Advertisement

Clinal variation along precipitation gradients in Patagonian temperate forests: unravelling demographic and selection signatures in three Nothofagus spp.

  • 45 Accesses

Abstract

Key message

Past demographic changes and current selection pressures determine the genetic variation displayed by Nothofagus species along rainfall gradients. Based on the diversity trends observed at candidate genes associated to drought stress, we inferred a differential species’ adaptive potential.

Context

Clinal genetic variation in natural populations could reflect either recent demographic history or the evolution of adapted genotypes along heterogeneous environments.

Aims

We describe genetic variation patterns in three Nothofagus species of South American temperate forests, growing along steep rainfall gradients. Our hypothesis is that the selection pressure along this gradient reinforces the genetic structure previously shaped by Pleistocene climate oscillations.

Methods

We screened variation along gradients at putative adaptive markers: candidate genes involved in response to drought, and EST-SSRs linked to drought stress genes. Genomic SSRs (gSSRs) were used to decouple the incidence of demographic events in the genetic structure.

Results

Genetic diversity at SSRs agreed with the putative location of cryptic Pleistocene refugia in Nothofagus. In addition, each species showed different trends for nucleotide diversity at candidate genes. Unbiased heterozygosity significantly correlated with precipitation at EST-SSRs in Nothofagus nervosa. We found evidences of balancing selection and several SNPs departed from neutral expectations.

Conclusions

Nothofagus genetic variability shows a strong imprint of demographic changes that reveals refugia location for the species during Pleistocene. This variability is modelled by environmental conditions across natural gradients, which impose selection pressure at genome regions related to stress response, providing clues about inter-specific differences in adaptive potential to water deficit.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

Individual gene sequences were deposited to GeneBank (https://www.ncbi.nlm.nih.gov/). Accession numbers MF446356-MF446390; Multilocus SSRs genotypes, candidate genes genotypes and the supplementary material were deposited in Zenodo repository (Soliani et al. 2019): https://doi.org/10.5281/zenodo.3544568

References

  1. Aitken SN, Yeaman S, Holliday JA, Wang T, Curtis-McLane S (2008) Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol Appl 1:95–111. https://doi.org/10.1111/j.1752-4571.2007.00013.x

  2. Alberto FJ, Derory J, Boury C, Frigerio JM, Zimmermann NE, Kremer A (2013) Imprints of natural selection along environmental gradients in phenology-related genes of Quercus petraea. Genetics 195:495–512. https://doi.org/10.1534/genetics.113.153783

  3. Alexander LV, Zhang X, Peterson TC et al (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res 111:D05109. https://doi.org/10.1029/2005jd006290

  4. Allen CD, Macalady AK, Chenchouni H et al (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684. https://doi.org/10.1016/j.foreco.2009.09.001

  5. Antao T, Lopes A, Lopes R et al (2008) LOSITAN: a workbench to detect molecular adaptation based on a Fst-outlier method. BMC Bioinformatics 9:323

  6. Azpilicueta MM, Caron H, Bodénès C, Gallo LA (2004) SSR markers for analysing South American Nothofagus species. Silvae Genet 53:240–243

  7. Azpilicueta MM, Marchelli P, Gallo LA (2009) The effects of quaternary glaciations in Patagonia as evidenced by chloroplast DNA phylogeography of southern beech Nothofagus obliqua. Tree Genet Genomes 5:561–571

  8. Azpilicueta MM, Gallo LA, van Zonneveld M et al (2013) Management of Nothofagus genetic resources: definition of genetic zones based on a combination of nuclear and chloroplast marker data. For Ecol Manag 302:414–424. https://doi.org/10.1016/j.foreco.2013.03.037

  9. Balzarini M, Di Rienzo J (2004) Info-Gen: Software para análisis estadístico de datos genéticos. Facultad de Ciencia Agropecuarias. Universidad Nacional de Córdoba, Argentina

  10. Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure. Proc R Soc Lond Ser B Biol Sci 263:1619–1626. https://doi.org/10.1098/rspb.1996.0237

  11. Bourne AE, Creek D, Peters JMR, Ellsworth DS, Choat B (2017) Species climate range influences hydraulic and stomatal traits in Eucalyptus species. Ann Bot 120:123–133

