Advertisement

Spatial distribution and interspecific association patterns between Mansonia altissima A. Chev., Ceiba pentandra (L.) Gaertn and Triplochiton scleroxylon K. Schum. in a moist semi-deciduous forest

  • 31 Accesses

Abstract

Key message

Mansonia altissima A. Chev. has an aggregated distribution at the juvenile life stage that becomes random at the mature life stage. Ceiba pentandra (L.) Gaertn could play the role of nurse plant in the management of M. altissima populations providing them a moderate forest shade in large gaps for early growth. M. altissima and Triplochiton scleroxylon K. Schum. displayed independent distribution patterns.

Context

M. altissima is a species with economic value found in moist semi-deciduous forests of tropical Africa. The analysis of spatial distribution patterns can help to understand the ecology of this species in forest stands dominated by emergent pioneer tree species like C. pentandra and T. scleroxylon.

Aims

To assess the spatial distribution patterns of M. altissima and spatial relationships with C. pentandra and T. scleroxylon in their natural habitat.

Methods

We investigated the spatial patterns of the three species during three life stages; juvenile (immature trees), premature (trees with minimum flowering diameter) and mature (trees with minimum fruiting diameter). Diameter at breast height (DBH) was measured and geographical coordinates of trees were recorded within ten one-ha plots, divided into sixteen subplots (625 m2). We computed the L(r) function, normalized from Ripley’s K(r) function to detect aggregated, random or regular distribution patterns.

Results

Aggregations were detected in juvenile and premature M. altissima. Size and scales of spatial aggregation were inversely proportional to the DBH size. M. altissima and C. pentandra displayed interspecific association patterns at the similar life stages. Both species were positively associated within a radius ≥ 3 m. No positive association was detected between M. altissima and T. scleroxylon.

Conclusion

Interspecific association patterns between M. altissima and C. pentandra suggest that C. pentandra could be used as a nurse tree in reforestation and management practices of M. altissima populations.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

The datasets generated and/or analyzed during the current study together with the associated metadata are available in the Advanced Ecological Knowledge and Observation System (AEKOS) portal (Wédjangnon et al. 2019) at https://doi.org/10.25901/5dce7f2714885

References

  1. Adeoti MF, Bidie P, Camara-Cisse M, Monteomo GF, Kolia KI, Gogahy K, Djaman AJ, Dosso M (2016) Acute toxicity and indirect effects on the NA+/K+ ATPase pump of chloroform extract of Mansonia altissima (Sterculiaceae) in rabbits. European J Biotechnol Biosci 4:29–33

  2. African Regional Workshop (1998) Conservation & Sustainable Management of Trees, Zimbabwe, July 1996. Mansonia altissima var altissima The IUCN Red List of Threatened Species: e.T32283A9686553. https://doi.org/10.2305/IUCN.UK.1998.RLTS.T32283A9686553.en. Accessed 08 June 2019

  3. Agyeman VK, Swaine MD, Thompson J (1999) Responses of tropical forest tree seedlings to irradiance and the derivation of a light response index. J Ecol 87:815–827. https://doi.org/10.1046/j.1365-2745.1999.00400.x

  4. Agyeman VK, Addo-Danso SD, Kyereh B, Abebrese IK (2016) Vegetation assessment of native tree species in Broussonetia papyrifera-dominated degraded forest landscape in southern Ghana. Appl Veg Sci 19:498–507. https://doi.org/10.1111/avsc.12241

  5. Akinnagbe A, Gailing O, Finkeldey R (2010) Genetic diversity of Mansonia altissima A. Chev. under different regimes of human impact in the Akure Forest reserve, Nigeria. Forest Stud China 12:193–200. https://doi.org/10.1007/s11632-010-0407-5

  6. Amanoudo M-J, Gbemavo CDSJ, Ouinsavi CNAI (2018) Assessing the floristic potential of Adakplamè sacred grove in South Benin. IJSR 7:1062–1067. https://doi.org/10.21275/ART20181581

  7. Barot S, Gignoux J, Menaut J-C (1999) Demography of a savanna palm tree: predictions from comprehensive spatial pattern analyses. Ecology 80:1987–2005. https://doi.org/10.1890/0012-9658(1999)080[1987:DOASPT]2.0.CO;2

