Advertisement

Effects of Quercus rubra L. on soil properties and humus forms in 50-year-old and 80-year-old forest stands of Lombardy plain

  • Chiara FerréEmail author
  • Roberto Comolli
Research Paper
  • 36 Downloads

Abstract

Key message

Besides the well-known effects on the native plant community, red oak may also impact the soil; the effects of afforestation with red oak involve both organic layers and mineral soil, resulting in changes in organic carbon quantity and quality and in soil acidification.

Context

Many alien species have become widespread in Europe; among these, red oak is a common invader of temperate forests.

Aims

The effects of substitution of natural mixed forest by red oak forest on humus forms and soil properties were investigated in two paired plots: a 50-year-old (Bosco Vacaressino) and 80-year-old (Bosco Ginestre) forest stand.

Methods

Soil sampling was performed from 3 layers at 40 and 49 points in Bosco Vacaressino and Bosco Ginestre respectively to determine humus forms, soil pH, organic carbon stock, carbon-nitrogen ratio (C:N), available phosphorus, and texture.

Results

Red oak resulted in a shift from Mull to Moder humus forms; soil acidification, higher C:N ratio, and soil organic carbon stock were observed compared with mixed forests.

Conclusion

The major changes were reflected in a change toward less active humus forms; the effects of vegetation conversions were also visible in mineral layers; many of the modifications were more evident with increasing stand age.

Keywords

Alien species Red oak Forest Conversion Humus form Soil spatial variability Mixed model 

Notes

Acknowledgments

We received substantial help from F. Caronni (Ticino Park). We thank to F. Concas, L. Naldi, D. Codenotti, D. Abu El Khair, and L. Ballabio for their help with field and laboratory work. A special thanks to A. Castrignanò (Unit for Cropping Systems in Dry Environments, CREA-SCA, Bari) for her kind support in geostatistical analyses.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

