Choosing Wisely in autoimmunologia: le 5 Proposte del Gruppo di Studio in Autoimmunologia della SIPMeL

  • Nicola Bizzaro
  • Marcello Bagnasco
  • Renato Tozzoli
  • Ignazio Brusca
  • Luigi Cinquanta
  • Marilina Tampoia
  • Gaia Deleonardi
  • Antonio Antico
  • Giampaola Pesce
  • Maria Grazia Alessio
  • Marco Liguori
  • Danila Bassetti
  • Danilo Villalta
Rassegna
  • 28 Downloads

Riassunto

Nel novembre 2017, il Gruppo di Studio in Autoimmunologia (GdS-AI) della SIPMeL ha organizzato un convegno nazionale a Santa Margherita Ligure per formulare e discutere alcune proposte per una scelta saggia nell’ambito della diagnostica autoimmune di laboratorio. Delle 19 proposte presentate da 5 gruppi di lavoro e sottoposte alla valutazione e discussione in aula con i partecipanti al Congresso, ne sono state scelte 5, una per ciascuno dei 5 gruppi di patologia che erano stati inseriti nel programma. In questa rassegna vengono presentate le proposte Choosing Wisely relative alla diagnosi immunologica del morbo di Graves, della gastrite autoimmune, delle miositi infiammatorie autoimmuni, del diabete di tipo 2 e della miastenia gravis.

Parole chiave

Gastrite autoimmune Miositi infiammatorie idiopatiche Diabete tipo 1 Malattia di Graves Miastenia gravis Choosing Wisely 

Choosing Wisely in autoimmunology: the Top Five List of the Study Group on Autoimmune Diseases of the Italian Society of Clinical Pathology and Laboratory Medicine

Summary

In November 2017, the Study Group on Autoimmune Diseases (GdS-AI) of the Italian Society of Clinical Pathology and Laboratory Medicine (SIPMeL) organized a national conference in Santa Margherita Ligure to formulate and discuss some proposals for a wise choice in the field of autoimmune laboratory diagnostics. Of the 19 proposals presented by 5 working groups and submitted to the evaluation and discussion in the hall with the participants in the congress, 5 were chosen, one for each of the 5 pathology groups: Graves’ disease for autoimmune thyroid diseases; autoimmune gastritis; autoimmune inflammatory myositis; type 2 diabetes and autoimmune neurological diseases.

The Top Five Choosing Wisely proposals of the GdS-AI SIPMeL are the following:

Graves’ disease: In case of thyrotoxicosis/hyperthyroidism, the entry test is the search for anti-thyrotropin receptor antibodies (TRAb) and not for anti-thyroperoxidase (TPO) and anti-thyroglobulin (Tg) antibodies. In case of TRAb negativity, it is useful to search for anti-TPO antibodies (possible diagnosis of non-Graves thyrotoxicosis). The repetition over time of the determination of anti-TPO and anti-Tg antibodies for follow-up, in the case of diagnosed or presumed autoimmune thyroid disease, has no clinical utility. Autoimmune inflammatory myositis: In patients with suspected autoimmune myositis, the detection of antibodies specific to this disease should be performed independently of the ANA positivity. The ANA-immunofluorescence test may be negative or may display a cytoplasmic pattern that is frequently underestimated. Myasthenia gravis: Considering the different frequency of antibodies associated with myasthenia gravis (MG) and the fact that they are usually mutually exclusive, the research of anti-AchR antibodies constitutes the screening test for patients with suspected MG; the determination of anti-MuSK antibodies should be reserved for negative anti-AchR patients, while that of anti-Lrp4 antibodies should be limited to anti-AchR and anti-MuSK negative patients only. Autoimmune gastritis: In the suspicion of autoimmune atrophic gastritis it is useful to search for serological markers of gastric function (pepsinogen I, pepsinogen II, gastrin-17) combined with the detection of gastric parietal cell/H+–K+ ATPase antibodies (PCA) and anti-intrinsic factor antibodies (IFA). In the presence of altered gastric function compatible with atrophy and positive findings for gastric autoantibodies, it is indicated to continue the diagnostic procedure with gastric endoscopy also in asymptomatic patients. The use of immunometric methods to measure PCA and IFA is preferable to qualitative methods (immunofluorescence and immunoblot).

