35.
    B.N. Leis, A.T. Hopper, J. Ahmad et al., Critical review of the fatigue growth of short cracks. Eng. Fract. Mech. 23(5), 883–898 (1986)CrossRefGoogle Scholar
  36. 36.
    S. Pearson, Initiation of fatigue cracks in commercial aluminuim alloys and the subsequent propagation of very short cracks. Eng. Fract. Mech. 7(2), 235–247 (1975)CrossRefGoogle Scholar
  37. 37.
    K.S. Ravichandran, J.M. Larsen, Effects of crack aspect ratio on the behavior of small surface cracks in fatigue. II. Experiments on a titanium (Ti–8Al) alloy. Metall. Mater. Trans. A 28A(1), 157–169 (1997)CrossRefGoogle Scholar
  38. 38.
    S. Suresh, R.O. Ritchie, Propagation of short fatigue cracks. Int. Met. Rev. 29(6), 445–476 (1984)Google Scholar
  39. 39.
    K.S. Ravichandran, Effects of crack aspect ratio on the behavior of small surface cracks in fatigue. I. Simulation. Metall. Mater. Trans. A 28A(1), 149–156 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York and ASM International 2014

Authors and Affiliations

  • A. Kreitcberg
    • 1
    • 2
  • V. Brailovski
    • 1
    Email author
  • S. Prokoshkin
    • 2
  • K. Inaekyan
    • 1
  1. 1.Ecole de Technologie SupérieureMontrealCanada
  2. 2.National University of Science and Technology “MISIS”MoscowRussia

Personalised recommendations