Advertisement

NFIWADS: the water budget, soil moisture, and drought stress indicator database for the German National Forest Inventory (NFI)

  • Paul Schmidt-WalterEmail author
  • Bernd Ahrends
  • Tobias Mette
  • Heike Puhlmann
  • Henning Meesenburg
Data Paper
Part of the following topical collections:
  1. Environmental data for the German NFI

Abstract

Key message

The NFIWADS database contains aggregated results for the German National Forest Inventory (NFI) plots based on process-based water balance simulations. More than 150 water budget, soil moisture, and drought stress indicators were derived for mature, closed-canopy beech and spruce stands, and provide a basis for the assessment of forest productivity and risks. Dataset is available in the Open Agrar repository (Schmidt-Walter et al 2018) at https://www.openagrar.de/receive/openagrar_mods_00044576 . Associated metadata is available at https://metadata-afs.nancy.inra.fr/geonetwork/srv/fre/catalog.search#/metadata/2f09d81c-b663-48a0-8b84-0b247bba6d35 .

Keywords

Forest inventory Soil water availability Water balance Drought stress Climate change 

Notes

Acknowledgments

We thank Thilo Wolf (FVA-BW) for the fast and uncomplicated provision of huge amounts of daily resolution climate data and the Federal Office for Agriculture and Food for the project sponsorship.

Funding information

The database was created within the project “Forest productivity, carbon sequestration, climate change” which was funded by the Forest Climate Fund supported by the Federal Ministry of Food and Agriculture and the Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety by decision of the German Bundestag (project no. 28WC4003).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict(s) of interest.

