Advertisement

Impacts of climate change on the gross primary production of Italian forests

  • Luca Fibbi
  • Marco MoriondoEmail author
  • Marta Chiesi
  • Marco Bindi
  • Fabio Maselli
Research paper

Abstract

Key message

The impact of climatic change should not be dramatic over Italian forests in terms of GPP, which should increase particularly for evergreen forest types. This positive effect is less marked for deciduous forests. The increasing trend should be reduced by the end of the century for all forest types except mountain conifers because of increasing temperature and decreasing rainfall.

Context

Estimating the spatial and temporal variability of forest gross primary production (GPP) is a major issue of applied ecology, particularly in relation to ongoing and expected climate change.

Aims

The current study proposes a methodological framework for analyzing large-scale forest responses to climate change in terms of GPP.

Methods

The methodology utilizes the GPP estimates of an NDVI-driven model, C-Fix, to assess the performance of a biogeochemical model, BIOME-BGC. The two models were first applied at 1-km pixel scale in Italy over a period of 15 years (1999–2013). The model outputs, aggregated on annual basis for the main Italian forest types, were inter-compared and analyzed in relation to major meteorological drivers (i.e., temperature and water-limiting factors).

Results

C-Fix and BIOME-BGC responded similarly to these major drivers, which supported the application of BIOME-BGC as a prognostic tool to simulate the GPP during three time slices of the RCP4.5 climate scenario.

Conclusion

The results obtained highlight how the importance of spring temperature and water availability is diversified among the forest types in determining changes of forest GPP all over the Italian peninsula in a future climate.

Keywords

Meteorological factors C-Fix RCP4.5 BIOME-BGC 

Notes

Acknowledgments

The authors wish to thank the anonymous AFSC reviewers who provided helpful comments on the first versions of the manuscript.

Statement on data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Author Contributions

L.F. wrote the paper; M.M. wrote the paper and downscaled the RCM dataset; M.C. calibrated BIOME-BGC and analyzed model outputs; M.B. wrote the paper; F.M. calibrated C-Fix and coordinated the work.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.

