Advertisement

Variability of stone pine (Pinus pinea L.) fruit traits impacting pine nut yield

  • Verónica Loewe-MuñozEmail author
  • Mónica Balzarini
  • Claudia Delard
  • Andrea Álvarez
Research Paper

Abstract

Key message

Cone to pine nut yield (PY), an important commercial feature of stone pine cropping, was higher in Chile than in main producer countries. PY is highly variable along years and depends on pine nut number inside cones, followed by pine nut weight. Cone morphometry is not a good indicator of PY, thus selecting cones for size/weight will not improve it.

Context

Stone pine nuts are highly appreciated; however, pine nut yield (total pine nut weight as percentage of cone weight), important feature for the species cultivation, is variable and decreasing worldwide.

Aims

Evaluating inter-annual and spatial variability of fruit traits impacting pine nut yield.

Methods

Across years and plantation variability of fruit features were estimated from a multi-environment study monitored during 6 years in Chile. Variance component restricted maximum likelihood estimates were calculated for 14 fruit traits. Classification and Regression Tree (CART) was used to identify the variable best explaining pine nut yield.

Results

Pine nut yield (3.6–5%) was higher than in main producer countries. Cone weight (521 g), length and diameter were correlated to most of seed and pine nut traits, but not to pine nut yield. The most important fruit trait in determining pine nut yield was pine nut number per cone, followed by pine nut weight. Pine nut yield showed high inter-annual and within plantation variability, whereas pine nut weight more spatial than temporal variability. Pine nut yield was superior in cones containing over 78 pine nuts.

Conclusion

Pine nut yield has high inter-annual variability, with cone morphometry not being a good indicator, thus selecting cones for size/weight will not improve cone to pine nut yield.

Keywords

Kernel yield Cone weight Inter-annual variability Between plantations variability Stone pine Leptoglossus occidentalis Heidemann Pine nuts 

Notes

Acknowledgements

We thank Aldo Salinas and Andrés Bello for the assistance with cone harvesting and to the plantation owners for allowing the access to the material.