References

  1. Ahrends B, Sutmöller J, Schmidt-Walter P, Meesenburg H (2018): Beitrag von Waldflächen zur Sickerwasserbildung in Niedersachsen. In: Schütze N, Müller U, Schwarze R, Wöhling T, Grundmann J (eds) “M3 – Messen, Modellieren, Managen in Hydrologie und Wasserresourcenbewirtschaftung”, Beiträge zum Tag der Hydrologie am 22./23. März 2018 an der Technischen Universität Dresden. Forum für Hydrologie und Wasserbewirtschaftung 39.18:169–180.  https://doi.org/10.14617/for.hydrol.wasbew.39.18
  2. Armbruster M, Seegert J, Feger K-H (2004) Effects of changes in tree species composition on water flow dynamics – model applications and their limitations. Plant Soil 264:13–24.  https://doi.org/10.1023/B:PLSO.0000047716.45245.23 CrossRefGoogle Scholar
  3. Augustin NH, Musio M, von Wilpert K, Kublin E, Wood SN, Schumacher M (2009) Modeling spatiotemporal forest health monitoring data. J Am Stat Assoc 104:899–911.  https://doi.org/10.1198/jasa.2009.ap07058 CrossRefGoogle Scholar
  4. Baumgarten M, Weis W, Kühn A, May K, Matyssek R (2014) Forest transpiration—targeted through xylem sap flux assessment versus hydrological modeling. Eur J For Res 133:677–690.  https://doi.org/10.1007/s10342-014-0796-4 CrossRefGoogle Scholar
  5. BMEL (2016) Der Wald in Deutschland: Ausgewählte Ergebnisse der dritten Bundeswaldinventur. Bundeministerium für Ernährung und Landwirtschaft, BerlinGoogle Scholar
  6. Bréda N, Huc R, Granier A, Dreyer E (2006) Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann For Sci 63:625–644.  https://doi.org/10.1051/forest:2006042 CrossRefGoogle Scholar
  7. Cienciala E, Tomppo E, Snorrason A et al (2008) Preparing emission reporting from forests / use of national forest inventories in European countries. Silva Fenn 42:73–88CrossRefGoogle Scholar
  8. Czajkowski T, Ahrends B, Bolte A (2009) Critical limits of soil water availability (CL-SWA) for forest trees - an approach based on plant water status. Landbauforsch Völkenrode 59:87–93Google Scholar
  9. Dietrich H, Wolf T, Kawohl T, Wehberg J, Kändler G, Mette T, Röder A, Böhner J (2019) Temporal and spatial high-resolution climate data from 1961-2100 for the Germany National Forest Inventory (NFI). Ann For Sci 76:6.  https://doi.org/10.1007/s13595-018-0788-5 CrossRefGoogle Scholar
  10. DIN4220 (2008) Bodenkundliche Standortbeurteilung - Kennzeichnung, Klassifizierung und Ableitung von Bodenkennwerten. Beuth, BerlinGoogle Scholar
  11. Dunger K, Petersson SH-O, Barreiro S, Cienciala E, Colin A, Hylen G, Kusar G, Oehmichen K, Tomppo E, Tuomainen T, Ståhl G (2012) Harmonizing greenhouse gas reporting from European forests: case examples and implications for European union level reporting. For Sci 58:248–256.  https://doi.org/10.5849/forsci.10-064 CrossRefGoogle Scholar
  12. Federer CA (2002) BROOK 90: A simulation model for evaporation, soil water, and streamflow. http://www.ecoshift.net/brook/brook90.htm. Accessed 2 Dec 2018.
  13. Federer CA, Vörösmarty C, Fekete B (1996) Intercomparison of methods for calculating potential evaporation in regional and global water balance models. Water Resour Res 32:2315–2322.  https://doi.org/10.1029/96WR00801 CrossRefGoogle Scholar
  14. Federer CA, Vörösmarty C, Fekete B (2003) Sensitivity of annual evaporation to soil and root properties in two models of contrasting complexity. J Hydrometeorol 4:1276–1290.  https://doi.org/10.1175/1525-7541(2003)004<1276:SOAETS>2.0.CO;2 CrossRefGoogle Scholar
  15. Friedrichs DA, Trouet V, Büntgen U, Frank DC, Esper J, Neuwirth B, Löffler J (2009) Species-specific climate sensitivity of tree growth in Central-West Germany. Trees 23:729–739.  https://doi.org/10.1007/s00468-009-0315-2 CrossRefGoogle Scholar
  16. Gaertig T, Schack-Kirchner H, Hildebrand EE, Wilpert KV (2002) The impact of soil aeration on oak decline in southwestern Germany. For Ecol Manag 159:15–25.  https://doi.org/10.1016/S0378-1127(01)00706-X CrossRefGoogle Scholar
  17. Granier A, Bréda N, Biron P, Villette S (1999) A lumped water balance model to evaluate duration and intensity of drought constraints in forest stands. Ecol Model 116:269–283.  https://doi.org/10.1016/S0304-3800(98)00205-1 CrossRefGoogle Scholar