References

  1. Baig S, Medlyn BE, Mercado LM, Zaehle S (2015) Does the growth response of woody plants to elevated CO2 increase with temperature? A model-oriented meta-analysis. Glob Chang Biol 21:4303–4319.  https://doi.org/10.1111/gcb.12962 CrossRefPubMedGoogle Scholar
  2. Battipaglia G, Saurer M, Cherubini P, Calfapietra C, McCarthy HR, Norby RJ, Cotrufo MF (2013) Elevated CO2 increases tree-level intrinsic water use efficiency: insights from carbon and oxygen isotope analyses in tree rings across three forest FACE sites. New Phytol 197:544–554.  https://doi.org/10.1111/nph.12044 CrossRefPubMedGoogle Scholar
  3. Bolle HJ, Eckardt M, Koslowsky D, Maselli F, Melia-Miralles J, Menenti M, Olesen FS, Petkov L, Rasool I, Van de Griend A (2006) Mediterranean land-surface processes assessed from space. Regional Climate Studies, vol. XXVIII. Springer, Berlin, Heidelberg, New York p 760 ISBN 3-540-43838-6Google Scholar
  4. Bonan GB (2008) Forests and climate change: forcing, feedbacks and the climate benefits of forests. Science 320:1444–1449.  https://doi.org/10.1126/science.1155121 CrossRefPubMedGoogle Scholar
  5. Bucchignani E, Montesarchio M, Lucia Zollo AL, Mercogliano P (2016) High-resolution climate simulations with COSMO-CLM over Italy: performance evaluation and climate projections for the 21st century. Int J Climatol 36:735–756.  https://doi.org/10.1002/joc.4379 CrossRefGoogle Scholar
  6. Campbell JL, Rustad LE, Boyer EW, Christopher SF, Driscoll CT, Fernandez IJ, Groffman PM, Houle D, Kiekbusch J, Magill AH, Mitchell MJ, Ollinger SV (2009) Consequences of climate change for biogeochemical cycling in forests of northeastern North America. Can J For Res 39:264–284.  https://doi.org/10.1139/X08-104 CrossRefGoogle Scholar
  7. Chiesi M, Maselli F, Moriondo M, Fibbi L, Bindi M, Running SW (2007) Application of BIOME-BGC to simulate Mediterranean forest processes. Ecol Model 206:179–190.  https://doi.org/10.1016/j.ecolmodel.2007.03.032 CrossRefGoogle Scholar
  8. Chiesi M, Fibbi L, Genesio L, Gioli B, Magno R, Maselli F, Moriondo M, Vaccari F (2011) Integration of ground and satellite data to model Mediterranean forest processes. Int J Appl Earth Obs Geoinf 13:504–515.  https://doi.org/10.1016/j.jag.2010.10.006 CrossRefGoogle Scholar
  9. Chiesi M, Chirici G, Marchetti M, Hasenauer H, Moreno A, Knohl A, Matteucci G, Pilegaard K, Granier A, Longdoz B, Maselli F (2016) Testing the applicability of BIOME-BGC to simulate beech gross primary production in Europe using a new continental weather dataset. Ann For Sci 73(3):713–727.  https://doi.org/10.1007/s13595-016-0560-7 CrossRefGoogle Scholar
  10. Chiesi M, Fibbi L, Tognetti R, Lombardi F, Chirici G, Teobaldelli M, Cherubini P, Maselli F (2017) Assessment of inter-annual forest production variations in Italy by the use of remote sensing and ancillary data. Eur J Remote Sens 50(1):577–587.  https://doi.org/10.1080/22797254.2017.1374215 CrossRefGoogle Scholar
  11. Chirici G, Chiesi M, Corona P, Salvati R, Papale D, Fibbi L, Sirca C, Spano D, Duce P, Marras S, Matteucci G, Cescatti A, Maselli F (2016) Estimating daily forest carbon fluxes using the combination of ground and remotely sensed data. J Geophys Res Biogeosci 121:266–279.  https://doi.org/10.1002/2015JG003019 CrossRefGoogle Scholar
  12. Dan L, Ji J, He Y (2007) Use of ISLSCP II data to intercompare and validate the terrestrial net primary production in a land surface model coupled to a general circulation model. J Geophys Res Atmos 112:D02S90.405.  https://doi.org/10.1029/2006JD007721 CrossRefGoogle Scholar
  13. De Dios VR, Fischer C, Colina C (2007) Climate change effects on Mediterranean forests and preventive measures. New For 33:29–40.  https://doi.org/10.1007/s11056-006-9011-x CrossRefGoogle Scholar
  14. Deitch MJ, Sapundjieff MJ, Feirer ST (2017) Characterizing precipitation variability and trends in the world’s Mediterranean-climate areas. Water 9:259.  https://doi.org/10.3390/w9040259 CrossRefGoogle Scholar
  15. Fibbi L, Chiesi M, Moriondo M, Bindi M, Chirici G, Papale D, Maselli M (2016) Correction of a 1 km daily rainfall dataset for modelling forest ecosystem processes in Italy. Meteorol Appl 23:294–303.  https://doi.org/10.1002/met.1554 CrossRefGoogle Scholar
  16. Gea-Izquierdo G, Guibal F, Joffre R, Ourcival JM, Simioni G, Guiot J (2015) Modelling the climatic drivers determining photosynthesis and carbon allocation in evergreen Mediterranean forests using multiproxy long-time series. Biogeosciences 12:3695–3712.  https://doi.org/10.5194/bg-12-3695-2015 CrossRefGoogle Scholar
