Advertisement

Annals of Forest Science

, 76:98 | Cite as

Monoterpene emission of Quercus suber L. highly infested by Cerambyx welensii Küster

  • Israel Sánchez-OsorioEmail author
  • Gloria López-Pantoja
  • Raúl Tapias
  • Evangelina Pareja-Sánchez
  • Luis Domínguez
Research Paper
Part of the following topical collections:
  1. Entomological issues during forest diebacks

Abstract

Key message

Cork oaks highly infested by Cerambyx welensii emit an amount of limonene at dusk, when C. welensii adults become active. In contrast, emissions by neighboring cork oaks free of C. welensii are dominated by pinene-type compounds.

Context

The activity of the woodborer Cerambyx welensii Küster is a key factor in the decline of Quercus suber L. dehesas.

Aims

This study aimed to estimate whether trees highly infested by C. welensii exhibited a peculiar emission profile, with known antennally active compounds.

Methods

Monoterpenes were sampled in situ in 2006 (day/late evening) and 2008 (early evening) from Q. suber stratified by whether or not trees were highly infested by C. welensii and analyzed by gas chromatography.

Results

Limonene, α-pinene, β-pinene, sabinene, and myrcene accounted for over 87.2% of overall monoterpene emissions. Monoterpene composition and emission rates differed between the two groups, both during daytime and early evening, with a high presence of limonene in infested trees and dominance of pinene-type compounds in non-infested trees.

Conclusion

This work evidenced differences in foliar monoterpene emissions between Q. suber trees highly infested by C. welensii and non-infested trees, with a high presence of limonene in the former and dominance of pinene-type compounds in non-infested trees. We hypothesize that the detection—especially during the onset of insects daily flight—of certain compounds (e.g., limonene), together with the detection of specific ratios of several monoterpenes (e.g., those of limonene to pinene-type compounds), has a role in the intraspecific host selection by C. welensii.

