Advertisement

Annals of Forest Science

, 76:87 | Cite as

Scaling-up individual-level allometric equations to predict stand-level fuel loading in Mediterranean shrublands

  • Miquel De CáceresEmail author
  • Pere Casals
  • Eva Gabriel
  • Xavier Castro
Research Paper

Abstract

Key message

Allometric biomass equations developed for individual shrubs can be applied to estimate shrubland fuels from measurements of cover and average height by species.

Context

Shrubs are a major component of surface fuels in many fire-prone ecosystems. Shrub fuel loading is often estimated by “double sampling”, where data from a destructive vegetation survey is used to model vegetation-fuel relationships (development phase), and these relationships are then applied to vegetation data from a second survey (application phase). Vegetation-fuel relationships can be modeled at different levels of vegetation detail, from individual plants to stands, but the increased effort of detailed measurements may compromise large-scale applications.

Aims

To facilitate fuel loading assessments in Mediterranean shrublands, we present and test a novel method to estimate stand-level shrub loading that consists in applying individual-level allometric equations to vegetation plot data collected by measuring the percent cover and mean height of each shrub species.

Methods

We used individual-level data (i.e., plant dimensions and dry weights) to develop allometric equations for total and fine (leaves and branches < 6 mm) biomass of 26 Mediterranean shrub species. We then evaluated the accuracy and precision of the proposed method in comparison to an approach assuming constant bulk density, using data from 131 vegetation plots and taking as benchmark stand-level loading estimates derived by aggregation of individual biomass allometric estimates. A second set of 13 plots was used to quantify the additional error derived from visual estimation of species mean height and cover.

Results

The performance of species-specific models was acceptable in estimating total and fine biomass at the individual level. When based on species mean height and cover data, stand-level fuel loading estimates calculated using the proposed method had a better precision and accuracy than those obtained using bulk density values (− 4 vs. + 39% in relative bias; 10 vs. 40% in relative MAE). Visual estimation of species mean height and percent cover led to 10 and 16% increase in MAE for species loading estimates of total and fine fuels, respectively, with respect to estimates obtained without this source of error.

Conclusions

Our approach to estimate shrub loading allows combining fast species-level vegetation sampling with the flexibility of individual-level allometries to model to size-related variations of bulk density.

Keywords

Bulk density Fine fuels Fuel loading Fuel mapping Vegetation sampling 

Notes

Acknowledgments

We are grateful to AI Ríos, M Sala, JM Blanco, R Vila and the Cos d’Agents rurals and GEPIF (Generalitat de Catalunya) for their help in clipping plants and field measurements. Some species’ datasets were kindly provided by Lluís Coll (UdL), Beatriz Duguy (UB), and Joan Romanyà (UB).