  8. Besag J (1977) Contribution to the discussion on Dr Ripley's paper. J R Stat Soc 39:193–195

  9. Blackman G (1942) Statistical and ecological studies in the distribution of species in plant communities: dispersion as a factor in the study of changes in plant populations. Ann Bot 6:351–370

  10. Botanic Gardens Conservation International (BGCI) & IUCN SSC Global Tree Specialist Group (2018) Mansonia altissima. The IUCN Red List of Threatened Species: e.T62753A136113496. https://doi.org/10.2305/IUCN.UK.2018-2.RLTS.T62753A136113496.en. Accessed 08 June 2019

  11. Cheng X, Han H, Kang F, Song Y, Liu K (2014) Point pattern analysis of different life stages of Quercus liaotungensis in Lingkong Mountain, Shanxi Province, China. J Plant Interact 9:233–240. https://doi.org/10.1080/17429145.2013.818167

  12. Condit R, Ashton PS, Baker P, Bunyavejchewin S, Gunatilleke S, Gunatilleke N, Hubbell SP, Foster RB, Itoh A, Lafrankie JV (2000) Spatial patterns in the distribution of tropical tree species. Science 288:1414–1418

  13. Connell JH (1971) On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In: Den Boer PJ, Gradwell GR, Neuenschwander et al (eds) Dynamics of populations. Centre for Agricultural Publishing and Documentation, Wageningen, pp 298–312

  14. Connell JH, Tracey J, Webb LJ (1984) Compensatory recruitment, growth, and mortality as factors maintaining rain forest tree diversity. Ecol Monogr 54:141–164. https://doi.org/10.2307/1942659

  15. Cressie NA (1993) Statistics for spatial data. Wiley, New York, p 900

  16. De Madron LD (2003) Accroissement diamétrique du bété et de l'iroko. Bois For Trop 275:83–87

  17. De Madron LD, Daumerie A (2004) Diamètre de fructification de quelques essences en forêt naturelle centrafricaine. Bois For Trop 281:87–95

  18. Diggle PJ (1983) Statistical analysis of spatial point patterns, vol 148. Academic Press, London

  19. Du H, Hu F, Zeng F, Wang K, Peng W, Zhang H, Zeng Z, Zhang F, Song T (2017) Spatial distribution of tree species in evergreen-deciduous broadleaf karst forests in Southwest China. Sci Rep 7:15664. https://doi.org/10.1038/s41598-017-15789-5

  20. Dupuy B, Durrieu De Madron M, Pettrucci Y (1998) Sylviculture des peuplements naturels en forêt dense humide africaine. Acquis et recommandations. Bois For Trop 257(3):5–22

  21. Duvall CS (2011) Ceiba pentandra (L.) Gaertn. In: Brink M & Achigan-Dako EG, Neuenschwander et al. PROTA (Plant Resources of Tropical Africa / Ressources végétales de l’Afrique tropicale). Wageningen. Accessed 08 June 2019

  22. Duvall CS (2012) Ceiba pentandra (L.) Gaertn. In: Brink M, Achigan-Dako EG (eds) Ressources végétales de l'Afrique tropicale 16. Plantes à fibres. [Traduction de: Plant Resources of Tropical Africa 16. Fibres. 2012]. Fondation PROTA, Wageningen, p 88

  23. Fajardo A, Goodburn JM, Graham J (2006) Spatial patterns of regeneration in managed uneven-aged ponderosa pine/Douglas-fir forests of Western Montana, USA. For Ecol Manag 223:255–266. https://doi.org/10.1016/j.foreco.2005.11.022

  24. Fonton NH, Atindogbe G, Hounkonnou NM, Dohou RO (2011) Plot size for modelling the spatial structure of Sudanian woodland trees. Ann For Sci 68:1315–1321. https://doi.org/10.1007/s13595-011-0111-1

  25. Fonton NH, Atindogbe G, Fandohan B, Lejeune P, Ligot G (2012) Structure spatiale des arbres des savanes boisées et forêts claires soudaniennes: implication pour les enrichissements forestiers. Biotechnol Agron Soc Environ 16:429–440