  12. Broin M, Cuiné S, Eymery F, Rey P (2002) The plastidic 2-cysteine peroxiredoxin is a target for a thioredoxin involved in the protection of the photosynthetic apparatus against oxidative damage. Plant Cell 14:1417–1432. https://doi.org/10.1105/tpc.001644

  13. Castañeda M, González M (2008) Statistical analysis of the precipitation trends in the Patagonian region in southern South America. Atmósfera 21:303–317

  14. Centro de Investigaciones del Mar y de la Atmósfera (2015) Tercera comunicación nacional de la República Argentina a la convencion marco de las Naciones Unidas sobre el cambio climático

  15. Chen J, Källman T, Ma X, Gyllenstrand N, Zaina G, Morgante M, Bousquet J, Eckert A, Wegrzyn J, Neale D, Lagercrantz U, Lascoux M (2012) Disentangling the roles of history and local selection in shaping clinal variation of allele frequencies and gene expression in Norway spruce (Picea abies). Genetics 191:865–881

  16. Cosacov A, Sérsic AN, Sosa V et al (2010) Molecular evidence of ice-age refugia in the Patagonia steppe and post-glacial colonisation of the Andes slopes: insights from the endemic species Calceolaria polyrhiza (Calceolariaceae). J Biogeogr 37:1463–1477

  17. Cosacov A, Johnson LA, Paiaro V et al (2012) Precipitation rather than temperature influenced the phylogeography of the endemic shrub Anarthrophyllum desideratum in the Patagonian steppe. J Biogeogr 40:168–182. https://doi.org/10.1111/j.1365-2699.2012.02776.x

  18. Cuevas JG (2002) Episodic regeneration at the Nothofagus pumilio alpine timberline in Tierra del Fuego, Chile. J Ecol 90:52–60

  19. Dixon CJ (2010) OLFinder—a program which disentangles DNA sequences containing heterozygous indels. Mol Ecol Resour 10:335–340. https://doi.org/10.1111/j.1755-0998.2009.02749.x

  20. Dumolin S, Demesure B, Petit RJ (1995) Inheritance of chloroplast and mitochondrial genomes in pedunculate oak investigated with an efficient PCR method. Theor Appl Genet 91:1253–1256

  21. Durand E, Jay F, Gaggiotti OE, Francois O (2009) Spatial inference of admixture proportions and secondary contact zones. Mol Biol Evol 26:1963–1973

  22. Earl DA, VonHoldt BM (2011) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359

  23. El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor Appl Genet 92:832–839

  24. El Mujtar VA, Gallo LA, Tiange L, Garnier-Géré P (2014) Development of genomic resources for Nothofagus species using next-generation sequencing data. Mol Ecol Resour 14:1281–1295. https://doi.org/10.1111/1755-0998.12276

  25. El Mujtar V, López M, Amalfi S et al (2017) Characterization and transferability of transcriptomic microsatellites markers for Nothofagus species. New Zeal J Bot. https://doi.org/10.1080/0028825X.2017.1340310

  26. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Molecular Ecology 14(8):2611–2620

  27. Fady B, Cottrell J, Ackzell L et al (2016) Forests and global change: what can genetics contribute to the major forest management and policy challenges of the twenty-first century? Reg Environ Chang 16:927–939. https://doi.org/10.1007/s10113-015-0843-9

  28. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

  29. Foll M, Gaggiotti O (2008) A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180:977–993

  30. Fu Y-X (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925

  31. Fu Y-X, Li W-H (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709

  32. Glasser NF, Jansson KN, Harrison S, Kleman J (2008) The glacial geomorphology and Pleistocene history of South America between 38oS and 56oS. Quat Sci Rev 27:365–390

  33. Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available from https://www2.unil.ch/popgen/softwares/fstat.htm. Accessed 16 Dec 2019

  34. Grivet D, Sebastiani F, Alia R et al (2011) Molecular footprints of local adaptation in two Mediterranean conifers. Mol Biol Evol 28:101–116