Funding

This work was supported by the Conselleria d’Agricultura de la Generalitat de Catalunya and the research projects CGL2017-89149-C2-2-R and RTI2018-098778-B-I00 (Spanish Ministry of Economy and Competitiveness) and by a Spanish “Ramon y Cajal” fellowship to M.D.C (RYC-2012-11109).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Armand D, Etienne M, Legrand C, Marechal J, Valette JC (1993) Phytovolume, phytomasse et relations structurales chez quelques arbustes méditerranéens. Ann Des Sci For 50:79–89.  https://doi.org/10.1051/forest:19930106 CrossRefGoogle Scholar
  2. Blanco-Oyonarte P, Navarro-Cerrillo RM (2003) Aboveground phytomass models for major species in shrub ecosystems of western Andalusia. For Syst 12:47–55Google Scholar
  3. Bonham CD (2013) Measurements for terrestrial vegetation, 2o edn. Wiley, OxfordCrossRefGoogle Scholar
  4. Carreras J, Ferré A, Vigo J (2016) Manual dels hàbitats de Catalunya: catàleg dels hàbitats naturals reconeguts en el territori català d'acord amb els criteris establerts pel CORINE biotopes manual de la Unió Europea. Vol. IV. ISBN 9788439395553. Pp. 309Google Scholar
  5. Casals P, Valor T, Besalú A, Molina-Terrén D (2016) Understory fuel load and structure eight to nine years after prescribed burning in Mediterranean pine forests. For Ecol Manag 362:156–168.  https://doi.org/10.1016/j.foreco.2015.11.050 CrossRefGoogle Scholar
  6. Castro FX, Tudela A, Sebastià MT (2003) Modeling moisture content in shrubs to predict fire risk in Catalonia (Spain). Agric For Meteorol 116:49–59.  https://doi.org/10.1016/S0168-1923(02)00248-4 CrossRefGoogle Scholar
  7. Castro H, Freitas H (2009) Above-ground biomass and productivity in the Montado: from herbaceous to shrub dominated communities. J Arid Environ 73:506–511.  https://doi.org/10.1016/j.jaridenv.2008.12.009 CrossRefGoogle Scholar
  8. Castro I, Casado MÁ, Ramírez-Sanz L et al (1996) Funciones de estimación de la biomasa aérea de varias especies del matorral mediterráneo del centro de la península Ibérica. Orsis Org i Sist 11:107–116Google Scholar
  9. Catchpole WR, Wheeler CJ (1992) Review estimating plant biomass : a review of techniques. Aust J Ecol 17:121–131.  https://doi.org/10.1111/j.1442-9993.1992.tb00790.x CrossRefGoogle Scholar
  10. Coll L, González-Olabarria JR, Mola-Yudego B, Pukkala T, Messier C (2011) Predicting understory maximum shrubs cover using altitude and overstory basal area in different Mediterranean forests. Eur J For Res 130:55–65.  https://doi.org/10.1007/s10342-010-0395-y CrossRefGoogle Scholar
  11. Conti G, Enrico L, Casanoves F, Díaz S (2013) Shrub biomass estimation in the semiarid Chaco forest: a contribution to the quantification of an underrated carbon stock. Ann For Sci 70:515–524.  https://doi.org/10.1007/s13595-013-0285-9 CrossRefGoogle Scholar
  12. De Cáceres M, Casals P, Gabriel E, Castro X (2019) Package ‘medfuels’ and data set of shrub individual measurements collected in Catalonia, Spain. Version v1.0. Zenodo.  https://doi.org/10.5281/zenodo.3356777
  13. Fernandes PM (2009) Combining forest structure data and fuel modelling to classify fire hazard in Portugal. Ann For Sci 66:415–415.  https://doi.org/10.1051/forest/2009013 CrossRefGoogle Scholar
  14. Fernandes P, Loureiro C, Botelho H et al (2002) Avaliação Indirecta da Carga de Combustível em Pinhal Bravo. Silva Lusit 10:73–90Google Scholar
  15. Fernandes PM, Loureiro C, Botelho H (2012) PiroPinus: a spreadsheet application to guide prescribed burning operations in maritime pine forest. Comput Electron Agric 81:58–61.  https://doi.org/10.1016/j.compag.2011.11.005 CrossRefGoogle Scholar
  16. Huff S, Ritchie M, Temesgen H (2017) Allometric equations for estimating aboveground biomass for common shrubs in northeastern California. For Ecol Manag 398:48–63.  https://doi.org/10.1016/j.foreco.2017.04.027 CrossRefGoogle Scholar
  17. Keane RE (2015) Wildland fuel fundamentals and applications. Springer International Publishing, ChamCrossRefGoogle Scholar
  18. Kerr JT, Ostrovsky M (2003) From space to species: ecological applications for remote sensing. Trends Ecol Evol 18:299–305.  https://doi.org/10.1016/S0169-5347(03)00071-5 CrossRefGoogle Scholar
  19. López-Serrano FR, García-Morote A, Andrés-Abellán M, Tendero A, del Cerro A (2005) Site and weather effects in allometries: a simple approach to climate change effect on pines. For Ecol Manag 215:251–270.  https://doi.org/10.1016/j.foreco.2005.05.014 CrossRefGoogle Scholar
  20. McCullagh P, Nelder JA (1989) Generalized linear models (monographs on statistics and applied probability 37). Chapman Hall, LondonGoogle Scholar
