Advertisement

Opportunities and challenges for an Indonesian forest monitoring network

  • Francis Q. BrearleyEmail author
  • Wahyu C. Adinugroho
  • Rodrigo Cámara-Leret
  • Haruni Krisnawati
  • Alicia Ledo
  • Lan Qie
  • Thomas E. L. Smith
  • Fitri Aini
  • Fabien Garnier
  • Nurul S. Lestari
  • Muhammad Mansur
  • Agustinus Murdjoko
  • Satria Oktarita
  • Emma Soraya
  • Hesti Lestari Tata
  • Tatang Tiryana
  • Liam A. Trethowan
  • Charlotte E. Wheeler
  • Muhammad Abdullah
  • Aswandi
  • Benjamin J. W. Buckley
  • Elena Cantarello
  • Iswan Dunggio
  • Hendra Gunawan
  • Charlie D. Heatubun
  • Diah Irawati Dwi Arini
  • Istomo
  • Tajudin Edy Komar
  • Relawan Kuswandi
  • Zaenal Mutaqien
  • Sunitha R. Pangala
  • Ramadhanil
  • Prayoto
  • Antun Puspanti
  • Muhammad A. Qirom
  • Andes H. Rozak
  • Asep Sadili
  • Ismayadi Samsoedin
  • Endah Sulistyawati
  • Siti Sundari
  • Sutomo
  • Agustinus P. Tampubolon
  • Campbell O. Webb
Opinion Paper

Abstract

Key message

Permanent sampling plots (PSPs) are a powerful and reliable methodology to help our understanding of the diversity and dynamics of tropical forests. Based on the current inventory of PSPs in Indonesia, there is high potential to establish a long-term collaborative forest monitoring network. Whilst there are challenges to initiating such a network, there are also innumerable benefits to help us understand and better conserve these exceptionally diverse ecosystems.

Keywords

Tropical forests Carbon Data sharing Dynamics Monitoring 

Abbreviations

NFI

(Indonesian) National Forest Inventory

PSP

Permanent sampling plot

REDD+

Reducing emissions from deforestation and forest degradation

Notes

Acknowledgments

We thank the British Council for the Researcher Links Workshop grant (through the UK Newton Fund) that brought most of the authors to an initial workshop in Bogor, Indonesia, in September 2016 and all our colleagues who kindly provided information on their PSPs throughout Indonesia.

Funding

This work was funded by the British Council through the UK Newton Fund. The funders had no role in the completion of this study.

Compliance with ethical standards

Ethics approval and consent to participate

Not applicable.

Conflict of interests

The authors declare that they have no conflict of interests.