  17. Gea-Izquierdo G, Nicault A, Battipaglia G, Dorado-Liñán I, Gutiérrez E, Monteserrat R, Guiot J (2017) Risky future for Mediterranean forests unless they undergo extreme carbon fertilization. Glob Chang Biol 23:2915–2927.  https://doi.org/10.1111/gcb.13597 CrossRefPubMedGoogle Scholar
  18. Giorgi F, Bi X, Pal J (2004) Mean, interannual variability and trends in a regional climate change experiment over Europe. II: climate change scenarios (2071–2100). Clim Dyn 23:839–858.  https://doi.org/10.1007/s00382-004-0467-0 CrossRefGoogle Scholar
  19. Golinkoff J (2010) Biome BGC version 4.2: theoretical framework of Biome-BGC. January, 2010, available online at http://www.ntsg.umt.edu/project/biome-bgc. Accessed online on 22 January 2019
  20. Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded dataset of surface temperature and precipitation. J Geophys Res Atmos 113:D20119.  https://doi.org/10.1029/2008JD010201 CrossRefGoogle Scholar
  21. Hlásny T, Barcza Z, Fabrika M, Balázs B, Churkina G, Pajtík J, Sedmák R, Turcáni M (2011) Climate change impacts on growth and carbon balance of forests in Central Europe. Clim Res 47:219–236.  https://doi.org/10.3354/cr01024 CrossRefGoogle Scholar
  22. ISPRA (2010) La realizzazione in Italia del Progetto Corine Land Cover 2006. Istituto Superiore per la Protezione e la Ricerca Ambientale. Volume 131, 50 pp.Google Scholar
  23. Jacob D, Petersen J, Eggert B, Alias A, Christensen OB, Bouwer LM, Braun A, Colette A, Déqué M, Georgievski G, Georgopoulou E, Gobiet A, Menut L, Nikulin G, Haensler A, Hempelmann N, Jones C, Keuler K, Kovats S, Kröner N, Kotlarski S, Kriegsmann A, Martin E, van Meijgaard E, Moseley C, Pfeifer S, Preuschmann S, Radermacher C, Radtke K, Rechid D, Rounsevell M, Samuelsson P, Somot S, Soussana J-F, Teichmann C, Valentini R, Vautard R, Weber B, Yiou P (2014) EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg Environ Change 14(2):563–578.  https://doi.org/10.1007/s10113-013-0499-2 CrossRefGoogle Scholar
  24. Jung M, Le Maire G, Zaehle S, Luyssaert S, Vetter M, Churkina G, Ciais P, Viovy N, Reichstein M (2007) Assessing the ability of three land ecosystem models to simulate gross carbon uptake of forests from boreal to Mediterranean climate in Europe. Biogeosc 4:647–656.  https://doi.org/10.5194/bg-4-647-2007 CrossRefGoogle Scholar
  25. Keenan TF, Hollinger DY, Bohrer G, Dragoni D, Munger JW, Schmid HP, Richardson AD (2013) Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499:324–327.  https://doi.org/10.1038/nature12291 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Maisongrande P, Duchemin B, Dedieu G (2004) Vegetation/spot: an operational mission for the Earth monitoring; presentation of new standard products. Int J Remote Sens 25:9–14.  https://doi.org/10.1080/0143116031000115265 CrossRefGoogle Scholar
  27. Maraun D, Widmann M (2018) Statistical downscaling and bias correction in climate research. Cambridge University Press pp. 360. ISBN 1107066050Google Scholar
  28. Maselli F, Chiesi M, Moriondo M, Fibbi L, Bindi M, Running SW (2009a) Integration of ground and satellite data to simulate the forest carbon budget of a Mediterranean region. Ecol Model 220(3):330–342.  https://doi.org/10.1016/j.ecolmodel.2008.10.002 CrossRefGoogle Scholar
  29. Maselli F, Papale D, Puletti N, Chirici G, Corona P (2009b) Combining remote sensing and ancillary data to monitor the gross productivity of water-limited forest ecosystems. Remote Sens Environ 113(3):657–667.  https://doi.org/10.1016/j.rse.2008.11.008 CrossRefGoogle Scholar
  30. Maselli F, Pasqui M, Chirici G, Chiesi M, Fibbi L, Salvati R, Corona P (2012) Modeling primary production using a 1 km daily meteorological data set. Clim Res 54:271–285.  https://doi.org/10.3354/cr01121 CrossRefGoogle Scholar
  31. Maselli F, Cherubini P, Chiesi M, Gilabert MA, Lombardi F, Moreno A, Teobaldelli M, Tognetti R (2014) Start of the dry season as a main determinant of inter-annual Mediterranean forest production variations. Agric For Meteorol 194:197–206.  https://doi.org/10.1016/j.agrformet.2014.04.006 CrossRefGoogle Scholar
  32. Meinshausen M, Smith SJ, Calvin KV, Daniel JS, Kainuma MLT, Lamarque J-F, Matsumoto K, Montzka SA, Raper SCB, Riahi K, Thomson AM, Velders GJM, van Vuuren D (2011) The RCP greenhouse gas concentrations and their extension from 1765 to 2300. Clim Chang 109:213–241.  https://doi.org/10.1007/s10584-011-0156-z CrossRefGoogle Scholar