  26. Getzin S, Dean C, He FA, Trofymow J, Wiegand K, Wiegand T (2006) Spatial patterns and competition of tree species in a Douglas-fir chronosequence on Vancouver Island. Ecography 29:671–682. https://doi.org/10.1111/j.2006.0906-7590.04675.x

  27. Green RH (1966) Measurement of non-randomness in spatial distributions. Popul Ecol 8:1–7

  28. Gyimah R, Nakao T (2007) Early growth and photosynthetic responses to light in seedlings of three tropical species differing in successionalstrategies. New Forest 33:217–236. https://doi.org/10.1007/s11056-006-9028-1

  29. Harms KE, Condit R, Hubbell SP, Foster RB (2001) Habitat associations of trees and shrubs in a 50-ha neotropical forest plot. J Ecol 89:947–959

  30. Hawthorne W (1995) Ecological profiles of Ghanaian forest trees, vol 29. Oxford Forestry Institute, Department of Plant Sciences, University of Oxford, Oxford, p 345

  31. Janzen DH (1970) Herbivores and the number of tree species in tropical forests. Am Natur 940:501–528

  32. Jones N (1974) Records and comments regarding the flowering of Triplochiton scleroxylon K. Schum. Commonw For Rev 1:52–56

  33. Le N, Thi D, Van Thinh N, Mitlöhner R (2016) Effect of disturbance regimes on spatial patterns of tree species in three sites in a tropical evergreen forest in Vietnam. IJFR. https://doi.org/10.1155/2016/4903749

  34. Ledo A (2015) Nature and age of neighbours matter: interspecific associations among tree species exist and vary across life stages in tropical forests. PLoS One 11:1–17. https://doi.org/10.1371/journal.pone.0141387

  35. Li L, Wei SG, Huang ZL, Ye WH, Cao HL (2008) Spatial patterns and interspecific associations of three canopy species at different life stages in a subtropical forest, China. J Integr Plant Biol 9:1140–1150. https://doi.org/10.1111/j.1744-7909.2008.00690.x

  36. Ligot G, Fayolle A, Gourlet-Fleury S, Daïnou K, Gillet JF, De Ridder M, Drouet T, Groenendijk P, Doucet JL (2019) Growth determinants of timber species Triplochiton scleroxylon and implications for forest management in Central Africa. For Ecol Manag 437:211–221. https://doi.org/10.1016/j.foreco.2019.01.042

  37. Liu Y, Li F, Jin G (2014) Spatial patterns and associations of four species in an old-growth temperate forest. J Plant Interact 9:745–753. https://doi.org/10.1080/17429145.2014.925146

  38. Marcon E (2010) Statistiques spatiales avec applications à l'écologie et à l'économie. AgroParisTech

  39. Medjibe V, Hall JS, Ashton MS, Harris D (2011) Distribution of selected timber species of a central African rain forest in relation to topography and soil heterogeneity: implications for forest management. J Sustain For 5:343–359. https://doi.org/10.1080/10549811.2011.534030

  40. Murrell DJ (2009) On the emergent spatial structure of size-structured populations: when does self-thinning lead to a reduction in clustering? J Ecol 97:256–266. https://doi.org/10.1111/j.1365-2745.2008.01475.x

  41. Neuenschwander P, Sinsin B, Goergen GE (eds) (2011) Protection de la nature en Afrique de l’Ouest: Une Liste rouge pour le Bénin. Nature conservation in West Africa: red list for Benin. IITA, Nigeria, p 365

  42. Omelko A, Ukhvatkina O, Zhmerenetsky A, Sibirina L, Petrenko T, Bobrovsky M (2018) From young to adult trees: how spatial patterns of plants with different life strategies change during age development in an old-growth Korean pine-broadleaved forest. For Ecol Manag 411:46–66. https://doi.org/10.1016/j.foreco.2018.01.023

  43. Ouédraogo DY, Doucet JL, Daïnou K, Baya F, Biwolé AB, Bourland N, Fétéké F, Gillet JF, Kouadio YL, Fayolle A (2018) The size at reproduction of canopy tree species in Central Africa. Biotropica 3:465–476. https://doi.org/10.1111/btp.12531

  44. Palla F, Louppe D (2002) Obeché Montpellier: CIRAD-Forêt p 6

  45. Pelissier R, Goreaud F (2015) Ads package for R: a fast unbiased implementation of the K-function family for studying spatial point patterns in irregular-shaped sampling windows. J Stat Softw 63:1–18. https://doi.org/10.18637/jss.v063.i06