References

  1. Abood SA, Lee JSH, Burivalova Z, Garcia-Ulloa J, Koh LP (2014) Relative contributions of the logging, fiber, oil palm, and mining industries to forest loss in Indonesia. Conserv Lett 8:58–67.  https://doi.org/10.1111/conl.12103 CrossRefGoogle Scholar
  2. Alder D, Synott TJ (1992) Permanent sample plot techniques for mixed tropical forest, tropical forestry papers 25. Oxford Forestry Institute, OxfordGoogle Scholar
  3. Anemaet ER, Middleton BA (2013) Dendrometer bands made easy: using modified cable ties to measure incremental growth of trees. Appl Plant Sci 1:1300044.  https://doi.org/10.3732/apps.1300044 CrossRefGoogle Scholar
  4. Ashton PS (2004) Dipterocarpaceae. In: Soepadmo E, Saw LG, Chung RCK (eds) Tree Flora of Sabah and Sarawak, vol 5. Forest Research Institute of Malaysia, Kuala Lumpur, pp 63–388Google Scholar
  5. Asner GP, Powell GPN, Mascaro J, Knapp DE, Clark JK, Jacobson J, Kennedy-Bowdoin T, Balaji A, Paez-Acosta G, Victoria E, Secada L, Valqui M, Hughes RF (2010) High-resolution forest carbon stocks and emissions in the Amazon. Proc Natl Acad Sci U S A 107:16738–16742.  https://doi.org/10.1073/pnas.1004875107 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Avitabile V, Herold M, Heuvelink GBM et al (2016) An integrated pan-tropical biomass map using multiple reference datasets. Glob Change Biol 22:1406–1420.  https://doi.org/10.1111/gcb.13139 CrossRefGoogle Scholar
  7. Baker TR, Pennington RT, Magallon S et al (2014) Fast demographic rates promote high diversification rates of Amazonian trees. Ecol Lett 17:527–536.  https://doi.org/10.1111/ele.12252 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Baker TR, Pennington RT, Dexter KG, Fine PVA, Fortune-Hopkins H, Honorio EN, Huamantupa-Chuquimaco I, Klitgård BB, Lewis GP, de Lima HC, Ashton PS, Baraloto C, Davies SJ, Donoghue MJ, Kaye M, Kress WJ, Lehmann CER, Monteagudo A, Phillips OL, Vásquez R (2017) Maximising synergy among tropical plant systematists, ecologists, and evolutionary biologists. Trends Ecol Evol 32:258–267.  https://doi.org/10.1016/j.tree.2017.01.007 CrossRefPubMedGoogle Scholar
  9. Banin L, Feldpausch TR, Phillips OL et al (2012) What controls forest architecture? Testing environmental, structural and floristic drivers. Glob Ecol Biogeogr 21:1179–1190.  https://doi.org/10.1111/j.1466-8238.2012.00778.x CrossRefGoogle Scholar
  10. Beer C, Reichstein M, Tomelleri E, Ciais P, Jung M, Carvalhais N, Rödenbeck C, Arain MA, Baldocchi D, Bonan GB, Bondeau A, Cescatti A, Lasslop G, Lindroth A, Lomas M, Luyssaert S, Margolis H, Oleson KW, Roupsard O, Veenendaal E, Viovy N, Williams C, Woodward FI, Papale D (2010) Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329:834–838.  https://doi.org/10.1126/science.1184984 CrossRefPubMedGoogle Scholar
  11. Bertault J-G, Kadir K (1998) Silvicultural research in a lowland mixed dipterocarp forest of East Kalimantan: the contribution of STREK project. CIRAD-forêt, Ministry of Forestry Research and Development Agency (FORDA) & P.T. Inhutani 1, Montpellier, France & Jakarta, IndonesiaGoogle Scholar
  12. Brearley FQ, Banin LF, Saner P (2016) Ecology of the Asian dipterocarps. Plant Ecol Divers 9:429–436.  https://doi.org/10.1080/17550874.2017.1285363 CrossRefGoogle Scholar
  13. Brienen RJW, Phillips OL, Feldpausch TR et al (2015) Long-term decline of the Amazon carbon sink. Nature 519:344–348.  https://doi.org/10.1038/nature14283 CrossRefPubMedGoogle Scholar
