Advertisement

Analysis of the occurrence of wildfires in the Iberian Peninsula based on harmonised data from national forest inventories

  • Leónia NunesEmail author
  • Juan Álvarez-González
  • Iciar Alberdi
  • Vasco Silva
  • Marta Rocha
  • Francisco Castro Rego
Research Paper
Part of the following topical collections:
  1. Forest information for bioeconomy outlooks at European level

Abstract

Key message

Every year, about 280,000 ha of forest area burn in the Iberian Peninsula. Both countries national forest inventories were harmonised to provide consistent results of the influence of forest stand structure on fire probability. Results show that basal area and vertical structure variables are associated with fire probability; however, that association varies with forest composition. Deciduous oaks and pine forests showed opposite tendencies. Forest management could be oriented considering these results.

Context

Fuel variables, in particular the ones that characterise stand vertical structure, are extremely important to determine the occurrence and severity of fire. However, documentation on fire occurrences and stand characteristics is still scarce in southern Europe.

Aims

In this study, we analyse the stand and structure variables from National Forest Inventories (NFIs) in order to identify the important ones that are associated with the presence/absence of wildfires in the Iberian Peninsula.

Methods

A harmonised database including a characterization of the vertical structure of the stand and its species composition was obtained by combining data from NFIs from Spain and Portugal and data from burned areas that occurred between 2005 and 2015.

Results

Stand characteristics results show that the plots that were later burned have lower average stand basal area. For deciduous oaks, more canopy cover has less probability to burn, and for all the other oaks, in different degrees, more understory cover has higher probability to burn. Regarding pine species, more canopy cover has lower probability to burn.

Conclusion

The results indicate important associations between stand variables and the presence/absence of wildfires that could support the forest management with the objective of reducing the probability of forest fires.

Keywords

Wildfire Vertical structure Portugal Spain Harmonised Forest Inventory data 

Notes

Acknowledgments

The authors wish to thank Roberto Vallejo and Vicente Sandoval of the Spanish Ministry of Agriculture, Food and Environment for kindly providing access to the full Spanish NFI datasets and to Paula Sarmento and Conceição Ferreira of the Portuguese National Forest Services for kindly providing access to the Portuguese NFI datasets. We also want to express our thanks to the TRAGSA field teams of the Spanish National Forest Inventory.

Contribution of the co-authors

Leónia NUNES: experimental design, data analysis and elaboration of the paper.

Juan ÁLVAREZ-GONZÁLEZ: experimental design and writing the paper.

Iciar ALBERDI: experimental design and writing the paper.

Vasco SILVA: experimental design and writing the paper.

Marta ROCHA: experimental design and writing the paper.

Francisco CASTRO REGO: experimental design, data analysis and writing the paper.