Funding

This work was supported by FONDEF, CONICYT, and Chilean Ministry of Education (grant code D11I1134).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Álvarez A. (2010). Caracterización de frutos de pino piñonero (Pinus pinea L.), producidos en localidades establecidas desde la región de Valparaíso hasta la Región de La Araucanía de Chile. Tesis para optar al título de Ingeniero Agrónomo, Universidad Iberoamericana de Ciencias y Tecnología, Santiago, Chile: 77Google Scholar
  2. Ávila A, Delard C, Loewe V (2012) Potential zones for stone pine (Pinus pinea L.) in Chile. In: Sustaining humans and forests in changing landscapes: forests, society and global change. IUFRO Landscape Ecology Working Party Conference. Concepción, ChileGoogle Scholar
  3. Bilir N (2009) Cone, seed and nut characters in Pinus pinea. International Convention Center “Seed orchards and the link to long-term tree breeding in response to climate change”, Jeju, Korea. 8-11/9/2009. IUFRO. Forestry Faculty, Suleyman Demirel University, Isparta, TurkeyGoogle Scholar
  4. Board JE, Kang MS, Harville BG (1999) Path analyses of the yield formation process for late-planted soybean. Agron J 91(1):128–135CrossRefGoogle Scholar
  5. Bolling BW, Oliver CY, McKay DL, Blumberg JB (2011) Tree nut phytochemicals: composition, antioxidant capacity, bioactivity, impact factors: a systematic review of almonds, Brazils, cashews, hazelnuts, macadamias, pecans, pine nuts, pistachios and walnuts. Nutr Res Rev 24:244–275CrossRefGoogle Scholar
  6. Borrás L, Otegui ME (2001) Maize kernel weight response to post flowering source–sink ratio. Crop Sci 41(6):1816–1822CrossRefGoogle Scholar
  7. Boutheina A, El Aouni MH, Balandier P (2013) Influence of stand and tree attributes and silviculture on cone and seed productions in forests of Pinus pinea L. in northern Tunisia. Mediterranean Stone Pine for Agroforestry. Options Méditerranéennes Série A. Séminaires Méditerranéens 105:9–14Google Scholar
  8. Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. Chapman & Hall/CRC, Boca RatonGoogle Scholar
  9. Calama R, Montero G (2007) Cone and seed production from Stone pine (Pinus pinea L.) stands in Central Range (Spain). Eur J For Res 126(1):23–35.  https://doi.org/10.1007/s10342-005-0100-8 CrossRefGoogle Scholar
  10. Calama R, Mutke S, Sánchez M, Garriga E, Montero G (2007) Modelling spatial and temporal variability on Stone pine (Pinus pinea L.) cone quality: preliminary results. EFIMED Scientific Seminar: modelling, valuing and managing Mediterranean forest ecosystem for non-timber goods and services. S.l.: CIFOR-INIAGoogle Scholar
  11. Calama R, Mutke S, Tomé J, Gordo J, Montero G, Tomé M (2011) Modelling spatial and temporal variability in a zero-inflated variable: the case of stone pine (Pinus pinea L.) cone production. Ecol Model 222:606–618CrossRefGoogle Scholar
  12. Calama R, Gordo J, Conde M, Madrigal G, Mutke S, Pardos M, Garriga E, Montero G, Finat L, Martín R, Cubero D (2014) Pérdidas de rendimiento de piña y piñón en las masas de Pinus pinea. Jornada Presentación Proyecto PROPINEA. Pedrajas de San Esteban November 21, 2014. SpainGoogle Scholar
  13. Calama R, Gordo J, Conde M, Madrigal G, Mutke S, Pardos M, Garriga E, Montero G, Fontes L (2015) Rendimiento de piñón en piña de Pinus pinea en Portugal: caracterización y comparación con otras regiones. Seminario UNAC “Avanços no conhecimento na fileira do Pinheiro manso” March 2015. Alcácer do Sal: UNACGoogle Scholar
  14. Calama R, Gordo J, Madrigal G, Conde M, Bravo-Oviedo A, López E, Gallardo C, de Dios-García J, Montero G, Vázquez-Piqué J, Prados M (2016) Cone production in Pinus pinea forests facing climate change: proposals for adaptive management. International Conference on Wild Forest Products in Europe. Barcelona, Spain, October 13-14Google Scholar
  15. Calama R, Gordo J, Mutke S, Madrigal G, Conde M, Raposo R, Recuenco M, Pardos M (2017) Variabilidad espacio temporal en el daño asociado a Leptoglossus occidentalis en pinares de Pinus pinea de la provincia de Valladolid. Poster presented at the 7° Spanish Forest Congress. Plasencia, 26-30 June 2017Google Scholar
  16. Ciancio O, Cutini A, Mercurio R, Veracini A (1990) Un modele sylvicole pour la conservation et l’amélioration de la pinede de Pin pignon d’Alberese (Toscane, Italie). Forêt Médit XII(2):130–142Google Scholar
  17. Conover WJ (1999) Practical nonparametric statistics, 3rd edn. Wiley, Hoboken, NJ ISBN: 978-047116068-7. 592 pGoogle Scholar
  18. Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2015) InfoStat version 2015. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. Available at http://www.infostat.com.ar. Accessed 2 July 2015