  14. Burslem DFRP, Ledo A (2015) High carbon stock consulting study 1: review of forest inventory methods for estimating biomass carbon stocks. Available online: http://www.simedarby.com/sustainability/clients/simedarby_sustainability/assets/contentMS/img/template/editor/HCSReports/Consulting%20Report%201_Review%20of%20forest%20inventory%20methods%20for%20estimating%20biomass%20carbon%20stocks.pdf (Accessed on 26 September 2017)
  15. Cámara-Leret R, Faurby S, Macía MJ, Balslev H, Göldel B, Svenning J-C, Kissling WD, Rønsted N, Saslis-Lagoudakis CH (2016) Fundamental species traits explain provisioning services of tropical American palms. Nat Plants 3:16220.  https://doi.org/10.1038/nplants.2016.220 CrossRefGoogle Scholar
  16. Chave J, Réjou-Méchain M, Búrquez A et al (2014) Improved allometric models to estimate the aboveground biomass of tropical trees. Glob Change Biol 20:3177–3190.  https://doi.org/10.1111/gcb.12629 CrossRefGoogle Scholar
  17. Chazdon RL, Broadbent EN, Rozendaal DMA et al (2016) Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci Adv 2:e1501639.  https://doi.org/10.1126/sciadv.1501639 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Clark DB, Clark DA, Oberbauer SF (2010) Annual wood production in a tropical rain forest in NE Costa Rica linked to climatic variation but not to increasing CO2. Glob Change Biol 16:747–759.  https://doi.org/10.1111/j.1365-2486.2009.02004.x CrossRefGoogle Scholar
  19. Condit R (1998) Tropical Forest Census Plots. Springer, BerlinCrossRefGoogle Scholar
  20. Craine JM, Battersby J, Elmore AJ, Jones AJ (2007) Building EDENs: the rise of environmentally distributed ecological networks. BioScience 57:45–54.  https://doi.org/10.1641/B570108 CrossRefGoogle Scholar
  21. Duffy JE (2009) Why biodiversity is important to the functioning of real-world ecosystems. Front Ecol Environ 7:437–444.  https://doi.org/10.1890/070195 CrossRefGoogle Scholar
  22. Enke N, Thessen A, Bach K, Bendix J, Seeger B, Gemeinholzer B (2012) The user’s view on biodiversity data sharing—investigating facts of acceptance and requirements to realize a sustainable use of research data. Ecol Inform 11:25–33.  https://doi.org/10.1016/j.ecoinf.2012.03.004 CrossRefGoogle Scholar
  23. FAO (2015) Global forest resources assessment 2015. Food and agriculture organisation of the United Nations, Rome, ItalyGoogle Scholar
  24. Fecher B, Friesike S, Hebing M (2015) What drives academic data sharing? PLoS One 10:e0118053.  https://doi.org/10.1371/journal.pone.0118053 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Gaveau DLA, Sloan S, Molidena E, Yaen H, Sheil D, Abram NK, Ancrenaz M, Nasi R, Quinones M, Wielaard N, Meijaard E (2014) Four decades of forest persistence, clearance and logging on Borneo. PLoS One 9:e101654.  https://doi.org/10.1371/journal.pone.0101654 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Ghazoul J (2015) Forests: a very short introduction. Oxford University Press, OxfordCrossRefGoogle Scholar
  27. Gibbs HK, Brown S, Niles JO, Foley JA (2007) Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environ Res Lett 2:045023.  https://doi.org/10.1088/1748-9326/2/4/045023 CrossRefGoogle Scholar
  28. Goodman RC, Phillips OL, Baker TR (2014) The importance of crown dimensions to improve tropical tree biomass estimates. Ecol Appl 24:680–698.  https://doi.org/10.1890/13-0070.1 CrossRefPubMedGoogle Scholar
  29. Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, Townshend JRG (2013) High-resolution global maps of 21st-century global forest cover change. Science 342:850–853.  https://doi.org/10.1126/science.1244693 CrossRefPubMedGoogle Scholar