  33. Misson L, Rathgeber C, Guiot J (2004) Dendroecological analysis of climatic effects on Quercus petraea and Pinus halepensis radial growth using the process-based MAIDEN model. Can J For Res 34:888–898.  https://doi.org/10.1139/x03-253 CrossRefGoogle Scholar
  34. Moriondo M, Giannakopoulos C, Bindi M (2011) Climate change impact assessment: the role of climate extremes in crop yield simulation. Clim Chang 104:679–701.  https://doi.org/10.1007/s10584-010-9871-0 CrossRefGoogle Scholar
  35. Mu Q, Zhao M, Running SW, Liu M, Tian H (2008) Contribution of increasing CO2 and climate change to the carbon cycle in China’s ecosystems. J Geophys Res 113:G01018.  https://doi.org/10.1029/2006JG000316 CrossRefGoogle Scholar
  36. Myneni RB, Williams DL (1994) On the relationship between FAPAR and NDVI. Remote Sens Environ 49:200–211.  https://doi.org/10.1016/0034-4257(94)90016-7 CrossRefGoogle Scholar
  37. Norby RJ, De Kauwe MG, Domingues TF, Duursma RA, Ellsworth DA, Goll DS, Lapola DM, Luus KA, MacKenzie AR, Medlyn PR, Rammig A, Smith B, Thomas R, Thonicke K, Walker AP, Yang X, Zaehle S (2016) Model-data synthesis for the next generation of forest free-air CO2 enrichment (FACE) experiments. New Phytol 209:17–28.  https://doi.org/10.1111/nph.13593 CrossRefPubMedGoogle Scholar
  38. Potzelsberger E, Wolfslehner B, Hasenauer H (2015) Climate change impacts on key forest functions of the Vienna Woods. Eur J For Res 134:481–496.  https://doi.org/10.1007/s10342-015-0866-2 CrossRefGoogle Scholar
  39. Reichstein M, Bahn M, Ciais P, Frank D, Mahecha MD, Seneviratne SI, Zscheischler J, Beer C, Buchmann N, Frank DC, Papale D, Rammig A, Smith P, Thonicke K, van der Velde M, Vicca S, Walz A, Wattenbach M (2013) Climate extremes and the carbon cycle. Nature 500:287–295.  https://doi.org/10.1038/nature12350 CrossRefPubMedGoogle Scholar
  40. Scarascia-Mugnozza G, Oswald H, Piussi P, Radoglou K (2000) Forests of the Mediterranean region: gaps in knowledge and research needs. For Ecol Manag 132:97–109.  https://doi.org/10.1016/S0378-1127(00)00383-2 CrossRefGoogle Scholar
  41. Thornton PE, Hasenauer H, White MA (2000) Simultaneous estimation of daily solar radiation and humidity from observed temperature and precipitation: an application over complex terrain in Austria. Agric For Met 104:255–271.  https://doi.org/10.1016/S0378-1127(00)00383-2 CrossRefGoogle Scholar
  42. Thornton PE, Law BE, Gholz HL, Clark KL, Falge E, Ellsworth DS, Goldstein AH, Monson RK, Hollinger D, Falk M, Chen J, Sparks JP (2002) Modelling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests. Agric For Meteorol 113:185–222.  https://doi.org/10.1016/S0168-1923(02)00108-9 CrossRefGoogle Scholar
  43. Trusilova K, Trembath J, Churkina G (2009) Parameter estimation and validation of the terrestrial ecosystem model BIOME-BGC using eddy-covariance flux measurements. Technical Reports—Max-Planck-Institut für Biogeochemie 16, ISSN 1615-7400. Accessed online at https://www.bgc-jena.mpg.de/bgc-systems/pmwiki2/uploads/Publications/16.pdf on 22 January 2019Google Scholar
  44. Turner DP, Ritts WD, Kennedy RE, Gray AN, Yang Z (2016) Regional carbon cycle responses to 25 years of variation in climate and disturbance in the US Pacific Northwest. Reg Environ Chang 16:2345–2355.  https://doi.org/10.1007/s10113-016-0956-9 CrossRefGoogle Scholar
  45. Veroustraete F, Sabbe H, Eerens H (2002) Estimation of carbon mass fluxes over Europe using the C-Fix model and Euroflux data. Remote Sens Environ 83:376–399.  https://doi.org/10.1016/S0034-4257(02)00043-3 CrossRefGoogle Scholar
  46. Waring HR, Running SW (2007) Forest ecosystems. Analysis at multiples scales, 3rd edn. Academic Press, San Diego ISBN: 978-0-12-370605-8Google Scholar
  47. Yuan W, Cai W, Xia J, Chen J, Liu S, Dong W, Merbold L, Law B, Arain A, Beringer A, Bernhofer C, Black A, Blanken PD, Cescatti A, Chen Y, Francois L, Gianelle D, Janssens IA, Jung M, Kato T, Kiely G, Liu D, Marcolla B, Montagnani L, Raschi A, Roupsard O, Varlagin A, Wohlfahrt G (2014) Global comparison of light use efficiency models for simulating terrestrial vegetation gross primary production based on the La Thuile database. Agric For Meteorol 192-193:108–120.  https://doi.org/10.1016/J.AGRFORMET.2014.03.007 CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  1. 1.IBIMET-CNRSesto FiorentinoItaly
  2. 2.Università di FirenzeFirenzeItaly

Personalised recommendations