  35. Harpending H (1994) Signature of ancient population growth in alow-resolution mitochondrial DNA mismatch distribution. Hum Biol 66:591–600

  36. Hedrick PW (2005) A standardized genetic differentiation measure. Evolution (N Y) 59:1633–1638

  37. Heuertz M, De Paoli E, Källman T et al (2006) Multilocus patterns of nucleotide diversity, linkage disequilibrium and demographic history of Norway spruce [Picea abies (L.) Karst]. Genetics 174:2095–2105

  38. Hohenlohe PA, Phillips PC, Cresko WA (2010) Using population genomics to detect selection in natural populations: key concepts and methodological considerations. Int J Plant Sci 171:1059–1071. https://doi.org/10.1086/656306

  39. Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Molecular Ecology Resources 9(5):1322–1332

  40. Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94. https://doi.org/10.1186/1471-2156-11-94

  41. Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7:1225–1241

  42. Kremer A, Ronce O, Robledo-Arnuncio JJ, Guillaume F, Bohrer G, Nathan R, Bridle JR, Gomulkiewicz R, Klein EK, Ritland K, Kuparinen A, Gerber S, Schueler S (2012) Long-distance gene flow and adaptation of forest trees to rapid climate change. Ecol Lett 15:378–392

  43. Kujala ST, Knurr T, Karkkainen K et al (2017) Genetic heterogeneity underlying variation in a locally adaptive clinal trait in Pinus sylvestris revealed by a Bayesian multipopulation analysis. Heredity (Edinb) 118:413–423

  44. Li J, Li H, Jakobsson M, Li S, Sjödin P, Lascoux M (2012) Joint analysis of demography and selection in population genetics: where do we stand and where could we go? Mol Ecol 21:28–44. https://doi.org/10.1111/j.1365-294X.2011.05308.x

  45. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

  46. Marchelli P, Gallo LA (2006) Multiple ice-age refugia in a southern beech from southern South America as revealed by chloroplast DNA markers. Conserv Genet 7:591–603

  47. Marchelli P, Gallo L, Scholz F, Ziegenhagen B (1998) Chloroplast DNA markers reveal a geographical divide across Argentinean southern beech Nothofagus nervosa (Phil.) Dim. et Mil. distribution area. Theor Appl Genet 97:642–646

  48. Marchelli P, Caron H, Azpilicueta MM, Gallo L (2008) Primer note: a new set of highly polymorphic nuclear microsatellite markers for Nothofagus nervosa and related South American species. Silvae Genet 57:82–85

  49. Marchelli P, Smouse P, Gallo L (2012) Short-distance pollen dispersal for an outcrossed, wind-pollinated southern beech (Nothofagus nervosa (Phil.) dim. Et mil.). Tree Genet Genomes 8:1123–1134

  50. Marchelli P, Thomas E, Azpilicueta MM, Zonneveld M, Gallo L (2017) Integrating genetics and suitability modelling to bolster climate change adaptation planning in Patagonian Nothofagus forests. Tree Genet Genomes 13:119–114. https://doi.org/10.1007/s11295-017-1201-5

  51. Markgraf V, Romero EJ, Villagrán C (1996) History and paleoecology of South American Nothofagus forests. In: Veblen TT et al (eds) In: the ecology and biogeography of Nothofagus forests. Yale Univ Press, New Haven London, pp 354–386

  52. Masiokas MH, Villalba R, Luckman BH et al (2008) 20th-century glacier recession and regional hydroclimatic changes in northwestern Patagonia. Glob Planet Chang 60:85–100

  53. Mathiasen P, Premoli AC (2010) Out in the cold: genetic variation of Nothofagus pumilio (Nothofagaceae) provides evidence for latitudinally distinct evolutionary histories in austral South America. Mol Ecol 19:371–385

  54. Mosca E, Eckert AJ, Liechty JD, Wegrzyn JL, la Porta N, Vendramin GG, Neale DB (2012) Contrasting patterns of nucleotide diversity for four conifers of Alpine European forests. Evol Appl 5:762–775. https://doi.org/10.1111/j.1752-4571.2012.00256.x