Type 1 diabetes: Multiple antibody tests (GAD, IA2, ZnT8) should be performed in the suspected adult autoimmune diabetes (LADA), where the finding of one of the various autoantibodies available will suffice as diagnostic criterion, and in women with gestational diabetes, because the presence of autoantibodies is predictive of the development of diabetes after pregnancy.

Keywords

Autoimmune gastritis Autoimmune inflammatory myositis Type 1 diabetes Graves’ disease Myasthenia gravis Choosing Wisely 

Notes

Conflitti di interessi

Nessuno.

Studi condotti su esseri umani e animali

L’articolo non contiene alcuno studio eseguito su esseri umani e su animali da parte degli autori.

Bibliografia

  1. 1.
    Brook RH (1994) Appropriateness: the next frontier. BMJ 308:218–219 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Bizzaro N (2001) L’appropriatezza nella richiesta dei test autoanticorpali per la diagnosi delle malattie reumatiche autoimmuni. Riv Med Lab–JLM 2:11–16 Google Scholar
  3. 3.
    Wiik AS (2003) Appropriateness of autoantibody testing in clinical medicine. Clin Chim Acta 333:177–180 CrossRefPubMedGoogle Scholar
  4. 4.
    Bizzaro N, Wiik A (2004) Appropriateness in anti-nuclear antibody testing: from clinical request to strategic laboratory practice. Clin Exp Rheumatol 22:349–355 PubMedGoogle Scholar
  5. 5.
    Tozzoli R, Villalta D, Bizzaro N (2017) Challenges in the standardization of autoantibody testing: a comprehensive review. Clin Rev Allergy Immunol 53:68–77 CrossRefPubMedGoogle Scholar
  6. 6.
    Fisher ES, Bynum JP, Skinner JS (2009) Slowing the growth of health care costs—lessons from regional variation. N Engl J Med 360:849–852 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Berwick DM, Hackbarth AD (2012) Eliminating waste in US health care. JAMA 307:1513–1516 CrossRefPubMedGoogle Scholar
  8. 8.
    Brody H (2012) From an ethics of rationing to an ethics of waste avoidance. N Engl J Med 366:1949–1951 CrossRefPubMedGoogle Scholar
  9. 9.
    Brody H (2010) Medicine’s ethical responsibility for health care reform: the Top Five list. N Engl J Med 362:283–285 CrossRefPubMedGoogle Scholar
  10. 10.
    Good Stewardship Working Group (2011) The “top 5” lists in primary care: meeting the responsibility of professionalism. Arch Intern Med 171:1385–1390 CrossRefGoogle Scholar
  11. 11.
    Cassel CK, Guest JA (2012) Choosing wisely: helping physicians and patients make smart decisions about their care. JAMA 307:1801–1802 CrossRefPubMedGoogle Scholar
  12. 12.
    Tozzoli R, Bagnasco M, Giavarina D et al. (2012) TSH receptor autoantibody immunoassay in patients with Graves’ disease: improvement of diagnostic accuracy over different generations of methods. Systematic review and meta-analysis. Autoimmun Rev 12:107–113 CrossRefPubMedGoogle Scholar
  13. 13.
    Tozzoli R, D’Aurizio F, Villalta D et al. (2017) Evaluation of the first fully automated immunoassay method for the measurement of stimulating TSH receptor autoantibodies in Graves’ disease. Clin Chem Lab Med 55:58–64 CrossRefPubMedGoogle Scholar
  14. 14.
    Ross DS, Burch HB, Cooper DS et al. (2016) 2016 American Thyroid Association Guidelines for Diagnosis and Management of Hyperthyroidism and other Causes of Thyrotoxicosis. Thyroid 26:1343–1421 CrossRefPubMedGoogle Scholar
  15. 15.
    Dalakas MC (2015) Inflammatory muscle diseases. N Engl J Med 372:1734–1747 CrossRefPubMedGoogle Scholar
  16. 16.
    Rider LG, Miller FW (2011) Deciphering the clinical presentations, pathogenesis, and treatment of the idiopathic inflammatory myopathies. JAMA 305:183–190 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ernste FC, Reed AM (2013) Idiopathic inflammatory myopathies: current trends in pathogenesis, clinical features, and up-to-date treatment recommendations. Mayo Clin Proc 88:83–105 CrossRefPubMedGoogle Scholar
  18. 18.
    Casciola-Rosen L, Mammen AL (2012) Myositis autoantibodies. Curr Opin Rheumatol 24:602–608 CrossRefPubMedGoogle Scholar