Keywords

Dehesa Woodborer Limonene Pinene-type Quercus decline 

Notes

Acknowledgments

We thank Sebastiana Malia, Agustín Rincón, and María del Mar González for their assistance in both the field and the laboratory, and Dr. Manuel Fernández for his constructive comments.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Alejano R, Domingo JM, Fernández M (coords) (2011) Manual para la gestión sostenible de las dehesas andaluzas. Foro para la Defensa y Conservación de la Dehesa "Encinal". Universidad de HuelvaGoogle Scholar
  2. Allison JD, Borden JH, Seybold JH (2004) A review of the chemical ecology of the Cerambycidae. Coleoptera 14:123–150Google Scholar
  3. Aronson J, Pereira JS, Pausas JG (eds) (2009) Cork oak woodlands on the edge. Ecology, adaptive management, and restoration. Society for Ecological Restoration International, Island Press, WashingtonGoogle Scholar
  4. Bates D, Maechler M, Bolker B, Walker S (2014) lme4: linear mixed-effects models using Eigen and S4_. R package version 1.1–7. http://CRAN.R-project.org/package=lme4>Google Scholar
  5. Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, fourth ed. Longman Group Limited, HarlowGoogle Scholar
  6. Grote R (2007) Sensitivity of volatile monoterpene emission to changes in canopy structure: a model-based exercise with a process-based emission model. New Phytol 173:550–561CrossRefGoogle Scholar
  7. ICNF (2013) IFN6 – Áreas dos usos do solo e das espécies florestais de Portugal continental. Resultados preliminares Instituto da Conservação da Natureza e das Florestas, Lisboa, 34 ppGoogle Scholar
  8. Lavoir AV, Duffet C, Mouillot F, Rambal S, Ratte JP, Schnitzler JP, Staudt M (2011) Scaling-up leaf monoterpene emissions from a water limited Quercus ilex woodland. Atmos Environ 45:2888–2897CrossRefGoogle Scholar
  9. Lenth RV (2014) lsmeans: least-squares means. R package version 2.10. http://CRAN.R-project.org/package=lsmeans
  10. López-Pantoja G, DomínguezNevado L, Sánchez-Osorio I (2008) Mark-recapture estimates of the survival and recapture rates of Cerambyx welensii Küster (Coleoptera Cerambycidae) in a cork oak dehesa in Huelva (Spain). Cent Eur J Biol 3:431–441Google Scholar
  11. Loreto F, Pollastri S, Fineschi S, Velikovac V (2014) Volatile isoprenoids and their importance for protection against environmental constraints in the Mediterranean area. Environ Exp Bot 103:99–106CrossRefGoogle Scholar
  12. Maja MM, Kasurinen A, Yli-Pirilä P, Joutsensaari J, Klemola T, Holopainen T, Holopainen JK (2014) Contrasting responses of silver birch VOC emissions to short- and long-term herbivory. Tree Physiol 34:241–252.  https://doi.org/10.1093/treephys/tpt127 CrossRefPubMedGoogle Scholar
  13. Martín J, Cabezas J, Buyolo T, Patón D (2005) The relationship between Cerambyx spp. damage and subsequent Biscogniauxia mediterranum infection on Quercus suber forests. For Ecol Manag 216:166–174CrossRefGoogle Scholar
  14. Millar JG, Hanks LM (2017) Chemical ecology of cerambycid beetles. In: Wang Q (ed) Cerambycidae of the world: biology and management. CRC Press/Taylor & Francis, Boca RatonGoogle Scholar
  15. Niinemets U, Seufert G, Steinbrecher R, Tenhunen JD (2002) A model coupling foliar monoterpene emissions to leaf photosynthetic characteristics in Mediterranean evergreen Quercus species. New Phytol 153:257–275CrossRefGoogle Scholar
  16. Niinemets U, Kännaste A, Copolovici L (2013) Quantitative patterns between plant volatile emissions induced by biotic stresses and the degree of damage. Front Plant Sci 4:262.  https://doi.org/10.3389/fpls.2013.00262 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Núñez L, Plaza J, Pérez-Pastor R, Pujadas M, Gimeno B, Bermejo V, García-Alonso S (2002) High water vapour pressure deficit influence on Quercus ilex and Pinus pinea field monoterpene emission in the central Iberian Peninsula (Spain). Atmos Environ 36:4441–4452CrossRefGoogle Scholar
  18. Oksanen F, Blanchet G, Kindt R et al. (2015) Vegan: community ecology package. R package version 2.2–1.http://CRAN.R-project.org/package=vegan
  19. Pio CA, Silva PA, Cerqueira MA, Nunes TV (2005) Diurnal and seasonal emissions of volatile organic compounds from cork oak (Quercus suber) trees. Atmos Environ 39:1817–1827CrossRefGoogle Scholar
  20. Sallé A, Nageleisen LM, Lieutier F (2014) Bark and wood boring insects involved in oak declines in Europe: current knowledge and future prospects in a context of climate change. For Ecol Manag 328:79–93.  https://doi.org/10.1016/j.foreco.2014.05.027 CrossRefGoogle Scholar
  21. Sánchez-Osorio I (2005) Orientación olfativa de Cerambyx welensii Küster y Prinobius germari Dejean, principales cerambícidos xilófagos de encina (Quercus ilex L. subsp. ballota) y alcornoque (Quercus suber L.), para la localización de hospedantes. Doctoral Thesis, University of Huelva, HuelvaGoogle Scholar
  22. Sánchez-Osorio I, López-Pantoja L, Paramio AM, Lencina JL, Gallego D, Domínguez L (2016) Field attraction of Cerambyx welensii to fermentation odors and host monoterpenes. J Pest Sci 89:59–68CrossRefGoogle Scholar
  23. Sánchez-Osorio I, López-Pantoja G, Tapias R, Pareja-Sánchez E, Domínguez L (2019). Monoterpene emission of Quercus suber L. highly infested by Cerambyx welensii Küster. V 20 Aug 2019. Open Science Framework [Dataset]  https://doi.org/10.17605/OSF.IO/D2ZH3
  24. Staudt M, Mir C, Joffre R, Rambal S, Bonin A, Landais D, Lumaret R (2004) Isoprenoid emission of Quercus spp. (Q. suber and Q. ilex) in mixed stands contrasting in interspecific genetic introgression. New Phytol 163:573–584CrossRefGoogle Scholar
  25. Tiberi R, Branco M, Bracalini M, Croci F, Panzavolta T (2016) Cork oak pests: a review of insect damage and management. Ann For Sci 73:219–232.  https://doi.org/10.1007/s13595-015-0534-1 CrossRefGoogle Scholar
  26. Torres-Vila LM, Sanchez-González A, Ponce-Escudero F, Martín-Vertedor D, Ferrero-García JJ (2012) Assessing mass trapping efficiency and population density of Cerambyx welensii Küster by mark-recapture in dehesa open woodlands. Eur J Forest Res 131:1103–1116.  https://doi.org/10.1007/s10342-011-0579-0 CrossRefGoogle Scholar
  27. Torres-Vila LM, Mendiola-Diaz FJ, Conejo-Rodríguez Y, Sánchez-González Á (2016) Reproductive traits and number of matings in males and females of Cerambyx welensii (Coleoptera: Cerambycidae) an emergent pest of oaks. Bull Entomol Res 106:292–303CrossRefGoogle Scholar
  28. Torres-Vila LM, Mendiola-Díaz FJ, Sánchez-González Á (2017) Dispersal differences of a pest and a protected Cerambyx species (Coleoptera: Cerambycidae) in oak open woodlands: a mark–recapture comparative study. Ecol Entomol 42:18–32.  https://doi.org/10.1111/een.12355 CrossRefGoogle Scholar
  29. Vives E (2000) Coleoptera, Cerambycidae. Fauna Ibérica, vol 12 (ed. by M. A Ramos et al.), Museo Nacional de CienciasNaturales. CSIC, MadridGoogle Scholar
  30. Zhang Q-H, Birgersson G, Zhu J, Lofstedt C, Lofqvist J, Schlyter F (1999) Leaf volatiles from nonhost deciduous trees: variation by tree species, season and temperature, and electrophysiological activity in Ips typographus. J Chem Ecol 8:1923–1943CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Ciencias Agroforestales, ETSI La RábidaUniversity of HuelvaPalos de la FronteraSpain
  2. 2.Departament de Producció Vegetal i Ciència Forestal (EEAD-CSIC Associated Unit)University of LleidaLleidaSpain

Personalised recommendations