  55. Narum S, Hess J (2011) Comparison of FST outlier tests for SNP loci under selection. Mol Ecol Resour 11:184–194. https://doi.org/10.1111/j.1755-0998.2011.02987.x

  56. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

  57. Pardo-Diaz C, Salazar C, Jiggins CD (2015) Towards the identification of the loci of adaptive evolution. Methods Ecol Evol 6:445–464. https://doi.org/10.1111/2041-210X.12324

  58. Peakall R, Smouse P (2006) GENALEX 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

  59. Pluess AR, Frank A, Heiri C et al (2016) Genome–environment association study suggests local adaptation to climate at the regional scale in Fagus sylvatica. New Phytol 210:589–601. https://doi.org/10.1111/nph.13809

  60. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

  61. R Development Core Team R (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna ISBN 3–900051–07-0, URL http://www.R-project.org/

  62. Ramos-Onsins S, Rozas J (2002) Statistical properties of newneutrality tests against population growth. Mol Biol Evol 19:2092–2100

  63. Roschanski AM, Csilléry K, Liepelt S, Oddou-Muratorio S, Ziegenhagen B, Huard F, Ullrich KK, Postolache D, Vendramin GG, Fady B (2016) Evidence of divergent selection for drought and cold tolerance at landscape and local scales in Abies alba Mill. in the French Mediterranean Alps. Mol Ecol 25:776–794. https://doi.org/10.1111/mec.13516

  64. Rousset F (2008) GENEPOP’007: a complete re-implementation of GENEPOP software for Windows and Linux. Mol Ecol Notes 8:103–106

  65. Rusch V (1987) Estudio sobre la regeneración de la lenga en la Cuenca del Río Manso Superior, Río Negro. Informe interno, CONICET, p 112

  66. Rusticucci M, Barrucand M (2004) Observed trends and changes in temperature extremes over Argentina. Am Meteorol Soc 17:4099–4107

  67. Sabatier Y, Azpilicueta MM, Marchelli P et al (2011) Distribución natural de Nothofagus alpina y Nothofagus obliqua (Nothofagaceae) en Argentina, dos especies de primera importancia forestal de los bosques templados norpatagónicos. Boletín la Soc Argentina Botánica 46:131–138

  68. Savolainen O, Kujala ST, Sokol C et al (2011) Adaptive potential of northernmost tree populations to climate change, with emphasis on scots pine (Pinus sylvestris L.). J Hered 102:526. https://doi.org/10.1093/jhered/esr056

  69. Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234

  70. Sérsic A, Cosacov A, Cocucci AA et al (2011) Emerging phylogeographical patterns of plants and terrestrial vertebrates from Patagonia. Biol J Linn Soc 103:475–494

  71. Soliani C, Sebastiani F, Marchelli P et al (2010) Development of novel genomic microsatellite markers in the southern beech Nothofagus pumilio (Poepp. Et Endl.) Krasser. In: permanent genetic resources added to molecular ecology resources database 1 October 2009–30 November 2009. Mol Ecol Resour 10:404–408

  72. Soliani C, Tsuda Y, Bagnoli F et al (2015) Halfway encounters: meeting points of colonization routes among the southern beeches Nothofagus pumilio and N. antarctica. Mol Phylogenet Evol 85:197–207. https://doi.org/10.1016/j.ympev.2015.01.006

  73. Soliani C, Azpilicueta MM, Arana MV, Marchelli P (2019) Clinal variation along precipitation gradients in Patagonian temperate forests: unravelling demographic and selection signatures in three Nothofagus spp.V2. Zenodo. [dataset]. https://doi.org/10.5281/zenodo.3544568

  74. Stephens M, Donelly P (2003) A comparison of bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 73:1162–1169

  75. Stinchcombe JR, Hoekstra HE (2007) Combining population genomics and quantitative genetics: finding the genes underlying ecologically important traits. Heredity (Edinb) 100:158–170

  76. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

  77. Tiffin P, Ross-Ibarra J (2014) Advances and limits of using population genetics to understand local adaptation. Trends Ecol Evol 29:673–680. https://doi.org/10.1016/j.tree.2014.10.004

