Oriental Pharmacy and Experimental Medicine

, Volume 14, Issue 3, pp 285–289 | Cite as

Hepatoprotective activity of moralbosteroid, a steroidal glycoside isolated from Morus alba

  • Gaurav GuptaEmail author
  • Rohit Verma
  • Sheba Rani David
  • Dinesh Kumar Chellappan
  • Firoz Anwar
  • Kamal Dua
Short Communication


This study evaluates the hepatoprotective activity of moralbosteroid, isolated from Morus alba, against the hepatotoxicity induced by CCl4 in wistar albino rats. The level of hepatoprotection was estimated by measuring the following biochemical markers: aspartate amino-transferase (AST), alkaline phosphatase (ALP), serum alanine amino-transferase (ALT), total bilirubin (TB), and total protein (TP), including the enzymes involved in antioxidant activities like glutathione transferase (GST), glutathione peroxidase (GPx), catalase (CAT), lipid peroxidation (LPO) and superoxide dismutase (SOD). The oral administration of CCl4 significantly caused elevation in LPO level (13.22 ± 1.59 μM/mg protein) as compared to control. The activities of antioxidant enzymes including CAT, SOD, GPx and GST were decreased significantly (0.38 ± 0.6 nmol/min/ml, 0.89 ± 0.83 U/ml, 3.90 ± 0.91 μmol and 0.05 ± 0.16 U/min/mg protein) in testicular tissue as compared to control animals. Moralbosteroid significantly prevents the marked escalation of serum markers and inhibited the free radical processes by the scavenging of hydroxyl radicals. It also modulates the levels of LPO and prominently increases the endogenous antioxidant enzyme levels in hepatocellular toxicity induced by CCl4. The results obtained in the present study suggest the preventive influence of moralbosteroid on liver toxicity in rats induced by CCl4 comparable with those of Silymarin.


Morus alba Moralbosteroid Carbon tetrachloride Silymarin Hepatoprotective Rats 


Conflict of interest

Authors Gaurav Gupta, Rohit Verma, Sheba Rani David, Dinesh Kumar Chellappan, Firoz Anwar, and Kamal Dua certify that there is no conflict of interest with any financial organization regarding the material discussed in the manuscript title “Hepatoprotective activity of moralbosteroid, a steroidal glycoside isolated from Morus alba”.