Funding

The research was funded by the project DIABOLO (European Union’s Horizon 2020 research and innovation programme under grant agreement no. 633464).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. AFN (2010) Inventário Florestal Nacional, Portugal Continental—IFN5 2005–2006. Relatório Final. Autoridade Florestal Nacional, LisboaGoogle Scholar
  2. AFN (2009) Instruções para o trabalho de campo do Inventário Florestal Nacional—IFN 2005/2006. Autoridade Florestal Nacional, Direcção Nacional de Gestão Florestal, LisboaGoogle Scholar
  3. Alberdi Asensio I, Condés Ruiz S, Millán J, et al (2010) National Forest Inventories Report, Spain. In: Tomppo E, Gschwantner, T, Lawrence M, McRoberts R (eds) National Forest Inventories. Pathways for common reporting. Springer, pp 529–540Google Scholar
  4. Alberdi I, Cañellas I, Vallejo Bombín R (2017) The Spanish National Forest Inventory: history, development, challenges and perspectives. Pesqui Florest Bras 37(91):361–368.  https://doi.org/10.4336/2017.pfb.37.91.1337 CrossRefGoogle Scholar
  5. Alberdi I, Hernandez L, Condes S, Cañellas I (2016) Spain. In: Vidal C, Alberdi I, Hernández L, Redmond J (eds) National Forest Inventories. Assessment of wood availability and use. Springer, pp 749–769Google Scholar
  6. Álvarez-González JG, Cañellas I, Alberdi I, Gadow KV, Ruiz-González AD (2014) National Forest Inventory and forest observational studies in Spain: applications to forest modeling. For Ecol Manag 316:54–64.  https://doi.org/10.1016/j.foreco.2013.09.007 CrossRefGoogle Scholar
  7. Alvarez A, Gracia M, Vayreda J, Retana J (2012) Patterns of fuel types and crown fire potential in Pinus halepensis forests in the Western Mediterranean Basin. For Ecol Manag 270:282–290.  https://doi.org/10.1016/j.foreco.2011.01.039 CrossRefGoogle Scholar
  8. Barreiro S, Godinho Ferreira P, Azevedo A (2010) Portugal. In: Tomppo E, Gschawantner T, Mawrence M, MacRoberts RE (eds) National Forest Inventories: pathways for common reporting. Springer, pp 437–464Google Scholar
  9. Botequim B, Fernandes PM, Garcia-Gonzalo J, Silva A, Borges JG (2017) Coupling fire behaviour modelling and stand characteristics to assess and mitigate fire hazard in a maritime pine landscape in Portugal. Eur J For Res 136:527–542.  https://doi.org/10.1007/s10342-017-1050-7 CrossRefGoogle Scholar
  10. Castroviejo S et al. (2015) (coord. gen.) 1986–2015. Flora iberica 1–9, 10–16(1), 17–18, 20–21. Real Jardín Botánico CSIC, MadridGoogle Scholar
  11. CEABN (2013) Fireland—Efeitos do fogo sobre a dinâmica da vegetação à escala da paisagem em Portugal. FCT Project PTDC/AGR-CFL/104651/2008, LisboaGoogle Scholar
  12. Confalonieri UEC, Neto CC (2012) Diversity of mosquito vectors (Diptera: Culicidae) in Caxiuanã, Pará, Brazil. Interdiscip Perspect Infect Dis 2012:1–8.  https://doi.org/10.1155/2012/741273 CrossRefGoogle Scholar
  13. Cruz MG, Alexander ME, Wakimoto RH (2003) Assessing canopy fuel stratum characteristics in crown fire prone fuel types of western North America. Int J Wildland Fire 12:39–50.  https://doi.org/10.1071/WF02024 CrossRefGoogle Scholar
  14. DGF (1985) Distribuição da Floresta em Portugal Continental, Áreas Florestais por Distritos, informação disponível em 1984. Estudos e Informação número 297. Direcção-Geral das Florestas, LisboaGoogle Scholar
  15. DGF (1989) Distribuição da Floresta em Portugal Continental, Áreas Florestais por Distritos, informação disponível em 1989. Estudos e Informação número 299. Direcção-Geral das Florestas, LisboaGoogle Scholar
  16. DGF (1990) Inventário Florestal do Sobreiro. Estudos e Informação 300. Direcção-Geral das Florestas, LisboaGoogle Scholar