  30. Hart HMJ (1928) Stamtal en Dunning: Een Oriënteerend Onderzoek Naar de Beste Plantwijdte en Dunningswijze Voor den Djati. Departement van Landbouw, Nijverheid en Handel in Nederlandsch-Indië, Batavia, Nederlandsch-IndiëGoogle Scholar
  31. Kementerian Kehutanan (1996) National Forest Inventory of Indonesia: Final Forest Resources Statistics Report, Field Document 55, UTF/INS/066/INS. Directorate General of Forest Inventory and land use planning, Ministry of Forestry. Indonesia & Food and agriculture organisation of the united nations. Jakarta, IndonesiaGoogle Scholar
  32. Kementerian Lingkungan Hidup dan Kehutanan (2015a) National Forest Reference Emission Level for REDD+: In the Context of Decision 1/CP.16 Paragraph 70. Directorate General of Climate Change, Ministry of Environment and Forestry: Jakarta, IndonesiaGoogle Scholar
  33. Kementerian Lingkungan Hidup dan Kehutanan (2015b) Statistik Kementerian Lingkungan Hidup dan Kehutanan Tahun 2014. Ministry of Environment and Forestry. Jakarta, IndonesiaGoogle Scholar
  34. Kementerian Lingkungan Hidup dan Kehutanan (2016) National Forest Reference Emission Level for Deforestation and Forest Degradation: In the Context of Decision 1/CP.16 para 70 UNFCCC (Encourages developing country parties to contribute to mitigation actions in the forest sector). Directorate General of Climate Change, Ministry of Environment and Forestry, Jakarta, IndonesiaGoogle Scholar
  35. Krisnawati H, Adinugroho WC, Imanuddin R, Hutabarat S (2014) Estimation of forest biomass for quantifying CO2 emissions in Central Kalimantan: a comprehensive approach in determining forest carbon emission factors. Research and Development Center for Conservation and Rehabilitation, Forestry Research and Development Agency of the Ministry of Environment and Forestry, Bogor, IndonesiaGoogle Scholar
  36. Krisnawati H, Imanuddin R, Adinugroho WC, Hutabarat S (2015) Standard methods for estimating greenhouse gas emissions from the forestry sector in Indonesia (version 1). Research and Development Center for Conservation and Rehabilitation, Forestry Research and Development Agency of the Ministry of Environment and Forestry, Bogor, IndonesiaGoogle Scholar
  37. Laurance WF (2013) Does research help to safeguard protected areas? Trends Ecol Evol 28:261–266.  https://doi.org/10.1016/j.tree.2013.01.017 CrossRefPubMedGoogle Scholar
  38. Ledo A (2015) Protocol for inventory of mapped plots in tropical forest. J Trop For Sci 27:240–247Google Scholar
  39. Ledo A, Cornulier T, Illian JB, Iida Y, Kassim AR, Burslem DFRP (2016) Re-evaluation of individual diameter:height allometric models to improve biomass estimation of tropical trees. Ecol Appl 26:2376–2382.  https://doi.org/10.1002/eap.1450 CrossRefGoogle Scholar
  40. Lewis SL, López-González G, Sonké B et al (2009) Increasing carbon storage in intact African tropical forests. Nature 457:1003–1006.  https://doi.org/10.1038/nature07771 CrossRefPubMedGoogle Scholar
  41. López-González G, Lewis SL, Burkitt M, Phillips OL (2011) ForestPlots.net: a web application and research tool to manage and analyse tropical forest plot data. J Veg Sci 22:610–613.  https://doi.org/10.1111/j.1654-1103.2011.01312.x CrossRefGoogle Scholar
  42. Lutz JA (2015) The evolution of long-term data for forestry: large temperate research plots in an era of global change. Northwest Sci 89:255–269.  https://doi.org/10.3955/046.089.0306 CrossRefGoogle Scholar
  43. Margono BA, Potapov PV, Turubanova S, Stolle F, Hansen MC (2014) Primary forest cover loss in Indonesia over 2000-2012. Nat Clim Chang 4:730–735.  https://doi.org/10.1038/nclimate2277 CrossRefGoogle Scholar