  18. Hammel K, Kennel M (2001) Charakterisierung und Analyse der Wasserverfügbarkeit und des Wasserhaushalts von Waldstandorten in Bayern mit dem Simulationsmodell BROOK90. Forstl. Forschungsberichte München 185Google Scholar
  19. ICP Forests (2016) Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. Thünen Institut of Forest Ecosystems, Eberswalde, GermanyGoogle Scholar
  20. Jarvis PG (1976) The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos Trans R Soc Lond Ser B 273:593–610.  https://doi.org/10.1098/rstb.1976.0035 CrossRefGoogle Scholar
  21. Lebourgeois F, Bréda N, Ulrich E, Granier A (2005) Climate-tree-growth relationships of European beech (Fagus sylvatica L.) in the French permanent plot network (RENECOFOR). Trees 19:385–401.  https://doi.org/10.1007/s00468-004-0397-9 CrossRefGoogle Scholar
  22. Meesenburg H, Ahrends B, Kallweit R et al (2014) Interzeption von Wäldern: eine (zu) wenig beachtete Größe des Wasserkreislaufs. Forum für Hydrol Wasserbewirtsch 34:199–206Google Scholar
  23. Menzel A (1997) Phänologie von Waldbäumen unter sich ändernden Klimabedingungen - Auswertung der Beobachtungen in den Internationalen Phänologischen Gärten und Möglichkeiten der Modellierung von Phänodaten. Forstl Forschungsberichte München 164Google Scholar
  24. Mette T, Amberger H, Ahrends B et al (2018) BWI 2012 Umweltdatenbank. Göttingen, Open Agrar Repositorium https://www.openagrar.de/receive/openagrar_mods_00041957. Accessed 10 Oct 2018.Google Scholar
  25. Michelot A, Bréda N, Damesin C, Dufrêne E (2012) Differing growth responses to climatic variations and soil water deficits of Fagus sylvatica, Quercus petraea and Pinus sylvestris in a temperate forest. For Ecol Manag 265:161–171.  https://doi.org/10.1016/j.foreco.2011.10.024 CrossRefGoogle Scholar
  26. Monteith JL (1965) Evaporation and environment. Symp Soc Exp Biol 19:205–224PubMedGoogle Scholar
  27. Mualem Y (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res 12:513–522CrossRefGoogle Scholar
  28. Orlowsky B, Gerstengabe F-W, Werner PC (2008) A resampling scheme for regional climate simulations and its performance compared to a dynamical RCM. Theor Appl Climatol 93:209–223.  https://doi.org/10.1007/s00704-007-0352-y CrossRefGoogle Scholar
  29. Panferov O, Doering C, Rauch E, Sogachev A, Ahrends B (2009) Feedbacks of windthrow for Norway spruce and Scots pine stands under changing climate. Environ Res Lett 4:045019.  https://doi.org/10.1088/1748-9326/4/4/045019 CrossRefGoogle Scholar
  30. Petzold R, Benning R (2017) Standortskartierung – Wissen von gestern? AFZ der Wald 15:25–28Google Scholar
  31. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  32. Richards LA (1931) Capillary conduction of liquids through porous mediums. Physics 1:318–333.  https://doi.org/10.1063/1.1745010 CrossRefGoogle Scholar
  33. Schmidt M, Hanewinkel M, Kändler G, Kublin E, Kohnle U (2010) An inventory-based approach for modeling single-tree storm damage — experiences with the winter storm of 1999 in southwestern Germany. Can J For Res 40:1636–1652.  https://doi.org/10.1139/X10-099 CrossRefGoogle Scholar
  34. Schmidt-Walter (2018a) brook90r – Run the LWF-BROOK90 hydrological model from within R. V1.0.1. Zenodo. [Dataset].  https://doi.org/10.5281/zenodo.1433676
  35. Schmidt-Walter (2018b) Supplementary material for dataset "NFIWADS: The water budget, soil moisture, and drought stress indicator database for the German National Forest Inventory (NFI). V0.1.1. Zenodo. [Dataset].  https://doi.org/10.5281/zenodo.1478798
  36. Schmidt-Walter P, Ahrends B, Mette T, Puhlmann H, Meesenburg H (2018) NFI 2012 water budgets and drought stress indicators database. V 08 march 2018. Open Agrar Repositorium. [Dataset].  https://doi.org/10.3220/DATA/20181108-095429
  37. Schultze B, Kölling C, Dittmar C (2005) Konzept für ein neues quantitatives Verfahren zur Kennzeichnung des Wasserhaushalts von Waldböden in Bayern. Forstarchiv 76:155–163Google Scholar
  38. Schulze E-D (ed) (2000) Carbon and nitrogen cycling in European forest ecosystems. Springer, Berlin Heidelber, pp 506Google Scholar