  19. 19.
    Fiorentino DF, Chung LS, Christopher-Stine L et al. (2013) Most patients with cancer associated dermatomyositis have antibodies to nuclear matrix protein NXP-2 or transcription intermediary factor 1\(\upgamma \). Arthritis Rheum 65:2954–2962 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Love LA, Leff RL, Fraser DD et al. (1991) A new approach to the classification of idiopathic inflammatory myopathy: myositis-specific autoantibodies define useful homogeneous patient groups. Medicine (Baltimore) 70:360–374 CrossRefGoogle Scholar
  21. 21.
    Brouwer R, Hengstmam GJ, Vree Egberts W et al. (2001) Autoantibodies profiles in the sera of European patients with myositis. Ann Rheum Dis 60:116–123 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ghirardello A, Zampieri S, Tarricone E et al. (2006) Clinical implications of autoantibody screening in patients with autoimmune myositis. Autoimmunity 39:217–221 CrossRefPubMedGoogle Scholar
  23. 23.
    Chinoy H, Fertig N, Oddis CV et al. (2007) The diagnostic utility of myositis autoantibody testing for predicting the risk of cancer-associated myositis. Ann Rheum Dis 66:1345–1349 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Troyanov Y, Targoff IN, Tremblay JL et al. (2005) Novel classification of idiopathic inflammatory myopathies based on overlap features and autoantibodies: analysis of 100 French Canadian patients. Medicine (Baltimore) 84:231–249 CrossRefGoogle Scholar
  25. 25.
    Simon JP, Marie I, Jouen F et al. (2016) Autoimmune myopathies: where do we stand? Front Immunol 7:234 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Sordet C, Goetz J, Sibilia J (2006) Contribution of autoantibodies to the diagnosis and nosology of inflammatory muscle disease. Joint Bone Spine 73:646–654 CrossRefPubMedGoogle Scholar
  27. 27.
    Rozman B, Cucnik S, Sodin-Semrl S et al. (2008) Prevalence and clinical associations of anti-Ku antibodies in patients with systemic sclerosis: a European EUSTAR-initiated multicentre case-control study. Ann Rheum Dis 67:1282–1286 CrossRefPubMedGoogle Scholar
  28. 28.
    Gonzalez-Bello Y, Garcia-Cerda D, Medrano-Ramírez G et al (2015) Frequency of Antinuclear (ANA), Myositis-Specific (MSA) and Myositis-Associated Antibodies (MAA) in Patients with Idiopathic Inflammatory Myopathies (IIM) from Mexico, Central and South America Centers: Data from the Panlar Myositis Study Group. Arthritis Rheum 67(Suppl 10) Google Scholar
  29. 29.
    Váncsa A, Gergely L, Ponyi A et al. (2010) Myositis-specific and myositis-associated antibodies in overlap myositis in comparison to primary dermatopolymyositis: relevance for clinical classification: retrospective study of 169 patients. Joint Bone Spine 77:125–130 CrossRefPubMedGoogle Scholar
  30. 30.
    Schulte-Pelkum J, Fritzler M, Mahler M (2009) Latest update on the Ro/SS-A autoantibody system. Autoimmun Rev 8:632–637 CrossRefPubMedGoogle Scholar
  31. 31.
    Marie I, Hatron PY, Dominique S et al. (2012) Short-term and long-term outcome of anti-Jo1-positive patients with anti-Ro52 antibody. Semin Arthritis Rheum 41:890–899 CrossRefPubMedGoogle Scholar
  32. 32.
    Infantino M, Manfredi M, Grossi V et al. (2017) An effective algorithm for the serological diagnosis of idiopathic inflammatory myopathies: the key role of anti-Ro52 antibodies. Clin Chim Acta 475:15–19 CrossRefPubMedGoogle Scholar
  33. 33.
    Gilhus NE, Verschuuren JJ (2015) Myasthenia gravis: subgroup classification and therapeutic strategies. Lancet Neurol 14:1023–1036 CrossRefPubMedGoogle Scholar
  34. 34.
    Carr AS, Cardwell CR, McCarron PO et al. (2010) A systematic review of population based epidemiological studies in myasthenia gravis. BMC Neurol 10:46 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Philips WD, Vincent A (2016) Pathogenesis of myasthenia gravis: update on disease types, models and mechanism. F1000Res F1000 Faculty Rev 1513 Google Scholar