  17. DGF (2001) InventárioFlorestal Nacional. Portugal Continental. 3a Revisão. 1995–1998. Direcção-Geral das Florestas, LisboaGoogle Scholar
  18. DGF (1999) Manual de Instruções para o Trabalho de Campo do Inventário Florestal Nacional. Direcção Geral das Florestas, LisboaGoogle Scholar
  19. DGRF (2006) Estratégia Nacional Para as Florestas. Direcção-Geral dos Recursos Florestais, LisboaGoogle Scholar
  20. DGSFA (1966) Inventário Florestal Nacional do Norte do Tejo. Direcção-Geral dos Serviços Florestais e Aquícolas, LisboaGoogle Scholar
  21. DGSFA (1968) Inventário Florestal. Memória. Direcção-Geral dos Serviços Florestais e Aquícolas., LisboaGoogle Scholar
  22. DGSFA (1971) Inventário Florestal: Áreas, Existências e Estimativas de produção. Direcção-Geral dos Serviços Florestais e Aquícolas., LisboaGoogle Scholar
  23. DGSFA (1965-1966) Inventário Florestal Nacional do Sul do Tejo. Direcção-Geral dos Serviços Florestais e Aquícolas, LisboaGoogle Scholar
  24. FAO (2004) Global Forest Resources Assessment Update 2005. Terms and definitions (final version). Forest Resources Assessment Programme. Working paper 83/E. Forest Department Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  25. Fernandes P, Luz A, Loureiro C, Ferreira-Godinho P, Botelho H (2006) Fuel modelling and fire hazard assessment based on data from the Portuguese National Forest Inventory. For Ecol Manag 234:S229.  https://doi.org/10.1016/j.foreco.2006.08.256 CrossRefGoogle Scholar
  26. Fernandes PM (2009) Combining forest structure data and fuel modelling to classify fire hazard in Portugal. Ann For Sci 66:415.  https://doi.org/10.1051/forest/2009013 CrossRefGoogle Scholar
  27. Fernández-Alonso JM, Alberdi I, Álvarez-González JG, Vega JA, Cañellas I, Ruiz-González AD (2013) Canopy fuel characteristics in relation to crown fire potential in pine stands: analysis, modelling and classification. Eur J For Res 132:363–377.  https://doi.org/10.1007/s10342-012-0680-z CrossRefGoogle Scholar
  28. FOREST EUROPE (2015a) State of Europe’s forests 2015. Forest Europe, Liaison Unit MadridGoogle Scholar
  29. FOREST EUROPE (2015b) Goals for European forests and the European 2020 targets for forests. Ministerial Conference on the Protection of Forests in Europe, Madrid, SpainGoogle Scholar
  30. Gómez-Vázquez I, Fernandes PM, Arias-Rodil M, Barrio-Anta M, Castedo-Dorado F (2014) Using density management diagrams to assess crown fire potential in Pinus pinaster Ait. stands. Ann For Sci 71:473–484.  https://doi.org/10.1007/s13595-013-0350-4 CrossRefGoogle Scholar
  31. González-Ferreiro E, Arellano-Pérez S, Castedo-Dorado F, Hevia A, Vega JA, Vega-Nieva D, Álvarez-González JG, Ruiz-González AD (2017) Modelling the vertical distribution of canopy fuel load using national forest inventory and low-density airbone laser scanning data. PLoS One 12:1–21.  https://doi.org/10.1371/journal.pone.0176114 CrossRefGoogle Scholar
  32. González JR, Palahí M, Trasobares A, Pukkala T (2006) A fire probability model for forest stands in Catalonia (north-east Spain). Ann For Sci 63(2):169–176.  https://doi.org/10.1051/forest CrossRefGoogle Scholar
  33. Hardy CC, Schmidt KM, Menakis JP, Sampson RN (2001) Spatial data for national fire planning and fuel management. Int J Wildland Fire 10:353–372CrossRefGoogle Scholar
  34. ICNF (2013) IFN6—Áreas dos usos do solo e das espécies florestais de Portugal continental em 1995, 2005 e 2010. Resultados preliminares. Instituto da Conservação da Natureza e das Florestas, LisboaGoogle Scholar
  35. ICNF (2017) 10o Relatório provisório de incêndios florestais—2017: 01 de Janeiro a 31 de Outubro. Departamento de Gestão de Áreas Públicas e de Proteção. Instituto da Conservação da Natureza e das Florestas, LisboaGoogle Scholar