  39. Schwärzel K, Feger K-H, Häntzschel J, Menzer A, Spank U, Clausnitzer F, Köstner B, Bernhofer C (2009) A novel approach in model-based mapping of soil water conditions at forest sites. For Ecol Manag 258:2163–2174.  https://doi.org/10.1016/j.foreco.2009.03.033 CrossRefGoogle Scholar
  40. Shuttleworth WJ, Wallace JS (1985) Evaporation from sparse crops—an energy combination theory. Q J R Meteorol Soc 111:839–855.  https://doi.org/10.1002/qj.49711146910 CrossRefGoogle Scholar
  41. Stevens B, Giorgetta M, Esch M, Mauritsen T, Crueger T, Rast S, Salzmann M, Schmidt H, Bader J, Block K, Brokopf R, Fast I, Kinne S, Kornblueh L, Lohmann U, Pincus R, Reichler T, Roeckner E (2013) Atmospheric component of the MPI-M earth system model: ECHAM6. J Adv Model Earth Syst 5:146–172.  https://doi.org/10.1002/jame.20015 CrossRefGoogle Scholar
  42. Thiele JC, Nuske RS, Ahrends B, Panferov O, Albert M, Staupendahl K, Junghans U, Jansen M, Saborowski J (2017) Climate change impact assessment—a simulation experiment with Norway spruce for a forest district in Central Europe. Ecol Model 346:30–47.  https://doi.org/10.1016/j.ecolmodel.2016.11.013 CrossRefGoogle Scholar
  43. Thomas FM, Hartmann G (1998) Tree rooting patterns and soil water relations of healthy and damaged stands of mature oak (Quercus robur L. and Quercus petraea [Matt.] Liebl.). Plant Soil 203:145–158.  https://doi.org/10.1023/A:1004305410905 CrossRefGoogle Scholar
  44. Tomppo E, Gschwantner T, Lawrence M, McRoberts RE (eds) (2010) National Forest Inventories: pathways for common reporting. Springer, BerlinGoogle Scholar
  45. van Genuchten T (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898.  https://doi.org/10.2136/sssaj1980.03615995004400050002x CrossRefGoogle Scholar
  46. van Genuchten, Leij FJ, Yates SR (1991) The RETC code for quantifying the hydraulic functions of unsaturated soils. US Salinity Laboratory, RiversideGoogle Scholar
  47. Vilhar U (2016) Comparison of drought stress indices in beech forests: a modelling study. IForest - Biogeosciences For 9:635–642.  https://doi.org/10.3832/ifor1630-008 CrossRefGoogle Scholar
  48. von Wilpert K (1991) Intraannual variation of radial tracheid diameters as monitor of site specific water stress. Dendrochronologia 9:95–113Google Scholar
  49. von Wilpert, K (1990) Die Jahrringstruktur von Fichten in Abhängigkeit vom Bodenwasserhaushalt auf Pseudogley und Parabraunerde: Ein Methodenkonzept zur Erfassung standortsspezifischer Wasserstressdispostion. Freiburger Bodenkundl. Abh. 24.Google Scholar
  50. von Wilpert K, Hartmann P, Puhlmann H, et al (2016) Bodenwasserhaushalt und Trockenstress. In: Dynamik und räumliche Muster forstlicher Standorte in Deutschland. Ergebnisse der Bodenzustandserhebung im Wald 2006 bis 2008. Johann Heinrich von Thünen-Institut, Braunschweig, pp 343–386.  https://doi.org/10.3220/REP1473930232000
  51. Wellpott A, Imbery F, Schindler D, Mayer H (2005) Simulation of drought for a scots pine forest (Pinus sylvestris L.) in the southern upper Rhine plain. Meteorol Z 14:143–150.  https://doi.org/10.1127/0941-2948/2005/0015 CrossRefGoogle Scholar
  52. Wessolek G, Duijnesveld WHM, Trinks S (2008) Hydro-pedotransfer functions (HPTFs) for predicting annual percolation rate on a regional scale. J Hydrol 356:17–27.  https://doi.org/10.1016/j.jhydrol.2008.03.007 CrossRefGoogle Scholar
  53. Wessolek G, Kaupenjohann M, Renger M (eds) (2009) Bodenphysikalische Kennwerte und Berechnungsverfahren für die Praxis. Bodenökologie und Bodengenese 40, pp 80.Google Scholar
  54. Wösten JHM, Lilly A, Nemes A, Le Bas C (1999) Development and use of a database of hydraulic properties of European soils. Geoderma 90:169–185.  https://doi.org/10.1016/S0016-7061(98)00132-3 CrossRefGoogle Scholar
  55. Zierl B (2001) A water balance model to simulate drought in forested ecosystems and its application to the entire forested area in Switzerland. J Hydrol 242:115–136.  https://doi.org/10.1016/S0022-1694(00)00387-5 CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Northwest German Forest Research Institute (NW-FVA)GöttingenGermany
  2. 2.Bavarian State Institute of Forestry (LWF)FreisingGermany
  3. 3.Forest Research Institute Baden-Württemberg (FVA-BW)Freiburg im BreisgauGermany

Personalised recommendations