  36. 36.
    Wong SH, Huda S, Vincent A et al. (2014) Ocular myasthenia gravis: controversies and updates. Curr Neurol Neurosci Rep 14:421 CrossRefPubMedGoogle Scholar
  37. 37.
    Finnis MF, Jayawant S (2011) Juvenile myasthenia gravis: a paediatric perspective. Autoimmune Dis 2011:404101 PubMedPubMedCentralGoogle Scholar
  38. 38.
    Leite MI, Waters P, Vincent A (2010) Diagnostic use of autoantibodies in myasthenia gravis. Autoimmunity 43:371–379 CrossRefPubMedGoogle Scholar
  39. 39.
    Evoli A (2017) Myasthenia gravis: new developments in research and treatment. Curr Opin Neurol 30:464–470 CrossRefPubMedGoogle Scholar
  40. 40.
    Gilhus NE (2016) Myasthenia gravis. N Engl J Med 375:2570–2581 CrossRefPubMedGoogle Scholar
  41. 41.
    Hewer R, Matthews I, Chen S et al. (2006) A sensitive non isotopic assay for acetylcholine receptor autoantibodies. Clin Chim Acta 364:159–166 CrossRefPubMedGoogle Scholar
  42. 42.
    Koneczny I, Stevens JA, De Rosa A et al. (2017) IgG4 autoantibodies against muscle-specific kinase undergo Fab-arm exchange in myasthenia gravis patients. J Autoimmun 77:104–115 CrossRefPubMedGoogle Scholar
  43. 43.
    Li Y, Zhang Y, Cai G et al. (2017) Anti-LRP4 autoantibodies in Chinese patients with myasthenia gravis. Muscle Nerve 56:938–942 CrossRefPubMedGoogle Scholar
  44. 44.
    Zisimopoulou P, Evangelakou P, Tzartos J et al. (2014) A comprehensive analysis of the epidemiology and clinical characteristics of anti-LRP4 in myasthenia gravis. J Autoimmun 52:139–145 CrossRefPubMedGoogle Scholar
  45. 45.
    Shen C, Lu Y, Zhang B et al. (2013) Antibodies against low-density lipoprotein receptor-related protein 4 induce myasthenia gravis. J Clin Invest 123:5190–5202 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Toh BH (2014) Diagnosis and classification of autoimmune gastritis. Autoimmun Rev 13:459–462 CrossRefPubMedGoogle Scholar
  47. 47.
    Toh BH (2017) Pathophysiology and laboratory diagnosis of pernicious anemia. Immunol Res 65:326–330 CrossRefPubMedGoogle Scholar
  48. 48.
    Antico A (2009) L’autoimmunità gastrica. In: Tozzoli R, Bizzaro N, Villalta D et al. (eds) Il laboratorio nelle malattie autoimmuni d’organo. Esculapio, Bologna Google Scholar
  49. 49.
    Bizzaro N, Antico A (2014) Diagnosis and classification of pernicious anemia. Autoimmun Rev 13:565–568 CrossRefPubMedGoogle Scholar
  50. 50.
    Rusak E, Chobot A, Krzywicka A et al. (2016) Anti-parietal cell antibodies—diagnostic significance. Adv Med Sci 61:175–179 CrossRefPubMedGoogle Scholar
  51. 51.
    Huang YK, Yu JC, Kang WM et al. (2015) Significance of serum pepsinogens as a biomarker for gastric cancer and atrophic gastritis screening: a systematic review and meta-analysis. PLoS One 10:e0142080 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    American Diabetes Association (2009) Diagnosis and classification of diabetes mellitus (Position statement). Diabetes Care 32(Suppl 1):S62–S67 CrossRefPubMedCentralGoogle Scholar
  53. 53.
  54. 54.
    Nambam B, Aggarwal S, Jain A (2010) Latent autoimmune diabetes in adults: a distinct but heterogeneous clinical entity. World J Diabetes 1:111–115 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Buzzetti R, Zampetti S, Maddaloni E (2017) Adult-onset autoimmune diabetes: current knowledge and implications for management. Nat Rev Endocrinol 13:674–686 CrossRefPubMedGoogle Scholar
  56. 56.
    Fourlanos S, Dotta F, Greenbaum CJ et al. (2005) Latent autoimmune diabetes in adults (LADA) should be less latent. Diabetologia 48:2206–2212 CrossRefPubMedGoogle Scholar
  57. 57.
    de Leiva A, Mauricio D, Corcoy R (2007) Diabetes-related autoantibodies and gestational diabetes. Diabetes Care 30(Suppl 2):S127–S133 CrossRefPubMedGoogle Scholar
  58. 58.
    Dalfrà MG, Burlina S, Lapolla AG (2016) Il diabete gestazionale autoimmune. G It Diabetol Metab 36:203–209 Google Scholar