  44. Meijer W (1959) Plantsociological analysis of montane rainforest near Tjibodas, West Java. Acta Bot Neerl 8:277–291.  https://doi.org/10.1111/j.1438-8677.1959.tb00540.x CrossRefGoogle Scholar
  45. Novotny V (2010) Rain forest conservation in a tribal world: why forest dwellers prefer loggers to conservationists. Biotropica 42:546–549.  https://doi.org/10.1111/j.1744-7429.2010.00658.x CrossRefGoogle Scholar
  46. Page SE, Hooijer A (2016) In the line of fire: the peatlands of South-east Asia. Phil Trans R Soc Lond B Biol Sci 371:20150176.  https://doi.org/10.1098/rstb.2015.0176 CrossRefGoogle Scholar
  47. Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes DA (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993.  https://doi.org/10.1126/science.1201609 CrossRefPubMedGoogle Scholar
  48. Pan Y, Birdsey RA, Phillips OL, Jackson RB (2013) The structure, distribution, and biomass of the world’s forests. Annu Rev Ecol Evol Syst 44:593–622.  https://doi.org/10.1146/annurev-ecolsys-110512-135914 CrossRefGoogle Scholar
  49. Pereira HM, Ferrier S, Walters M et al (2013) Essential biodiversity variables. Science 339:277–278.  https://doi.org/10.1126/science.1229931 CrossRefGoogle Scholar
  50. Peters CM, Gentry AH, Mendelsohn RO (1989) Valuation of an Amazonian rainforest. Nature 339:655–656.  https://doi.org/10.1038/339655a0 CrossRefGoogle Scholar
  51. Phillips OL, Aragão LEOC, Lewis SL et al (2009) Drought sensitivity of the Amazon rainforest. Science 323:1344–1347.  https://doi.org/10.1126/science.1164033 CrossRefPubMedGoogle Scholar
  52. Phillips OL, Baker TR, Feldpausch TR, et al (2016) RAINFOR field manual for plot establishment and remeasurement. [http://www.rainfor.org/upload/ManualsEnglish/RAINFOR_field_manual_version_2016.pdf] Accessed 6 September 2017
  53. Plotkin JB, Potts MD, Yu DW, Bunyavejchewin S, Condit R, Foster R, Hubbell SP, LaFrankie J, Manokaran N, Lee H-S, Sukumar R, Nowak MA, Ashton PS (2000) Predicting species diversity in tropical forests. Proc Natl Acad Sci U S A 97:10850–10854.  https://doi.org/10.1073/pnas.97.20.10850 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Qie L, Lewis SL, Sullivan MJP et al (2017) Long-term carbon sink in Borneo’s forests, halted by drought and vulnerable to edge effects. Nat Commun 8:1966.  https://doi.org/10.1038/s41467-017-01997-0 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Réjou-Méchain M, Muller-Landau HC, Detto M et al (2014) Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks. Biogeosciences 11:6827–6840.  https://doi.org/10.5194/bg-11-6827-2014 CrossRefGoogle Scholar
  56. Ricketts TH, Daily GC, Ehrlich PR, Mitchener CD (2004) Economic value of tropical forests for coffee pollination. Proc Natl Acad Sci U S A 101:12579–12582.  https://doi.org/10.1073/pnas.0405147101 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Ruslandi RA, Sist P, Peña-Claros M, Thomas R, Putz FE (2014) Beyond equitable data sharing to improve tropical forest management. Int For Rev 16:497–503.  https://doi.org/10.1505/146554814813484112 CrossRefGoogle Scholar
  58. Rutishauser E, Hérault B, Baraloto C et al (2015) Rapid tree carbon stock recovery in managed Amazonian forests. Curr Biol 25:R787–R788.  https://doi.org/10.1016/j.cub.2015.07.034 CrossRefPubMedGoogle Scholar
  59. Sheil D (1995) A critique of permanent plot methods and analysis with examples from Budongo Forest, Uganda. For Ecol Manag 77:11–34.  https://doi.org/10.1016/0378-1127(95)03583-V CrossRefGoogle Scholar
  60. Sist P, Rutishauser E, Peña-Claros M et al (2014) The tropical managed forests observatory: a research network addressing the future of tropical logged forests. Appl Veg Sci 18:171–174.  https://doi.org/10.1111/avsc.12125 CrossRefGoogle Scholar