  1. Aebi H (1974) Method in enzymatic analysis vol 3. Academic Press Inc, New York, pp 673–686CrossRefGoogle Scholar
  2. Ahmad A, Gupta G, Afzal M, Kazmi I, Anwar F (2013) Antiulcer and antioxidant activities of a new steroid from Morus alba. Life Sci 92:202–210PubMedCrossRefGoogle Scholar
  3. Anonymous (2001) The wealth of India, a dictionary of raw materials and industrial products, raw materials, CSIR, PID, New Delhi. 6 (L-M):429–437Google Scholar
  4. Al-Qarawi AA, Ali BH, Mougy S, Mossa HM (2003). Gastrointestinal transit in mice treated with various extracts of date (Phoenix dactylifera L.). Food Chem Toxicol 41:37–39Google Scholar
  5. Asano N, Yamashita T, Yasuda K, Ikeda K, Kizu H, Kameda Y (2001) Polyhydroxylated alkaloids isolated from mulberry trees (Morus alba L.) and silkworms (Bombyx mori L.). J Agric Food Chem 49(9):4208–4213PubMedCrossRefGoogle Scholar
  6. Choi EM, Hwang JK (2005) Effects of Morus alba leaf extract on the production of nitric oxide prostaglandin E2 and cytokines in RAW2647 macrophages. Fitoterapia 76(7–8):608–613PubMedCrossRefGoogle Scholar
  7. Clawson GA (1989) Mechanism of carbon tetrachloride hepatotoxicity. Pathol Immunopathol Res 8:104–112PubMedCrossRefGoogle Scholar
  8. Drotman RB, Lawhorn GT (1978) Serum enzymes are indicators of chemical induced liver damage. Drug Chem Toxicol 1:163–171PubMedCrossRefGoogle Scholar
  9. Du J, He ZD, Jiang RW, Ye WC, Xu HX, But PPH (2003) Antiviral flavonoids from the root bark of Morus alba L. Phytochem 62(8):1235–1238CrossRefGoogle Scholar
  10. Enkhmaa B, Shiwaku K, Katsube T, Kitajima K, Anuurad E, Yamasaki M (2005) Mulberry (Morus alba L.) leaves and their major flavonol quercetin 3-(6-malonylglucoside) attenuate atherosclerotic lesion development in LDL receptor-deficient mice. J Nutr 135(4):729–734PubMedGoogle Scholar
  11. Esterbauer H, Chesseman KH (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxy-nonenal. Methods Enzymol 186:407–421PubMedCrossRefGoogle Scholar
  12. Habig WH, Jacoby WB (1981) Assays for differentiation of glutathione S-transferases. Methods Enzymol 77:398–405PubMedCrossRefGoogle Scholar
  13. Hayes JD, Flanagan JU, Jowsey IR (2005) Glutathione transferases. Annu Rev Pharmacol Toxicol 45:51–88PubMedCrossRefGoogle Scholar
  14. Hietanen E, Ahotupa M, Bartsch H (1987) Lipid peroxidation and chemically induced cancer in rats fed lipid rich diet. In: Lapis K, Kcharst S (eds) In carcinogensis and tumor progression, vol.4. Akademiaikiado, Budapest, pp 9–16Google Scholar
  15. Hogade MG, Patil KS, Wadkar GH, Mathapati SS, Dhumal PB (2010) Hepatoprotective activity of Morus alba (Linn.) leaves extract against carbon tetrachloride induced hepatotoxicity in rats. Afr J Pharma Pharmacol 10:731–734Google Scholar
  16. Kakkar P, Das B, Viswanathan PN (1984) Modified spectrophotometric assay of SOD. Indian J Biochem Biophys 2:130–132Google Scholar
  17. Katsube T, Imawaka N, Kawano Y, Yamazaki Y, Shiwaku K, Yamane Y (2006) Antioxidant flavonol glycosides in mulberry (Morus alba L.) leaves isolated based on LDL antioxidant activity. Food Chem 97(1):25–31CrossRefGoogle Scholar
  18. Kikuchi T, Nihei M, Nagai H, Fukushi H, Tabata K, Suzuki T, Akihisa T (2010) Albanol A from the root bark of Morus alba L. induces apoptotic cell death in HL60 human leukemia cell line. Chem Pharm Bull (Tokyo) 58(4):568–571CrossRefGoogle Scholar
  19. Kim SH, Kim NJ, Choi JS, Park JC (1993) Determination of flavonoid by HPLC and biological activities from the leaves of Cudrania tricuspidata bureau. J Korean Soc Food Sci Nutr 22(1):68–72Google Scholar
  20. Kim HG, Ju MS, Shim JS, Kim MC, Lee SH, Huh Y, Kim SY, Oh MS (2010) Mulberry fruit protects dopaminergic neurons in toxin-induced Parkinson’s disease models. Br J Nutr 104(1):8–16PubMedCrossRefGoogle Scholar
