Advertisement

Annals of Forest Science

, 76:100 | Cite as

Survival of Douglas-fir provenances in Austria: site-specific late and early frost events are more important than provenance origin

  • Debojyoti ChakrabortyEmail author
  • Christoph Matulla
  • Konrad Andre
  • Lambert Weissenbacher
  • Silvio Schueler
Research Paper
Part of the following topical collections:
  1. Forest Adaptation and Restoration under Global Change

Abstract

Key message

Autumn and spring frost events caused wide variation in the survival of juvenile Douglas-fir in Austrian forest sites located in the transition zone from Atlantic to continental climate. Survival rate can be optimized by planting provenances originating from an altitudinal belt of 500–1400 m in North America. Neither the variety nor the climate of origin of planted Douglas-fir provenances influence its response to frost events.

Context

Understanding the risks of frost during late spring and early autumn is crucial for planting non-native Douglas-fir (Pseudotsuga menziesii [Mirbel] Franco) as an alternative tree species under climate change in Europe.

Aims

We investigate the role of early and late frost events on the survival of juvenile Douglas-fir and tested whether survival depends on seed origin.

Methods

With data from 19 provenance trials across Austria, we modeled the effects of early and late frost events on juvenile survival rate, accounting for random variations due to site condition and provenance origin.

Results

Wide variations (37–93%) in the juvenile survival rate of Douglas-fir were mainly driven by early and late frost events (daily Tmin < 0 °C), summer drought, and continentality. Juvenile survival declined with an increasing number of frost events within the observation period and prevailing warm spells preceding the frost events. The seed origin of the tested provenances had a minor effect and was related to the altitude, but not to the variety or the climate of provenance origin.

Conclusion

For planting Douglas-fir in the transition zone from Atlantic to continental climates, typical in Austrian forests, the local site conditions and the probability of the occurrence of early and late frosts should be considered, while provenance selection should rather focus on productivity.

Keywords

Climate change Pseudotsuga menziesii Provenance trial Extreme events Early frost Late frost Survival 

Notes

Acknowledgments

We acknowledge the support of all present and former colleagues of BFW, Vienna who undertook field measurement at the Douglas-fir trials within the last four decades.

Funding information

The study was funded by the Austrian Climate Research Program ACRP 4th Call for Proposals, Project no. B175092 (KR11AC0K00386).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