  61. Slik JWF (2004) El Niño droughts and their effects on tree species composition and diversity in tropical rain forests. Oecologia 141:114–120.  https://doi.org/10.1007/s00442-004-1635-y CrossRefPubMedGoogle Scholar
  62. Slik JWF, Arroyo-Rodríguez V, Aiba S-I et al (2015) An estimate of the number of tropical tree species. Proc Natl Acad Sci U S A 112:7472–7477.  https://doi.org/10.1073/pnas.1423147112 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Slik JWF, Franklin J, Arroyo-Rodríguez V et al (2018) Phylogenetic classification of the world’s tropical forests. Proc Natl Acad Sci U S A 115:1837–1842.  https://doi.org/10.1073/pnas.1714977115 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Soepadmo E (1993) Tropical rain forests as carbon sinks. Chemosphere 27:1025–1039.  https://doi.org/10.1016/0045-6535(93)90066-E CrossRefGoogle Scholar
  65. Soraya E (2011) Enhancing permanent sample plot system in Indonesian forest resource management. Poster presented at First International Conference of Indonesian Forestry Researchers (INAFOR) Bogor, 5–7 December 2011. Available online: http://www.forda-mof.org/files/Poster1-10-INAFOR_2011.pdf. (Accessed 16 December 2016)
  66. Sullivan MJP, Lewis SL, Hubau W et al (2018) Field methods for sampling tree height for tropical forest biomass estimation. Methods Ecol Evol 9:1179–1189.  https://doi.org/10.1111/2041-210X.12962 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Talbot J, Lewis SL, López-González G et al (2014) Methods to estimate aboveground wood productivity from long-term forest inventory plots. For Ecol Manag 320:30–38.  https://doi.org/10.1016/j.foreco.2014.02.021 CrossRefGoogle Scholar
  68. ter Steege H, Pitman NCA, Sabatier D et al (2013) Hyperdominance in the Amazonian tree flora. Science 342:1243092.  https://doi.org/10.1126/science.1243092 CrossRefPubMedGoogle Scholar
  69. Theilade I, Rutishauser E, Poulsen MK (2015) Community assessment of tropical tree biomass: challenges and opportunities for REDD+. Carbon Balance Manag 10:17.  https://doi.org/10.1186/s13021-015-0028-3 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Von Wulfing HEW (1938) Opstandstafels voor djatiplantsoenen. Tectona 31:562–579Google Scholar
  71. Watson RT, Noble IR, Bolin B, Ravindranath NH, Verardo DJ, Dokken DJ (2000) Land use, land-use change and forestry. Cambridge University Press, CambridgeGoogle Scholar
  72. Webb CO, Slik JWF, Triono T (2010) Biodiversity inventory and informatics in Southeast Asia. Biodivers Conserv 19:955–972.  https://doi.org/10.1007/s10531-010-9817-x CrossRefGoogle Scholar
  73. Whitmore TC (1998) An introduction to tropical rain forests. Oxford University Press, OxfordGoogle Scholar
  74. Yahara T, Akasaka M, Hirayama H, Ichihashi R, Tagane S, Toyama H, Tsujino R (2012) Strategies to observe and assess changes of terrestrial biodiversity in the Asia-Pacific regions. In: S-i N, Yahara T, Nakashizuka T (eds) The biodiversity observation network in the Asia-Pacific region: toward further development of monitoring. Springer, Tokyo, pp 3–20CrossRefGoogle Scholar
  75. Yahara T, Ma K, Darnaedi D, Miyashita T, Takenaka A, Tachida H, Nakashizuka T, Kim E-S, Takamura N, S-i N, Shirayama Y, Yamamoto H, Vergara SG (2014) Developing a regional network of biodiversity observation in the Asia-Pacific region: achievement and challenges of AP BON. In: S-i N, Yahara T, Nakashizuka T (eds) Asia-Pacific biodiversity observation network: integrative observations and assessments. Springer, Tokyo, pp 3–28Google Scholar