  78. Torales SL, Rivarola M, Pomponio MF, Fernández P, Acuña CV, Marchelli P, Gonzalez S, Azpilicueta MM, Hopp HE, Gallo LA, Paniego NB, Poltri SN (2012) Transcriptome survey of Patagonian southern beech Nothofagus nervosa (= N. Alpina): assembly, annotation and molecular marker discovery. BMC Genomics 13:291. https://doi.org/10.1186/1471-2164-13-291

  79. Turchetto-Zolet AC, Pinheiro F, Salgueiro F, Palma-Silva C (2013) Phylogeographical patterns shed light on evolutionary process in South America. Mol Ecol 22:1193–1213. https://doi.org/10.1111/mec.12164

  80. Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JA (2007) Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 35:W71–W74. https://doi.org/10.1093/nar/gkm306

  81. Varela SA, Fernández ME, Gyenge J et al (2012) Physiological and morphological short-term responses to loght and temperature in two Nothofagus species of Patagonia, South America. Photosynthetica 50:557–569

  82. Villalba R, Masiokas MH, Kitzberger T, Boninsegna JA (2005) Biogeographical consequences of recent climate changes in the southern Andes of Argentina. Glob Chang Mt Reg UM Uber al Springer, Netherlands, pp 157–166

  83. Villalba R, Lara A, Masiokas MH et al (2012) Unusual southern hemisphere tree growth patterns induced by changes in the southern annular mode. Nat Geosci 5:793–798

  84. Wang X, Vignjevic M, Jiang D, Jacobsen S, Wollenweber B (2014) Improved tolerance to drought stress after anthesis due to priming before anthesis in wheat (Triticum aestivum L.) var. Vinjett. J Exp Bot 65:6441–6456. https://doi.org/10.1093/jxb/eru362

  85. Watterson G (1975) On the number of segregating sites in geneticalmodels without recombination. Theor Pop Biol 7:256–276

  86. Xu Y-H, Liu R, Yan L, Liu ZQ, Jiang SC, Shen YY, Wang XF, Zhang DP (2012) Light-harvesting chlorophyll a/b-binding proteins are required for stomatal response to abscisic acid in Arabidopsis. J Exp Bot 63:1095–1106

  87. You J, Chan Z (2015) ROS regulation during abiotic stress responses in crop plants. Front Plant Sci 6:1092. https://doi.org/10.3389/fpls.2015.01092

  88. Zanella M, Borghi GL, Pirone C, Thalmann M, Pazmino D, Costa A, Santelia D, Trost P, Sparla F (2016) β-Amylase 1 (BAM1) degrades transitory starch to sustain proline biosynthesis during drought stress. J Exp Bot 67:1819–1826

Download references

Acknowledgements

We thank Dr. Georgina Sola for kindly providing the microsatellite genotypes of the Quilanlahue Population, Fernando Umaña and Victoria Lantschner for drawing up the maps of sampled populations, Alejandro Aparicio for statistical support in R, Katharina Budde for critical reading of the manuscript and Jill T. Sekely for English editing.

Funding

This work was funded by Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT - FONCyT), Argentina [grant numbers PICT 2011 N° 2250 and PICT 2013 N°0603].

Author information

Correspondence to Carolina Soliani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Contribution of the co-authors

Carolina Soliani, María Marta Azpilicueta, María Verónica Arana and Paula Marchelli conceived and designed the experiments; Carolina Soliani performed the experiments, analyzed the data and wrote the first version of the manuscript and all authors contributed to the writing and revision of the final manuscript.

Handling Editor: Ricardo Alia

Electronic supplementary material

ESM 1

(RAR 16.5 kb)

ESM 2

(DOCX 75.5 kb)

ESM 3

(DOCX 1.38 mb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Soliani, C., Azpilicueta, M.M., Arana, M.V. et al. Clinal variation along precipitation gradients in Patagonian temperate forests: unravelling demographic and selection signatures in three Nothofagus spp.. Annals of Forest Science 77, 4 (2020) doi:10.1007/s13595-019-0908-x

Download citation

Keywords

  • Rainfall gradient
  • Genetic diversity
  • Candidate genes
  • Drought stress
  • Nothofagus
  • Evolutionary history