  21. Klaunig JE, Kamendulis LM (2004) The role of oxidative stress in carcinogenesis. Annu Rev Pharmacol Toxicol 44:239–267PubMedCrossRefGoogle Scholar
  22. Kulkarni DD, Ghugale DD, Narasimhan R (1970) Chemical investigations of plant tissues grown in vitro: isolation of beta-sitosterol from Morus alba (Mulberry) callus tissue. Indian J Exp Biol 8(4):347PubMedGoogle Scholar
  23. Lee YJ, Choi DH, Kim EJ, Kim HY, Kwon TO, Kang DG, Lee HS (2011) Hypotensive, hypolipidemic, and vascular protective effects of Morus alba L. in rats fed an atherogenic diet. Am J Chin Med 39(1):39–52PubMedCrossRefGoogle Scholar
  24. Niidome T, Takahashi K, Goto Y, Goh SM, Tanaka N, Kamei K (2007) Mulberry leaf extract prevents amyloid beta-peptide fibril formation and neurotoxicity. Neuroreport 18(8):813–816PubMedCrossRefGoogle Scholar
  25. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxide in animal tissues by thiobarbituric acid reaction. Annal Biochem 95:51–58CrossRefGoogle Scholar
  26. Ploa GL, Hewitt WR (1989) In: Wallace Hyes A (ed) Principle and methods of toxicology, vol. II. Raven, New York, p 399Google Scholar
  27. Rao PGM, Rao SG, Kumar V (1993) Effect of hepatogard against carbontetrachloride induced liver damage in rats. Fitoterapia 64:108–113Google Scholar
  28. Robak J, Glyglewsi RJ (1988) Flavonoids are scavengers of superoxide anions. Biochem Pharmacol 37:837–841PubMedCrossRefGoogle Scholar
  29. Rotruck JT, Pope AL, Ganther HE, Swanson AB (1984) Selenium: biochemical roles as a component of glutathione peroxidase. Science 179:588–590CrossRefGoogle Scholar
  30. Salinas Chavira J, Castillo-Martínez O, Ramirez-Bribiesca JE, Mellado M (2011) Effect of increasing levels of white mulberry leaves (Morus alba) on ruminal dry matter degradability in lambs. Trop Anim Health Prod 43(5):995–999PubMedCrossRefGoogle Scholar
  31. Sarswat B, Visen PK, Patnaik GK, Dhawan BN (1993) Anticholestic effect of picroliv, active hepatoprotective principle of Picrorhiza kurrooa, against carbon tetrachloride-induced cholestatis. Indian J Exp Biol 31:316–318Google Scholar
  32. Singab AN, El-Beshbishy HA, Yonekawa M, Nomura T, Fukai T (2005) Hypoglycemic effect of Egyptian Morus alba root bark extract: effect on diabetes and lipid peroxidation of streptozotocin-induced diabetic rats. J Ethnopharmacol 100(3):333–338PubMedCrossRefGoogle Scholar
  33. Wang CP, Wang Y, Wang X, Zhang X, Ye JF, Hu LS, Kong LD (2011) Mulberroside a possesses potent uricosuric and nephroprotective effects in hyperuricemic mice. Planta Med 77(8):786–794PubMedCrossRefGoogle Scholar
  34. Wattanapitayakul SK, Chularojmontri L, Herunsalee A, Charuchong-kolwongse S, Niumsakul S, Bauer JA (2005) Screening of antioxidants from medicinal plants for cardioprotective effect against doxorubicin toxicity. Basic Clin Pharmacol Toxicol 96(1):80–87PubMedCrossRefGoogle Scholar
  35. Yadav A, Kawale L, Nade V (2008) Effect of Morus alba L. (mulberry) leaves on anxiety in mice. Ind J Pharmacol 42(1):32–36Google Scholar
  36. Yang X, Yang L, Zheng H (2010) Hypolipidemic and antioxidant effects of mulberry (Morus alba L.) fruit in hyperlipidaemia rats. Food Chem Toxicol 48(8–9):2374–2379PubMedCrossRefGoogle Scholar

Copyright information

© Institute of Korean Medicine, Kyung Hee University 2014

Authors and Affiliations

  • Gaurav Gupta
    • 1
    • 2
    Email author
  • Rohit Verma
    • 2
  • Sheba Rani David
    • 2
  • Dinesh Kumar Chellappan
    • 2
  • Firoz Anwar
    • 3
  • Kamal Dua
    • 2
  1. 1.Pacific UniversityUdaipurIndia
  2. 2.School of PharmacyInternational Medical UniversityKuala LumpurMalaysia
  3. 3.Department of PharmacologySiddhartha Institute of PharmacyDehradunIndia

Personalised recommendations