Copyright information

© INRA and Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  • Francis Q. Brearley
    • 1
    Email author
  • Wahyu C. Adinugroho
    • 2
  • Rodrigo Cámara-Leret
    • 3
  • Haruni Krisnawati
    • 2
  • Alicia Ledo
    • 4
  • Lan Qie
    • 5
    • 6
    • 7
  • Thomas E. L. Smith
    • 8
  • Fitri Aini
    • 9
  • Fabien Garnier
    • 10
  • Nurul S. Lestari
    • 11
  • Muhammad Mansur
    • 12
  • Agustinus Murdjoko
    • 13
  • Satria Oktarita
    • 9
  • Emma Soraya
    • 14
  • Hesti Lestari Tata
    • 2
  • Tatang Tiryana
    • 15
  • Liam A. Trethowan
    • 1
    • 3
  • Charlotte E. Wheeler
    • 16
  • Muhammad Abdullah
    • 17
  • Aswandi
    • 18
  • Benjamin J. W. Buckley
    • 19
  • Elena Cantarello
    • 20
  • Iswan Dunggio
    • 21
  • Hendra Gunawan
    • 2
  • Charlie D. Heatubun
    • 3
    • 13
    • 22
  • Diah Irawati Dwi Arini
    • 23
  • Istomo
    • 24
  • Tajudin Edy Komar
    • 2
  • Relawan Kuswandi
    • 25
  • Zaenal Mutaqien
    • 26
  • Sunitha R. Pangala
    • 27
    • 28
  • Ramadhanil
    • 29
  • Prayoto
    • 30
    • 31
  • Antun Puspanti
    • 32
  • Muhammad A. Qirom
    • 33
  • Andes H. Rozak
    • 26
  • Asep Sadili
    • 12
  • Ismayadi Samsoedin
    • 2
    • 34
  • Endah Sulistyawati
    • 35
  • Siti Sundari
    • 12
  • Sutomo
    • 36
  • Agustinus P. Tampubolon
    • 2
  • Campbell O. Webb
    • 37
    • 38
  1. 1.School of Science and the EnvironmentManchester Metropolitan UniversityManchesterUK
  2. 2.Forest Research and Development CenterResearch, Development and Innovation Agency of the Ministry of Environment and ForestryBogorIndonesia
  3. 3.Identification and Naming DepartmentRoyal Botanic Gardens, KewSurreyUK
  4. 4.Institute of Biological and Environmental SciencesUniversity of AberdeenAberdeenUK
  5. 5.School of GeographyUniversity of LeedsLeedsUK
  6. 6.Department of Life SciencesImperial College LondonAscotUK
  7. 7.School of Life SciencesUniversity of LincolnLincolnUK
  8. 8.Department of Geography and EnvironmentLondon School of Economics and Political ScienceLondonUK
  9. 9.Center for International Forestry ResearchJalan CIFORBogorIndonesia
  10. 10.Sumatran Orangutan SocietyMedanIndonesia
  11. 11.Center for Research and Development of Socio-Economic Policy and Climate ChangeResearch, Development and Innovation Agency of the Ministry of Environment and ForestryBogorIndonesia
  12. 12.Botany Division, Research Center for Biology, Indonesian Institute of SciencesCibinong Science CenterCibinongIndonesia
  13. 13.Faculty of ForestryUniversitas PapuaManokwariIndonesia
  14. 14.Faculty of ForestryUniversitas Gadjah MadaYogyakartaIndonesia
  15. 15.Department of Forest Management, Faculty of ForestryBogor Agricultural UniversityBogorIndonesia
  16. 16.School of GeosciencesUniversity of EdinburghEdinburghUK
  17. 17.Department of Biology, Faculty of Mathematics and Natural SciencesUniversitas Negeri SemarangSemarangIndonesia
  18. 18.Forestry and Environment Research Development Institute of Aek NauliParapatIndonesia
  19. 19.Borneo Nature FoundationPalangka RayaIndonesia
  20. 20.Department of Life and Environmental SciencesBournemouth UniversityPooleUK
  21. 21.Gorontalo Regency Research and Development AgencyKompleks GOR David-TonyLimbotoIndonesia
  22. 22.Research and Development AgencyProvincial Government of West PapuaManokwariIndonesia
  23. 23.Manado Environment and Forestry Research and Development InstituteManadoIndonesia
  24. 24.Department of Silviculture, Faculty of ForestryBogor Agricultural UniversityBogorIndonesia
  25. 25.Manokwari Environment and Forestry Research and Development InstituteManokwariIndonesia
  26. 26.Cibodas Botanic GardensIndonesian Institute of Sciences (LIPI)CianjurIndonesia
  27. 27.Lancaster Environment CentreLancaster UniversityLancasterUK
  28. 28.School of Environment, Earth and Ecosystem SciencesThe Open UniversityMilton KeynesUK
  29. 29.Department of Biology, Faculty of Mathematics and Natural SciencesUniversitas TadulakoPaluIndonesia
  30. 30.Graduate School for International Development and CooperationHiroshima UniversityHiroshimaJapan
  31. 31.Riau Provincial Environment and Forestry OfficePekanbaruIndonesia
  32. 32.Research Institute for Natural Resource Conservation TechnologyResearch, Development and Innovation Agency of the Ministry of Environment and ForestryBalikpapanIndonesia
  33. 33.Banjarbaru Environment and Forestry Research and Development InstituteResearch, Development and Innovation Agency of the Ministry of Environment and ForestryBanjarbaruIndonesia
  34. 34.Belantara FoundationJakartaIndonesia
  35. 35.School of Life Sciences and TechnologyInstitut Teknologi BandungBandungIndonesia
  36. 36.Bali Botanic Gardens, Indonesian Institute of Sciences (LIPI)BaliIndonesia
  37. 37.Arnold Arboretum of Harvard UniversityBostonUSA
  38. 38.University of Alaska Museum of the NorthFairbanksUSA

Personalised recommendations