  36. IEPNB (2016) Criteria and Indicators for sustainable forest management in Spanish forests. Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente (ed). http://www.mapama.gob.es/es/biodiversidad/temas/inventarios-nacionales/iepnb_2016_tcm7-471246.pdf, Madrid. Accessed 08 Oct 2017
  37. INE (2001) Recenseamento Geral da População e Habitação (Resultados Definitivos). Instituto Nacional de Estatística, LisboaGoogle Scholar
  38. Keane RE, Burgan RE, Van Wagtendonk JW (2001) Mapping wildland fuels for fire management across multiple scales: integrating remote sensing, GIS, and biophysical modeling. Int J Wildland Fire 10:301–319.  https://doi.org/10.1071/WF01028 CrossRefGoogle Scholar
  39. Keeley JE, Bond WJ, Bradstock RA et al (2012) Fire in Mediterranean ecosystems: ecology, evolution and management. Cambridge University PressGoogle Scholar
  40. Keyes CR, O’Hara KL (2002) Quantifying stand targets for silvicultural prevention of crown fires. West J Appl For 17:101–109Google Scholar
  41. Lavorel S, Flannigan MD, Lambin EF, Scholes MC (2007) Vulnerability of land systems to fire: interactions among humans, climate, the atmosphere, and ecosystems. Mitig Adapt Strateg Glob Chang 12:33–53.  https://doi.org/10.1007/s11027-006-9046-5 CrossRefGoogle Scholar
  42. Lentile LB, Smith FW, Shepperd WD (2006) Influence of topography and forest structure on patterns of mixed severity fire in ponderosa pine forests of the South Dakota Black Hills, USA. Int J Wildland Fire 15:557–566.  https://doi.org/10.1071/WF05096 CrossRefGoogle Scholar
  43. MAGRAMA (2015) Los Bosques y la Biodiversidad frente al cambio climático: Impactos , Vulnerabilidad y Adaptación en España. In: Herrero A, Zavala M (eds). Ministerio de Agricultura, Alimentación y Medio Ambiente. http://www.mapama.gob.es/es/cambio-climatico/publicaciones/publicaciones/bosques-biodiversidad-frente-al-cc_tcm7-404996.pdf, Madrid
  44. MAPAMA (2017a) Estadística general de incendios forestales. Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente http://www.mapama.gob.es/es/desarrollo-rural/estadisticas/avanceinformativo1eneroa31dediciembrede2017_tcm7-358485.pdf. Accessed 5 Sept 2017
  45. MAPAMA (2017b) Información resumida de los incendios forestales en España. Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente. http://www.mapama.gob.es/es/desarrollo-rural/estadisticas/tripticoincendios-junio2015v6_tcm7-462270.pdf. Accessed 5 Sept 2017
  46. MAPAMA (2017c) Los incendios forestales en España. Decenio 2001-2010. Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente. http://www.mapama.gob.es/es/desarrollo-rural/estadisticas/incendiosforestales2001-2010finalmod1_tcm7-349255.pdf. Accessed 5 Sept 2017
  47. MCPFE (2003a) Improved pan-European indicators for sustainable forest management. MCPFE Expert Level Meeting, 7–8 October 2002. Ministerial Conference on the Protection of Forests in Europe, ViennaGoogle Scholar
  48. MCPFE (2003b) Implementation of MCPFE commitments: national and pan-European activities 1998-2003. Ministerial Conference on the Protection of Forest in Europe, ViennaGoogle Scholar
  49. Pedroso-de-Moraes C, Prezzi LE, De Souza-Leal T et al (2015) Edge effect on orchids of a fragment of semi-deciduous seasonal forest in the southeast of Brazil. Iheringia - Ser Bot 70:115–127Google Scholar
  50. Pereira JS, Pereira JMC, Rego F et al (2006a) Incêndios florestais em Portugal: caracterização, impactes e prevenção. Instituto Superior de Agronomia, LisboaGoogle Scholar