  21. Ottmar RD, Sandberg DV, Riccardi CL, Prichard SJ (2007) An overview of the fuel characteristic classification system - quantifying, classifying , and creating fuelbeds for resource planning. Can J For Res 37:2383–2393.  https://doi.org/10.1139/X07-077 This article is one of a selection of papers published in the Special Forum on the Fuel Characteristic Classification SystemCrossRefGoogle Scholar
  22. Papió C, Trabaud L (1991) Comparative study of the aerial structure of five shrubs of Mediterranean shrublands. For Sci 37:146–159Google Scholar
  23. Pasalodos-Tato M, Ruiz-Peinado R, del Río M, Montero G (2015) Shrub biomass accumulation and growth rate models to quantify carbon stocks and fluxes for the Mediterranean region. Eur J For Res 134:537–553.  https://doi.org/10.1007/s10342-015-0870-6 CrossRefGoogle Scholar
  24. Paton D, Nuñez J, Bao D, Muñoz A (2002) Forage biomass of 22 shrub species from Monfragüe Natural Park (SW Spain) assessed by log-log regression models. J Arid Environ 52:223–231.  https://doi.org/10.1006/jare.2001.0993 CrossRefGoogle Scholar
  25. Paula S, Arianoutsou M, Kazanis D, Tavsanoglu Ç, Lloret F, Buhk C, Ojeda F, Luna B, Moreno JM, Rodrigo A, Espelta JM, Palacio S, Fernández-Santos B, Fernandes PM, Pausas JG (2009) Fire-related traits for plant species of the Mediterranean Basin. Ecology 90:1420–1420CrossRefGoogle Scholar
  26. Pereira JMC, Sequeira NMS, Carreiras JMB (1995) Structural properties and dimensional relations of some mediterranean shrub fuels. Int J Wildland Fire 5:35–42.  https://doi.org/10.1071/WF9950035 CrossRefGoogle Scholar
  27. Pimont F, Dupuy JL, Rigolot E (2018) A simple model for shrub-strata-fuel dynamics in Quercus coccifera L. communities. Ann For Sci 75:1–9.  https://doi.org/10.1007/s13595-018-0713-y CrossRefGoogle Scholar
  28. Porté AJ, Samalens J-C, Dulhoste R, Teissier du Cros R, Bosc A, Meredieu C (2009) Using cover measurements to estimate aboveground understorey biomass in maritime pine stands. Ann For Sci 66:307.  https://doi.org/10.1051/forest/2009005 CrossRefGoogle Scholar
  29. Pyne S (1984) Introduction to wildland fire management in the United States. Wiley-Interscience, New YorkGoogle Scholar
  30. Ritchie MW, Zhang J, Hamilton TA (2013) Aboveground tree biomass for Pinus ponderosa in northeastern California. Forests 4:179–196.  https://doi.org/10.3390/f4010179 CrossRefGoogle Scholar
  31. Ruffault J, Martin-StPaul N, Pimont F, Dupuy JL (2018) How well do meteorological drought indices predict live fuel moisture content (LFMC)? An assessment for wildfire research and operations in Mediterranean ecosystems. Agric For Meteorol 262:391–401.  https://doi.org/10.1016/j.agrformet.2018.07.031 CrossRefGoogle Scholar
  32. Ruiz-Peinado R, Moreno G, Juarez E, Montero G, Roig S (2013) The contribution of two common shrub species to aboveground and belowground carbon stock in Iberian dehesas. J Arid Environ 91:22–30.  https://doi.org/10.1016/j.jaridenv.2012.11.002 CrossRefGoogle Scholar
  33. Sabo KE, Sieg CH, Hart SC, Bailey JD (2009) The role of disturbance severity and canopy closure on standing crop of understory plant species in ponderosa pine stands in northern Arizona, USA. For Ecol Manag 257:1656–1662.  https://doi.org/10.1016/j.foreco.2009.01.006 CrossRefGoogle Scholar
  34. Sah JP, Ross MS, Koptur S, Snyder JR (2004) Estimating aboveground biomass of broadleaved woody plants in the understory of Florida Keys pine forests. For Ecol Manag 203:319–329.  https://doi.org/10.1016/j.foreco.2004.07.059 CrossRefGoogle Scholar
  35. Saura-Mas S, Paula S, Pausas JG, Lloret F (2010) Fuel loading and flammability in the Mediterranean Basin woody species with different post-fire regenerative strategies. Int J Wildland Fire 19:783.  https://doi.org/10.1071/WF09066 CrossRefGoogle Scholar
  36. Usó JL, Mateu J, Karjalainen T, Salvador P (1997) Allometric regression equations to determine aerial biomasses of Mediterranean shrubs. Plant Ecol 132:59–69.  https://doi.org/10.1023/A:1009765825024 CrossRefGoogle Scholar
  37. Vilagrosa A, Hernández EI, Luis VC, Cochard H, Pausas JG (2014) Physiological differences explain the co-existence of different regeneration strategies in Mediterranean ecosystems. New Phytol 201:1277–1288.  https://doi.org/10.1111/nph.12584 CrossRefPubMedGoogle Scholar
  38. Villanueva JA (2004) Tercer inventario forestal nacional (1997–2007). Ministerio de Medio Ambiente y Medio Rural. ICONA, MadridGoogle Scholar

Copyright information

© INRA and Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Joint Research Unit CTFC – AGROTECNIOSolsonaSpain
  2. 2.Centre for Ecological Research and Forestry Applications (CREAF)Cerdanyola del VallesSpain
  3. 3.Servei de Prevenció d’Incendis Forestals, Departament d’Agricultura Ramaderia, Pesca i AlimentacióGeneralitat de CatalunyaSanta Perpètua de MogodaSpain

Personalised recommendations