  19. Evaristo I, Tenreiro R, Costa R (2008) Caracterização de parâmetros biométricos e de ácidos gordos em pinhões de populações portuguesas de Pinus pinea. Silva Lusit 16(1):1–19Google Scholar
  20. Evaristo I, Batista D, Correia I, Correia P, Costa R (2013) Chemical profiling of Portuguese Pinus pinea L. nuts and comparative analysis with P. koraiensis Sieb. & Zucc. commercial kernels. Options Méditérr 105:99–104Google Scholar
  21. Fady B, Fineschi S, Vendramin GG (2004) EUFORGEN technical guidelines for genetic conservation and use of Italian Stone pine (Pinus pinea). International Plant Genetic Resources Institute, Roma: 6. Available at http://www.bioversityinternational.org/uploads/tx_news/Italian_stone_pine__Pinus_pinea__1036.pdf. Accessed Feb 12 2014
  22. Faúndez E, Rocca J, Villablanca J (2017) Detection of the invasive western conifer seed bug Leptoglossus occidentalis Heidemann, 1910 (Heteroptera: Coreidae: Coreinae) in Chile. Arquivos Entomolóxicos 17:317–320Google Scholar
  23. Fischer RA, Aguilar I, Laing DR (1977) Post-anthesis sink size in a high-yielding dwarf wheat: yield response to grain number. Aust J Agric Res 28(2):165–175CrossRefGoogle Scholar
  24. García A, Dorado M, Pérez I, Montilla E (2010) Efecto del déficit hídrico sobre la distribución de fotoasimilados en plantas de arroz (Orysa sativa L.). Interciencia 35(1)Google Scholar
  25. Giayetto O, Fernandez E, Cerioni G, Morla F, Rosso M, Kearney M, Violante M (2012) Caracterización ecofisiológica de genotipos de maní (Arachis hypogaea L.) en Córdoba, Argentina. Ciencia y Tecnología de los Cultivos Industriales 1(3):201–211Google Scholar
  26. Gonçalves AC, Pommerening A (2012) Spatial dynamics of cone production in Mediterranean climates: a case study of Pinus pinea L. in Portugal. For Ecol Manag 266:83–93CrossRefGoogle Scholar
  27. González GM (2012) Principales plagas que afectan los frutos de pino piñonero (Pinus pinea L.). Informativo Sanitario, Santiago, Chile 6 pGoogle Scholar
  28. Gordo AJ, Mutke S, Gil L (2005) Consecuencias del cambio climático en la producción de piña en los pinares continentales de Pinus pinea L. In Actas del IV Congreso Forestal Español (pp. 1–7). Retrieved from http://www.secforestales.org/buscador/pdf/4CFE05-029.pdf
  29. Gordo J, Calama R, Pardos M, Bravo F, Montero G (ed.) (2012) La regeneración natural de los pinares en los arenales de la Meseta Castellana. Valladolid, Spain: Instituto Universitario de Investigación en Gestión Forestal Sostenible, Universidad de Valladolid, INIA. Available in: http://www.pfcyl.es/sites/default/files/biblioteca/regeneracion_ pinares.pdf. Accessed August 16 2013
  30. Grashoff C, D’Antuono LF (1997) Effect of shading and nitrogen application on yield, grain size distribution and concentrations of nitrogen and water soluble carbohydrates in malting spring barley (Hordeum vulgare L.). Eur J Agron 6(3):275–293CrossRefGoogle Scholar
  31. International Nut and Dried Fruits (2012) Global statistical review 2006-2011. Available at http://wwwnutfruitorg/global-statistical-review_13608pdf Accessed 17 Nov 2014
  32. Jakovljevic T, Gredecki-Postenjak M, Radojcic IR (2009) Stone pine seeds (Pinus pinea L.), forest reproductive material and food. Rad Hrvatski Šumarski Institut 44(1):29–36Google Scholar
  33. Krannitz PG, Duralia TE (2004) Cone and seed production in Pinus ponderosa: a review. West N Am Naturalist 64(2):208–218Google Scholar
  34. Lobell DB, Ortiz-Monasterio JI, Asner GP, Naylor RL, Falcon WP (2005) Combining field surveys, remote sensing and regression trees to understand yield variations in an irrigated wheat landscape. Agron J 97:241–249Google Scholar
  35. Loewe MV (2016) Characterization of variability, growth and production of Stone pine (Pinus pinea L.) in Chile according to climate and some silvicultural practices. Doctoral Thesis, University of Córdoba, Spain. 332 pGoogle Scholar
  36. Loewe MV, Delard C (2012) Un Nuevo cultivo para Chile, el pino piñonero (Pinus pinea L.). Instituto Forestal, Santiago, Chile, p 364Google Scholar
  37. Loewe MV, Delard RC (2015) Stone pine (Pinus pinea L.), an interesting alternative for agroforestry in Chile. In Small-scale and community forestry and the changing nature of forest landscapes 11–15 October 2015. Sunshine Coast, AustraliaGoogle Scholar
  38. Loewe MV, Delard RC, Balzarini M, Álvarez CA, Navarro-Cerrillo RM (2015) Impact of climate and management variables on stone pine (Pinus pinea L.) growing in Chile. Agric For Meteorol 214-215:106–116CrossRefGoogle Scholar
  39. Loewe MV, Balzarini M, Álvarez A, Delard C, Navarro-Cerrillo RM (2016) Fruit productivity of Stone pine (Pinus pinea L.) along a climatic gradient in Chile. Agric For Meteorol 223:203–216CrossRefGoogle Scholar