  46. Pielou E (1962) The use of plant-to-neighbour distances for the detection of competition. J Ecol 2:357–367

  47. Qi L, Yang J, Yu D, Dai L, Contrereas M (2016) Responses of regeneration and species coexistence to single-tree selective logging for a temperate mixed forest in eastern Eurasia. Ann For Sci 73:449–460. https://doi.org/10.1007/s13595-016-0537-6

  48. Ripley BD (1977) Modelling spatial patterns. J R Stat Soc Ser B Stat Methodol 39(2):172–212. https://doi.org/10.2307/2984796

  49. Sokpon N (1995) Régénération naturelle dans les trouées de la forêt dense semi-décidue de Pobè, Sud-Est Bénin. Belg J Bot 1:13–32

  50. Thioulouse J, Chessel D, Dole S, Olivier JM (1997) ADE-4: a multivariate analysis and graphical display software. Stat Comput 7:75–83

  51. Veenendaal EM, Swaine MD, Lecha RT, Walsh MF, Abebrese IK, Owusu-Afriyie K (1996) Responses of west African forest tree seedlings to irradiance and soil fertility. Funct Ecol 10(4):501–511. https://doi.org/10.2307/2389943

  52. Wédjangnon AA, Houètchégnon T, Ouinsavi C (2016a) Caractéristiques ethnobotaniques et importance socio-culturelle de Mansonia altissima A. Chev. au Bénin, Afrique de l’Ouest. J Anim Plant Sci 29:4678–4690

  53. Wédjangnon AA, Houètchégnon T, Ouinsavi C (2016b) Ecological characterization and mass propagation of Mansonia altissima a. Chev. In the Guinean zone of Benin, West Africa. Int J Pure App Biosci 4(4):15–25. https://doi.org/10.18782/2320-7051.2339

  54. Wédjangnon AA, Sourou Kuiga BN, Houètchégnon T, Ouinsavi C (2019) A dataset on spatial distribution and association patterns of three species from moist semi deciduous forest. Version 15 November 2019. AEKOS. [dataset]. https://doi.org/10.25901/5dce7f2714885

  55. Wiegand T (2014) User manual for the Programita software, Department of Ecological Modelling, vol 15. Helmholtz Centre for Environmental Research - UFZ, Permoserstr, Leipzig, p 04318

  56. Wiegand T, Moloney KA (2014) A handbook of spatial point pattern analysis in ecology. Chapman and Hall/CRC press, Boca Raton. https://doi.org/10.1002/bimj.201400174

  57. Zhang Z, Hu G, Zhu J, Ni J (2013) Aggregated spatial distributions of species in a subtropical karst forest, southwestern China. J Plant Ecol 6:131–140. https://doi.org/10.1093/jpe/rts027

Download references

Acknowledgements

This paper is based on the PhD thesis of the corresponding author, written as partial fulfillment for the PhD degree in Natural Resources Management at University of Parakou, Benin. The authors are grateful to all scientists from Laboratoire d’Etudes et de Recherches Forestières who contributed to this study. They are grateful to the anonymous reviewers whom strongly contributed to improve the quality of this paper. This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Correspondence to Adigla Appolinaire Wédjangnon.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Contributions of the co-authors

N. Bienvenue Kuiga Sourou and Towanou Houêtchégnon have contributed to install the plots and to data collection in the forest and to database management. Christine A. I. N. Ouinsavi has supervised the work (data collection and analysis), review of drafts and manuscript improvements.

Handling Editor: Bruno Fady

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wédjangnon, A.A., Sourou Kuiga, N.B., Houêtchégnon, T. et al. Spatial distribution and interspecific association patterns between Mansonia altissima A. Chev., Ceiba pentandra (L.) Gaertn and Triplochiton scleroxylon K. Schum. in a moist semi-deciduous forest. Annals of Forest Science 77, 6 (2020) doi:10.1007/s13595-019-0913-0

Download citation

Keywords

  • Life stages
  • Spatial distributions
  • Ripley’s L-function
  • Mansonia altissima
  • Ceiba pentandra
  • Triplochiton scleroxylon