References

  1. Bernier N, Ponge JF (1994) Humus form dynamics during the sylvogenetic cycle in a mountain spruce forest. Soil Biol Biochem 26:183–220.  https://doi.org/10.1016/0038-0717(94)90161-9 CrossRefGoogle Scholar
  2. Bohn U, Neuhäusl R, Gollub G, Hettwer C, Neuhäuslová Z, Raus T, Schlüter H, Weber H (2000) Karte der natürlichen Vegetation Europas (Map of the natural vegetation of Europe). Maßstab / Scale 1: 2 500 000. Landwirtschaftsverlag, MünsterGoogle Scholar
  3. Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White J-SS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135.  https://doi.org/10.1016/j.tree.2008.10.008 CrossRefPubMedGoogle Scholar
  4. Bonifacio E, Petrillo M, Petrella F, Tambone F, Celi L (2015) Alien red oak affects soil organic matter cycling and nutrient availability in low-fertility well-developed soils. Plant Soil 395:215–229.  https://doi.org/10.1007/s11104-015-2555-9 CrossRefGoogle Scholar
  5. Burt R (2004) Soil survey laboratory methods manual. Soil Survey Investigation Report No 42, version 4.0. USDA-NRCA, Lincoln, NEGoogle Scholar
  6. Chmura D (2013) Impact of alien tree species Quercus rubra L. on understorey environment and flora: a study of the Silesian Upland (Southern Poland). Pol J Ecol 61:431–442Google Scholar
  7. Couteaux MM, Bottner P, Berg B (1995) Litter decomposition, climate and litter quality. Trends Ecol Evol 10:63–66.  https://doi.org/10.1016/S0169-5347(00)88978-8 CrossRefPubMedGoogle Scholar
  8. Dimbleby GW (1962) The development of British heathlands and their soil. Oxford Forestry Memoirs, vol 23. Clarendon Press, OxfordGoogle Scholar
  9. Ehrenfeld JG (2003) Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6:503–523.  https://doi.org/10.1007/s10021-002-0151-3 CrossRefGoogle Scholar
  10. Ellert BH, Bettany JR (1995) Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Can J Soil Sci 75:529–538.  https://doi.org/10.4141/cjss95-075 CrossRefGoogle Scholar
  11. Ferré C, Comolli R (2019) Soil properties and humus forms in 50-year old and 80-year Red oak stands and native mixed forests of Lombardy plain. PANGAEA. [Dataset].  https://doi.org/10.1594/PANGAEA.905854
  12. Ferré C, Comolli R, Leip A, Seufert G (2014) Forest conversion to poplar plantation in a Lombardy floodplain (Italy): effects on soil organic carbon stock. Biogeosciences 11:6483–6493.  https://doi.org/10.5194/bg-11-6483-2014 CrossRefGoogle Scholar
  13. Gentili R, Ferré C, Cardarelli E, Montagnani C, Bogliani G, Citterio S, Comolli R (2019) Comparing negativeimpacts of Prunus serotina, Quercus rubra and Robinia pseudoacacia on native forest ecosystems. Forests 10:842.  https://doi.org/10.3390/f10100842 CrossRefGoogle Scholar
  14. Graça MAS, Poquet JM (2014) Do climate and soil influence phenotypic variability in leaf litter, microbial decomposition and shredder consumption? Oecologia 174:1021–1032.  https://doi.org/10.1007/s00442-013-2825-2 CrossRefPubMedGoogle Scholar
  15. Hejda M, Pyšek P, Jarošík V (2009) Impact of invasive plants on the species richness, diversity and composition of invaded communities. J Ecol 97:393–403.  https://doi.org/10.1111/j.1365-2745.2009.01480.x CrossRefGoogle Scholar
  16. Hobbie SE (2015) Plant species effects on nutrient cycling: revisiting litter feedbacks. Trends Ecol Evol 30:357–363.  https://doi.org/10.1016/j.tree.2015.03.015 CrossRefPubMedGoogle Scholar
  17. IPCC (2006) IPCC Guidelines for national greenhouse gas inventories. National Greenhouse Gas Inventories Programme, IGES, JapanGoogle Scholar
  18. IUSS Working Group WRB (2015) World reference base for soil resources 2014, update 2015. World Soil Resources Reports, vol 106. FAO, RomeGoogle Scholar
  19. Jonczak J, Parzych A, Sobisz Z (2015) Decomposition of four tree species leaf litters in headwater riparian forest. Balt For 21:133–143Google Scholar
  20. Kounda-Kiki C, Ponge J-F, Mora P, Sarthou C (2008) Humus profiles and successional development in a rock savanna (Nouragues inselberg, French Guiana): a micro-morphological approach infers fire as a disturbance event. Pedobiologia 52:85–95.  https://doi.org/10.1016/j.pedobi.2008.04.002 CrossRefGoogle Scholar
  21. Lenda M, Witek M, Skórka P, Moroń D, Woyciechowski M (2013) Invasive alien plants affect grassland ant communities, colony size and foraging behaviour. Biol Invasions 15:2403–2414.  https://doi.org/10.1007/s10530-013-0461-8 CrossRefGoogle Scholar
  22. Littell RC, Stroup WW, Milliken GA, Wolfinger RD, Schabenberger O (2006) SAS for mixed models, 2nd edn. SAS Institute Inc, CaryGoogle Scholar
  23. Magni Diaz CR (2004) Reconstruction de l’introduction de Quercus rubra L. en Europe et conséquences génétique dans les populations allochtones, Phd Thesis, École National du Génie Rural, des Eaux et des Forêts, ParisGoogle Scholar
  24. Miltner S, Kupka I, Třeštík M (2016) Effects of Northern red oak (Quercus rubra L.) and sessile oak (Quercus petraea (Mattusch.) Liebl.) on the forest soil chemical properties. Lesn Cas For J 62:169–172.  https://doi.org/10.1515/forj-2016-0020 CrossRefGoogle Scholar
  25. Nagel-de-Boois H, Jansen E (1967) Hyphal activity in mull and mor of an oak forest. In: Graff O, Satchell JE (eds) Progress in Soil Biology. Vieweg, Braunschweig, pp 27–36Google Scholar
  26. Olsen SR, Cole CV, Watanabe FS (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Circular no. 939, United States Department of Agriculture, WashingtonGoogle Scholar
  27. Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993.  https://doi.org/10.1126/science.1201609 CrossRefPubMedGoogle Scholar