  40. Lonja de Reus (2018) Histórico de precios. http://www.llotjadereus.org. Accessed 1 April 2018
  41. Mercau JL, Sadras VO, Satorre EH, Messina C, Balbi C, Uribelarrea M, Hall AJ (2001) On-farm assessment of regional and seasonal variation in sunflower yield in Argentina. Agric Syst 67(2):83–103CrossRefGoogle Scholar
  42. Montero G, Calama R, Ruiz-Peinado R (2008) Selvicoltura de Pinus pinea L. In: Montero G, Serrada R, Reque (ed.), Compendio de selvicoltura de especies. Madrid, Spain: INIA-Fundación Conde del Valle de Salazar, pp. 431-470Google Scholar
  43. Mutke S, Gordo J, Gil L (2005) Variability of Mediterranean Stone pine cone production: yield loss as response to climate change. Agric For Meteorol 132(3–4):263–272CrossRefGoogle Scholar
  44. Mutke S, Gordo J, Gil L (2006) Perdida de producción de piña en los pinares de piñonero como consecuencia del cambio climático. Foresta 32:34–38Google Scholar
  45. Mutke S, Calama R, Gordo J, Alvarez D, Gil L (2007) Stone pine orchards for nuts production: which, where, how? Nucis Newslett 14:22–25Google Scholar
  46. Mutke S, Calama R, González-Martínez S (2012) Mediterranean Stone pine: botany and horticulture. Hortic Rev 39:153–201Google Scholar
  47. Mutke S, Martínez J, Gordo J, Nicolas JL, Herrero N, Pastor A, Calama R (2014) Severe seed yield loss in Mediterranean Stone pine cones. 5th International Conference on Mediterranean Pines (Medpine5) September 22-26, 2014. Solsona, Spain: s.n.Google Scholar
  48. Mutke S, Calama R, Montero G, Gordo J (2015a) Pine nut production from forests and agroforestry systems around the Mediterranean—a short overview. In European Non Wood Forest Products 3rd Workshop 18–20 February 2015. Zagreb, CroatiaGoogle Scholar
  49. Mutke S, Calama R, Gordo J, Nicolas JL, Herrero N, Roques A (2015b) Pérdida del rendimiento en piñón blanco de Pinus pinea en fábrica-Leptoglossus y la seca de la piña. III Reun Cien de San For, SECF. SECF. Madrid 7–8 OctoberGoogle Scholar
  50. Mutke S, Roque A, Calama R (2016) Impact of the dry cone syndrome on kernel yield from Stone pine cones. In: Mutke CS, Correia AC, Verde V (eds) AgroPine2016. 2nd International Meeting on Mediterranean Stone Pine for Agroforestry 2016/05/18-20. INIA, Oeiras, PortugalGoogle Scholar
  51. Nunes A, Pereira H, Tomé M, Silva J, Fontes L (2016) Tomography as a method to study umbrella pine (Pinus pinea) cones and nuts. Forest Syst 25(2):1–5CrossRefGoogle Scholar
  52. Otegui ME, Nicolini MG, Ruiz RA, Dodds PA (1995) Sowing date effects on grain yield components for different maize genotypes. Agron J 87(1):29–33CrossRefGoogle Scholar
  53. Patterson HD, Thompson R (1971) Recovery of inter-block information when block sizes are unequal. Biometrika 58:545–554CrossRefGoogle Scholar
  54. Pearson K (1920) Notes on the history of correlation. Biometrika 13:25–45CrossRefGoogle Scholar
  55. Peruzzi A, Cherubini P, Gorreri L, Cavalli S (1998) Le pinete e la produzione dei pinoli dal passato ai giorni nostri, nel territorio del parco di Migliarino, S. Rossore, Massaciuccoli. S.l.: Felici EditoreGoogle Scholar
  56. Phakamas N, Patanothai A, Jogloy S, Pannangpetch K, Hoogenboom G (2008) Physiological determinants for pod yield of peanut lines. Crop Sci 48(6):2351–2360CrossRefGoogle Scholar
  57. Silveira P. (2012) Pihna ou Pinhão negro, rentabilidade e resultados. Seminario “Valorizaçao da Fileira da Pihna/Pinhao”. September 18, 2012. Alcácer do Sal, Portugal: s.nGoogle Scholar
  58. Sousa E, Ferreira C, Pimpão M, Naves P, Valdiviesso T (2012) Sanidade dos povoamentos de pinheiro manso em Portugal. Seminario “Valorizaçao da Fileira da Pihna/Pinhao”. September 18, 2012. Alcácer do Sal, PortugalGoogle Scholar
  59. West B, Welch K, Galecki A (2014) Linear mixed models: a practical guide using statistical software. CRC Press, New York, p 440CrossRefGoogle Scholar
  60. Wetzstein HY, Zhang Z, Ravid N, Wetzstein ME (2011) Characterization of attributes related to fruit size in pomegranate. HortScience 46(6):908–912CrossRefGoogle Scholar
  61. Wiegand CL, Cuellar JA (1981) Duration of grain filling and kernel weight of wheat as affected by temperature. Crop Sci 21(1):95–101CrossRefGoogle Scholar
  62. Zapata T, Silva C, Acevedo H (2004) Comportamiento de isolíneas de altura en relación con el rendimiento y distribución de asimilados en trigo. Agric Técnica 64(2):139–155Google Scholar

Copyright information

© INRA and Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  • Verónica Loewe-Muñoz
    • 1
    Email author
  • Mónica Balzarini
    • 2
  • Claudia Delard
    • 1
  • Andrea Álvarez
    • 1
  1. 1.Chilean Forestry Institute (INFOR)SantiagoChile
  2. 2.CONICET Biometry Unit, College of AgricultureUniversidad Nacional de CórdobaCórdobaArgentina

Personalised recommendations