  51. Pereira LS, Louro V, do Rosário L, Almeida A (2006b) Desertification, territory and people, a holistic approach in the Portuguese context. In: Kepner WG, Rubio JL, Mouat DA, Pedrazzini F (eds) Desertification in the Mediterranean Region. A security issue. Springer Netherlands, Dordrecht, pp 269–289Google Scholar
  52. Pollet J, Omi PN (2002) Effect of thinning and prescribed burning on crown fire severity in ponderosa pine forests. Int J Wildland Fire 11:1–10.  https://doi.org/10.1071/WF01045 CrossRefGoogle Scholar
  53. Rego F, Catry FX, Montiel C, Karlsson O (2013) Influence of territorial variables on the performance of wildfire detection systems in the Iberian Peninsula. For Policy Econ 29:26–35.  https://doi.org/10.1016/j.forpol.2012.11.007 CrossRefGoogle Scholar
  54. do Rosário L (2004) Indicadores de Desertificação para Portugal Continental. Direcção-Geral dos Recursos Florestais, LisboaGoogle Scholar
  55. Ruiz-González AD, Álvarez-González JG (2011) Canopy bulk density and canopy base height equations for assessing crown fire hazard in Pinus radiata plantations. Can J For Res 41:839–850.  https://doi.org/10.1139/x10-237 CrossRefGoogle Scholar
  56. San-Miguel-Ayanz J, Moreno JM, Camia A (2013) Analysis of large fires in European Mediterranean landscapes: lessons learned and perspectives. For Ecol Manag 294:11–22.  https://doi.org/10.1016/j.foreco.2012.10.050 CrossRefGoogle Scholar
  57. San-Miguel-Ayanz J, Schulte E, Schmuck G, et al (2012) Comprehensive monitoring of wildfires in Europe: the European forest fire information system (EFFIS). In: Approaches to managing disaster-assessing hazards, emergencies and disaster impacts. InTechGoogle Scholar
  58. Silva JS, Moreira F, Vaz P, Catry F, Godinho-Ferreira P (2009) Assessing the relative fire proneness of different forest types in Portugal. Plant Biosyst 143:597–608.  https://doi.org/10.1080/11263500903233250 CrossRefGoogle Scholar
  59. Tomé M, Luís JS, Monteiro ML, Oliveira AC (1999) Mixed-species forests in Portugal. Present and future research strategies for management models development. In: Olsthoorn, A.F.M., Bartelink, H.H., Gardiner, J.J., Pretzsch, H., Hekhuis, H.J., Franc A (ed) Management of mixed-species forest: silviculture and economics. DLO Institute for Forestry and Nature Research (IBN-DLO), Wageningen, pp 175–185Google Scholar
  60. Tomppo E, Gschwantner T, Lawrence M, McRoberts (2010) National forest inventories: pathways for common reporting. Natl for invent pathways common report 612 . doi:  https://doi.org/10.1007/978-90-481-3233-1
  61. Vidal C, Alberdi I, Redmond J, Vestman M, Lanz A, Schadauer K (2016) The role of European National Forest Inventories for international forestry reporting. Ann For Sci 73:793–806.  https://doi.org/10.1007/s13595-016-0545-6 CrossRefGoogle Scholar
  62. Watt A (2004) Biodiversity assessment. Final report of the bioassess project. In: http://www.isa.ulisboa.pt/ceabn/uploads/docs/projectos/bioassess/Final_Reportbioassess.pdf. Accessed in 22 Nov 2017
  63. Winter S, Chirici G, McRoberts RE et al (2008) Possibilities for harmonizing national forest inventory data for use in forest biodiversity assessments. Forestry 81:33–44.  https://doi.org/10.1093/forestry/cpm042 CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centre for Applied Ecology “Professor Baeta Neves” (CEABN), InBIO, School of AgricultureUniversity of LisbonLisbonPortugal
  2. 2.CITAB, Centre of the Research and Technology of Agro-Environmental and Biological ScienceUniversity of Trás-os-Montes and Alto DouroVila RealPortugal
  3. 3.Departamento de Ingeniería Agroforestal, Escuela Politécnica Superior de IngenieríaUniversidade de Santiago de CompostelaLugoSpain
  4. 4.INIA-CIFOR, DptoSelvicultura y Gestión de los Sistemas ForestalesMadridSpain

Personalised recommendations