References

  1. Aitken SN, Bemmels JB (2015) Time to get moving: assisted gene flow of forest trees. Evol Appl 9(1):271–290CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aitken SN, Whitlock MC (2013) Assisted gene flow to facilitate local adaptation to climate change. Annu Rev Ecol Evol Syst 44:367–388CrossRefGoogle Scholar
  3. Aitken SN, Adams WT, Schermann N, Fuchigami LH (1996) Family variation for fall cold hardiness in two Washington populations of coastal Douglas-fir (Pseudotsuga menziesii var. menziesii (Mirb.) Franco). For Ecol Manag 80(1–3):187–195CrossRefGoogle Scholar
  4. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723.  https://doi.org/10.1109/TAC.1974.1100705 CrossRefGoogle Scholar
  5. Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH(T), Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684CrossRefGoogle Scholar
  6. Bansal S, St Clair JB, Harrington CA, Gould PJ (2015) Impact of climate change on cold hardiness of Douglas-fir (Pseudotsuga menziesii): environmental and genetic considerations. Glob Chang Biol 21(10):3814–3826CrossRefGoogle Scholar
  7. Beck EH, Heim R, Hansen J (2004) Plant resistance to cold stress: mechanisms and environmental signals triggering frost hardening and dehardening. J Biosci 29:449–459CrossRefGoogle Scholar
  8. Benito-Garzón M, Ha-Duong M, Frascaria-Lacoste N, Fernández-Manjarrés J (2013) Habitat restoration and climate change: dealing with climate variability, incomplete data, and management decisions with tree translocations. Restor Ecol 21:530–536CrossRefGoogle Scholar
  9. Bolte A, Ammer C, Löf M, Madsen P, Nabuurs GJ, Schall P, Spathelf P, Rock J (2009) Adaptive forest management in Central Europe: climate change impacts, strategies and integrative concept. Scand J For Res 24:473–482CrossRefGoogle Scholar
  10. Braun H, Scheumann W (1989) Erste Ergebnisse der Prüfung von Douglasien-Bestandesnachkommenschaften unter besonderer Berücksichtigung der Frostresistenz. Beiträge Forstwirtschaft 23:4–11Google Scholar
  11. Braun H, Wolf H (2001) Untersuchungen zu Wachstum und Frosthärte von Douglasien-Populationen in Ostdeutschland. Beitr Forstwirtsch u Landschaft Ökol 35:211–214Google Scholar
  12. Breiman L (2001) Random forests. Mach Learn 45:5–32CrossRefGoogle Scholar
  13. Chakraborty D, Wang T, Andre K, Konnert M, Lexer MJ, Matulla C, Schueler S (2015) Selecting populations for non-analogous climate conditions using universal response functions: the case of Douglas-fir in Central Europe. PLoS One 10:e0136357CrossRefPubMedPubMedCentralGoogle Scholar
  14. Chakraborty D, Wang T, Andre K et al (2016) Adapting Douglas-fir forestry in Central Europe: evaluation, application, and uncertainty analysis of a genetically based model. Eur J For Res 1–18Google Scholar
  15. Chakraborty D, Matulla C, Andre K, Weissenbacher L, Schueler S (2018) Response of Douglas fir provenances to spring and autumn frost in Austria. V2. Figshare. [dataset].  https://doi.org/10.6084/m9.figshare.6632999.v2
  16. Coder KD, Biology T, Care H (2011) Trees & cold temperatures. 7912: WSFNR-17-08 February 2017Google Scholar
  17. Cooper HF, Grady KC, Cowan JA, Best RJ, Allan GJ, Whitham TG (2019) Genotypic variation in phenological plasticity: reciprocal common gardens reveal adaptive responses to warmer springs but not to fall frost. Glob Chang Biol 25:187–200CrossRefGoogle Scholar
  18. Cruickshank MG (2017) Climate and site factors affecting survival and yield of Douglas-fir in the cedar-hemlock ecosystem of the southern interior of British Columbia. Forestry 90:219–233Google Scholar
  19. Day WR, Chrystal RN (1928) Damage by late frost on Douglas fir, Sitka spruce, and other conifers. Forestry 2:19–30CrossRefGoogle Scholar
  20. Emerson JL, Frampton J, McKeand SE (2006) Genetic variation of spring frost damage in 3-year-old Fraser fir christmas tree plantations. HortScience 41:1531–1536CrossRefGoogle Scholar
  21. Foster RE, Johnson LS (1963) The significance of root rot and frost damage in some Douglas fir plantations. For Chron 39:266–272CrossRefGoogle Scholar
  22. Fu YH, Piao S, Op de Beeck M et al (2014) Recent spring phenology shifts in western Central Europe based on multiscale observations. Glob Ecol Biogeogr 23:1255–1263CrossRefGoogle Scholar
  23. Glerum C (1985) Frost hardiness of coniferous seedlings: principles and applications. Eval Seedl Qual Princ Proced Predict Abil major tests 107–123Google Scholar
  24. Hanewinkel M, Cullmann DA, Schelhaas M-J et al (2013) Climate change may cause severe loss in the economic value of European forest land. Nat Clim Chang 3:203–207CrossRefGoogle Scholar
  25. He F, Duncan P (2000) Density-dependent effects on tree survival in an old- growth Douglas fir forest. J Ecol 88:676–688CrossRefGoogle Scholar