Copyright information

© Società Italiana di Patologia Clinica e Medicina di Laboratorio 2018

Authors and Affiliations

  • Nicola Bizzaro
    • 1
  • Marcello Bagnasco
    • 2
  • Renato Tozzoli
    • 3
  • Ignazio Brusca
    • 4
  • Luigi Cinquanta
    • 5
  • Marilina Tampoia
    • 6
  • Gaia Deleonardi
    • 7
  • Antonio Antico
    • 8
  • Giampaola Pesce
    • 2
  • Maria Grazia Alessio
    • 9
  • Marco Liguori
    • 10
  • Danila Bassetti
    • 11
  • Danilo Villalta
    • 12
  1. 1.Laboratorio di Patologia Clinica, Ospedale di TolmezzoAzienda Sanitaria Universitaria IntegrataUdineItalia
  2. 2.Di.M.I. Lab. Autoimmunologia e Coordinamento con la Clinica, Ospedale Policlinico San MartinoUniversità degli Studi di GenovaGenovaItalia
  3. 3.Laboratorio di Patologia Clinica, Dipartimento di Medicina di LaboratorioPresidio Ospedaliero S. Maria degli AngeliPordenoneItalia
  4. 4.UOC di Patologia ClinicaOspedale Buccheri La Ferla FBFPalermoItalia
  5. 5.SS Autoimmunologia e Allergologia Diagnostica di Laboratorio, Dipartimento di Patologia Clinica e Medicina Trasfusionale, Azienda Ospedaliera Universitaria “Scuola Medica Salernitana”OORR San Giovanni di Dio e Ruggi d’AragonaSalernoItalia
  6. 6.Laboratorio di Autoimmunologia, UOC di Patologia Clinica UniversitariaAzienda Ospedaliero-Universitaria, PoliclinicoBariItalia
  7. 7.Laboratorio Unico MetropolitanoOspedale MaggioreBolognaItalia
  8. 8.Laboratorio AnalisiULSS 4SantorsoItalia
  9. 9.Laboratorio Analisi Chimico-ClinicheASST Papa Giovanni XXIIIBergamoItalia
  10. 10.Laboratorio AnalisiAzienda Ospedaliera G. BrotzuCagliariItalia
  11. 11.Direzione Sanitaria Avis Regionale TrentinoTrentoItalia
  12. 12.SSD di Allergologia e Immunologia ClinicaPresidio Ospedaliero S. Maria degli AngeliPordenoneItalia

Personalised recommendations