  28. Poeplau C, Don A, Vesterdal L, Leifeld J, van Wesemael B (2011) Temporal dynamics of soil organic carbon after land-use change in the temperate zone - carbon response functions as a model approach. Glob Chang Biol 17:2415–2427.  https://doi.org/10.1111/j.1365-2486.2011.02408.x CrossRefGoogle Scholar
  29. Ponge J-F (2003) Humus forms in terrestrial ecosystems: a framework to biodiversity. Soil Biol Biochem 35:935–945.  https://doi.org/10.1016/S0038-0717(03)00149-4 CrossRefGoogle Scholar
  30. Ponge J-F, Chevalier R (2006) Humus Index as an indicator of forest stand and soil properties. For Ecol Manag 233:165–175.  https://doi.org/10.1016/j.foreco.2006.06.022 CrossRefGoogle Scholar
  31. Ponge J-F, Chevalier R, Loussot P (2002) Humus Index: an integrated tool for the assessment of forest floor and topsoil properties. Soil Sci Soc Am J 66:1996–2001.  https://doi.org/10.2136/sssaj2002.1996 CrossRefGoogle Scholar
  32. Ravazzi C, Marchetti M, Zanon M, Perego R, Quirino T, Deaddis M, De Amicis M, Margaritora D (2013) Lake evolution and landscape history in the lower Mincio River valley, unravelling drainage changes in the central Po Plain (N-Italy) since the Bronze Age. Quat Int 288:195–205.  https://doi.org/10.1016/j.quaint.2011.11.031 CrossRefGoogle Scholar
  33. Regina SI, Tarazona T (2001) Nutrient cycling in a natural beech forest and adjacent planted pine in northern Spain. Forestry 74:11–28.  https://doi.org/10.1093/forestry/74.1.11 CrossRefGoogle Scholar
  34. Riepsas E, Straigyte L (2008) Invasiveness and ecological effects of red oak (Quercus rubra L.) in lithuanian forests. Balt For 122–130Google Scholar
  35. Salmon S, Mantel J, Frizzera L, Zanella A (2006) Changes in humus forms and soil animal communities in two developmental phases of Norway spruce on an acidic substrate. For Ecol Manag 237:47–56.  https://doi.org/10.1016/j.foreco.2006.09.089 CrossRefGoogle Scholar
  36. Schaefer M (1991) Fauna of the European temperate deciduous forest. In: Röhrig E, Ulrich B (eds) Ecosystems of the world. VII. Temperate deciduous forests. Elsevier, Amsterdam, pp 503–525Google Scholar
  37. Searle SR, Casella G, McCulloch CE (2009) Variance components. John Wiley & Sons, HobokenGoogle Scholar
  38. Stefanowicz AM, Stanek M, Nobis M, Zubek S (2017) Few effects of invasive plants Reynoutria japonica, Rudbeckia laciniata and Solidago gigantea on soil physical and chemical properties. Sci Total Environ 574:938–946.  https://doi.org/10.1016/j.scitotenv.2016.09.120 CrossRefPubMedGoogle Scholar
  39. Steffen KT, Cajthaml T, Snajdr J, Baldrian P (2007) Differential degradation of oak (Quercus petraea) leaf litter by litter-decomposing basidiomycetes. Res Microbiol 158:447–455.  https://doi.org/10.1016/j.resmic.2007.04.002 CrossRefPubMedGoogle Scholar
  40. Steltzer H, Bowman WD (2005) Litter N retention over winter for a low and a high phenolic species in the alpine tundra. Plant Soil 275:361–370.  https://doi.org/10.1007/s11104-005-3100-z CrossRefGoogle Scholar
  41. Takao S (1965) Organic acid production by basidiomycetes. I. Screening of acid-producing strains. Appl Microbiol 13:732–737CrossRefGoogle Scholar
  42. Talbot JM, Finzi AC (2008) Differential effects of Sugar maple, Red oak, and Hemlock tannins on carbon and nitrogen cycling in temperate forest soils. Oecologia 155:583–592.  https://doi.org/10.1007/s00442-007-0940-7 CrossRefPubMedGoogle Scholar
  43. Vansteenkiste D, de Boever L, van Acker J (2005) Alternative processing solutions for Red oak (Quercus rubra) from converted forests in Flanders, Belgium. Proceedings of the COST Action E44 Conference on broad spectrum utilization of wood, ViennaGoogle Scholar
  44. Vilà M, Espinar JL, Hejda M, Hulme PE, Jarošík V, Maron JL, Pergl J, Schaffner U, Sun Y, Pyšek P (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol Lett 14:702–708.  https://doi.org/10.1111/j.1461-0248.2011.01628.x CrossRefPubMedGoogle Scholar
  45. Wiklander L, Andersson A (1972) The replacing efficiency of hydrogen ion in relation to base saturation and pH. Geoderma 7:159–165CrossRefGoogle Scholar
  46. Willis KJ, Braun M, Sümegi P, Tóth A (1997) Does soil change cause vegetation change or vice versa? A temporal perspective from Hungary. Ecology 78:740–750.  https://doi.org/10.1890/0012-9658(1997)078[0740:DSCCVC]2.0.CO;2 CrossRefGoogle Scholar
  47. Zanella A, Jabiol B, Ponge J-F, Sartori G, Waal R de, van Delft B, Graefe U, Cools N, Katzensteiner K, Hager H, Englisch M, Brêthes A, Broll G, Gobat J-M, Brun J-J, Milbert G, Kolb E, Wolf U, Frizzera L, Galvan P, Kõlli R, Baritz R, Kemmers R, Vacca A, Serra G, Banas D, Garlato A, Chersich S, Klimo E, Langohr R (2011) European humus forms reference base, http://hal.archives-ouvertes.fr/docs/00/56/17/95/PDF/Humus_Forms_ERB_31_01_2011.pdf. Accessed 12 Sept 2019
  48. Zanella A, Ponge J-F, Jabiol B, Sartori G, Kolb E, Le Bayon R-C, Gobat J-M, Aubert M, de Waal R, van Delft B, Vacca A, Serra G, Chersich S, Andreetta A, Kõlli R, Brun JJ, Cools N, Englisch M, Hager H, Katzensteiner K, Brêthes A, de Nicola C, Testi A, Bernier N, Graefe U, Wolf U, Juilleret J, Garlato A, Obber S, Galvan P, Zampedri R, Frizzera L, Tomasi M, Banas D, Bureau F, Tatti D, Salmon S, Menardi R, Fontanella F, Carraro V, Pizzeghello D, Concheri G, Squartini A, Cattaneo D, Scattolin L, Nardi S, Nicolini G, Viola F (2018) Humusica 1, article 5: Terrestrial humus systems and forms — keys of classification of humus systems and forms. Appl Soil Ecol 122:75–86.  https://doi.org/10.1016/j.apsoil.2017.06.012 CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France SAS, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Earth and Environmental SciencesMilano Bicocca UniversityMilanItaly

Personalised recommendations