  26. IPCC (2013) Working group I contribution to the IPCC fifth assessment report, climate change 2013: the physical science basis. IPCC AR5:2014Google Scholar
  27. Isaac-Renton MG, Roberts DR, Hamann A, Spiecker H (2014) Douglas-fir plantations in Europe: a retrospective test of assisted migration to address climate change. Glob Chang Biol 20:2607–2617CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kapeller S, Lexer MJ, Geburek T, Hiebl J, Schueler S (2012) Intraspecific variation in climate response of Norway spruce in the eastern alpine range: selecting appropriate provenances for future climate. For Ecol Manag 271:46–57CrossRefGoogle Scholar
  29. Katz RW, Brown BG (1992) Extreme events in a changing climate: variability is more important than averages. Clim Chang 21:289–302CrossRefGoogle Scholar
  30. Klimo E, Hager H (eds) (2000) Spruce monocultures in Central Europe – problems and prospects. Proceedings 33, European Forest Institute. 8 ISBN: 952–9844-76-X, ISSN: 1237-8801Google Scholar
  31. Kölling C (2008) Die Douglasie im Klimawandel: Gegenwärtige und zukünftige Anbaubedingungen in Bayern. LWF Wissen 12–21Google Scholar
  32. Konnert M, Ruetz W (2006) Genetic aspects of artificial regeneration of Douglas-fir (Pseudotsuga menziesii) in Bavaria. Eur J For Res 125:261–270CrossRefGoogle Scholar
  33. Kreyling J, Buhk C, Backhaus S, Hallinger M, Huber G, Huber L, Jentsch A, Konnert M, Thiel D, Wilmking M, Beierkuhnlein C (2014) Local adaptations to frost in marginal and central populations of the dominant forest tree Fagus sylvatica L. as affected by temperature and extreme drought in common garden experiments. Ecol Evol 4:594–605CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kreyling J, Schmid S, Aas G (2015) Cold tolerance of tree species is related to the climate of their native ranges. J Biogeogr 42:156–166CrossRefGoogle Scholar
  35. Larsen JB (1978) Die Frostresistenz von 60 verschiedenen Douglasien-Herkünften sowie über den Einfluss der Nährstoffversorgung auf die Frostresistenz der Douglasie. In: Larsen BJ, Muhle O, Lohbeck H (Hrsg) Untersuchungen zur Bestandesbegründung der Douglasie. Sauerländer’s Verlag, Frankfurt am Main, pp 1–126Google Scholar
  36. Lavadinović V, Isajev V, Rakonjac L et al (2013) Douglas-fir provenance phenology observations. Ekol Bratislava 32(4):376–382Google Scholar
  37. Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, Seidl R, Delzon S, Corona P, Kolström M, Lexer MJ, Marchetti M (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol Manag 259:698–709CrossRefGoogle Scholar
  38. Liu Q, Piao S, Janssens IA et al (2018) Extension of the growing season increases vegetation exposure to frost. Nat Commun 9:426CrossRefPubMedPubMedCentralGoogle Scholar
  39. Lumley T (2009) Leaps: regression subset selection. Compr R Arch NetwGoogle Scholar
  40. Maechler M, Struyf A, Hubert M et al (2015) Package ‘cluster’ R Top Doc. doi: ISBN 0-387-95457-0Google Scholar
  41. Malmqvist C, Wallin E, Lindström A, Säll H (2017) Differences in bud burst timing and bud freezing tolerance among interior and coastal seed sources of Douglas fir. Trees - Struct Funct 31:1987–1998CrossRefGoogle Scholar
  42. Montwé D, Isaac-Renton M, Hamann A, Spiecker H (2018) Cold adaptation recorded in tree rings highlights risks associated with climate change and assisted migration. Nat Commun 9:1574CrossRefPubMedPubMedCentralGoogle Scholar
  43. Muller-Landau HC, Condit RS, Chave J, Thomas SC, Bohlman SA, Bunyavejchewin S, Davies S, Foster R, Gunatilleke S, Gunatilleke N, Harms KE, Hart T, Hubbell SP, Itoh A, Kassim AR, LaFrankie JV, Lee HS, Losos E, Makana JR, Ohkubo T, Sukumar R, Sun IF, Nur Supardi MN, Tan S, Thompson J, Valencia R, Munoz GV, Wills C, Yamakura T, Chuyong G, Dattaraja HS, Esufali S, Hall P, Hernandez C, Kenfack D, Kiratiprayoon S, Suresh HS, Thomas D, Vallejo MI, Ashton P (2006) Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests. Ecol Lett 9:575–588CrossRefGoogle Scholar
  44. Neumann M, Mues V, Moreno A, Hasenauer H, Seidl R (2017) Climate variability drives recent tree mortality in Europe. Glob Chang Biol 23:4788–4797CrossRefPubMedPubMedCentralGoogle Scholar
  45. O’Neill GA, Adams WT, Aitken SN (2001) Quantitative genetics of spring and fall cold hardiness in seedlings from two Oregon populations of coastal Douglas-fir. For Ecol Manag 149:305–318CrossRefGoogle Scholar
  46. Petkova K (2011) Investigation of Douglas-fir provenance test in north-western Bulgaria at age 24 years. 60(7):288–296Google Scholar
  47. R Core Team (2013) R Core Team. R A lang environ stat comput R found stat comput Vienna, Austria ISBN 3-900051-07-0, URL http://www.R-project.org/
  48. Rehfeldt GE, Jaquish BC, López-Upton J et al (2014) Comparative genetic responses to climate in the varieties of Pinus ponderosa and Pseudotsuga menziesii: reforestation. For Ecol Manag 324:147–157CrossRefGoogle Scholar
  49. Reyer C, Lasch-Born P, Suckow F, Gutsch M, Murawski A, Pilz T (2014) Projections of regional changes in forest net primary productivity for different tree species in Europe driven by climate change and carbon dioxide. Ann For Sci 71:211–225CrossRefGoogle Scholar
  50. Sakai A, Weiser CJ (1973) Freezing resistance of trees in North America with reference to tree regions. Ecology 54:118–126CrossRefGoogle Scholar
  51. Scheifinger H, Menzel A, Koch E, Peter C (2003) Trends of spring time frost events and phenological dates in Central Europe. Theor Appl Climatol 74:41–51CrossRefGoogle Scholar
  52. Schmiedel H (1981) Zum Anbau frostresistenter Douglasien. Beiträge Forstwirtschaft 15:138–141Google Scholar
  53. Schreiber SG, Ding C, Hamann A, Hacke UG, Thomas BR, Brouard JS (2013) Frost hardiness vs. growth performance in trembling aspen: an experimental test of assisted migration. J Appl Ecol 50:939–949CrossRefGoogle Scholar
  54. Schueler S, Liesebach M (2014) Latitudinal population transfer reduces temperature sum requirements for bud burst of European beech. Plant Ecol 216:111–122.  https://doi.org/10.1007/s11258-014-0420-1 CrossRefGoogle Scholar
  55. Schultze U, Raschka HD (2002) Douglasienherkünfte für den “Sommerwarmen Osten” Österreichs. Ergebnisse aus Douglasien-Herkunftsversuchen des Institutes für Forstgenetik FBVA-Wien FBVA-Berichte Nr. 126 - 2002 ISSN 1013-0713 “Douglas -fir provenances for summerwarm Austria: results from Douglas-fir Provenace trians in Institute of Forest genetics: BFW, Vienna” (http://bfw.ac.at/rz/bfwcms.web_print?dok=5632)
  56. Seidl R, Schelhaas MJ, Lexer MJ (2011) Unraveling the drivers of intensifying forest disturbance regimes in Europe. Glob Chang Biol 17:2842–2852CrossRefGoogle Scholar
  57. Seidl R, Thom D, Kautz M, Martin-Benito D, Peltoniemi M, Vacchiano G, Wild J, Ascoli D, Petr M, Honkaniemi J, Lexer MJ, Trotsiuk V, Mairota P, Svoboda M, Fabrika M, Nagel TA, Reyer CPO (2017) Forest disturbances under climate change. Nat Clim Chang 7:395–402CrossRefPubMedPubMedCentralGoogle Scholar
  58. Senf C, Pflugmacher D, Zhiqiang Y, Sebald J, Knorn J, Neumann M, Hostert P, Seidl R (2018) Canopy mortality has doubled in Europe’s temperate forests over the last three decades. Nat Commun 9:4978CrossRefPubMedPubMedCentralGoogle Scholar
  59. Simpson DG (1990) Frost hardiness, root growth capacity, and field performance relationships in interior spruce, lodgepole pine, Douglas-fir, and western hemlock seedlings. Can J For Res 20:566–572CrossRefGoogle Scholar
  60. Spiecker H, Mielikäinen K, Köhl M, Skovsgaard JP (2012) Growth trends in European forests: studies from 12 countries. Springer, Berlin HeidelbergGoogle Scholar
  61. St Clair JB (2006) Genetic variation in fall cold hardiness in coastal Douglas-fir in western Oregon and Washington. Can J Bot Can Bot 84:1110–1121CrossRefGoogle Scholar
  62. Stevenson JF, Hawkins BJ, Woods JH (1999) Spring and fall cold hardiness in wild and selected seed sources of coastal Douglas-fir. Silvae Genet 48:29–34Google Scholar
  63. Strimbeck GR, Schaberg PG, Fossdal CG et al (2015) Extreme low temperature tolerance in woody plants. Front Plant Sci 6:884CrossRefPubMedPubMedCentralGoogle Scholar
  64. Sychra D, Mauer O (2013) Prosperity of Douglas fir (Pseudotsuga menziesii [mirb.] franco) plantations in relation to the shelter. J For Sci 59:352–358CrossRefGoogle Scholar
  65. Thornton PK, Ericksen PJ, Herrero M, Challinor AJ (2014) Climate variability and vulnerability to climate change: a review. Glob Chang Biol 20:3313–3328CrossRefPubMedPubMedCentralGoogle Scholar
  66. Van Mantgem PJ, Stephenson NL, Byrne JC et al (2009) Widespread increase of tree mortality rates in the Western United States. Science 323:521–524.  https://doi.org/10.1126/science.1165000 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Wang T, Hamann A, Spittlehouse DL, Murdock TQ (2012) ClimateWNA—high-resolution spatial climate data for Western North America. J Appl Meteorol Climatol 51:16–29CrossRefGoogle Scholar
  68. Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW (2006) Warming and earlier spring increase Western U.S. forest wildfire activity. Science 313:940–943.  https://doi.org/10.1126/science.1128834 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© INRA and Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Austrian Research Centre for Forests (BFW)ViennaAustria
  2. 2. Climate Impact Team, Climate Research Branch, Zentralanstalt für Meteorologie und GeodynamikViennaAustria

Personalised recommendations