Visuo-tactile and topographic characterizations of finished wood surface quality by French consumers and industrials: acceptability thresholds for raised grain

  • Miora F. RamanakotoEmail author
  • Tahiana Ramananantoandro
  • Florent Eyma
  • Bruno Castanié
Research Paper


Key message

Raised grain occurring on wood surfaces after the application of a waterborne varnish was felt by human touch because of protruding peaks and a certain amount of materials in the core of the roughness profile. This tactile sensation was correlated with specific roughness parameters. Characteristics of a finished surface quality that is acceptable to consumers were determined.


Raised grain occurs on wood surfaces after the application of a waterborne varnish and forces manufacturers to sand the surfaces between coats. Actually, little research has characterised this phenomenon and no techniques have been discovered to avoid its occurrence.


This study aims to identify the topographic parameters that explain the visuo-tactile sensation of raised grain and to define a finished surface quality acceptable to consumers and industry.


Oak (Quercus robur L.) and beech (Fagus sylvatica L.) wood surfaces were planed and sanded in order to have various levels of raised grain. Visuo-tactile analyses were carried out on surfaces having received one coat of varnish to characterise raised grain and having two coats to characterise the acceptable finished surface quality without sanding. Topographic parameters were measured on each type of varnished surface and correlated with the visuo-tactile scores.


Raised grain was characterised by the visuo-tactile sensation of protruding peaks and a certain amount of material in the core of the roughness profile for both wood species. Industrials overestimated the surface quality required by consumers. Thresholds of topographic parameters were determined to define acceptable finished surface quality.


These findings allowed objective criteria to be defined for describing raised grain and to help industries to optimise their wood machining and finishing processes.


Raised grain Topographic parameters Waterborne varnish Visuo-tactile analysis Planing Sanding 



The authors wish to thank Critt-Bois Occitanie in Rodez (Aveyron, France) and Rozière industry in Bozouls (Aveyron, France) for providing the oak wood samples used in this study, and for their collaboration that allowed us to perform the machining and finishing processes in industrial conditions and to carry out sensory analysis. We wish to thank Sanguinet industry for providing Pyrenees beech wood samples, and the test persons for their collaboration for the sensory analysis.


This study was funded by the Ex-Midi-Pyrénées Region, Hautes Pyrénées Department and IUT of Tarbes in France.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

Statement on ethical approval

The authors declare that they obtained the informed consent from all participants, industrials and all test persons who collaborated for the sensory analysis.


  1. Bednar H, Fengel D (1974) The composition of oak and an overview of its influence on maturation. Holz Roh Werkst 32:99–107 Accessed 26 Nov 2017CrossRefGoogle Scholar
  2. Blateyron F (2013) Chapter 2. The areal field parameters. In: Leach R (ed) Characterisation of areal surface texture. Springer Verlag, Berlin, pp 15–43CrossRefGoogle Scholar
  3. Bosquet L (2006) Research Methodology. Statistics course on correlation (Méthodologie de la recherche. Cours de statistique sur la corrélation). Université Lille 2, FranceGoogle Scholar
  4. CIRAD (2015) TROPIX 7: The main technological characteristics of 245 tropical wood species. Accessed 22 July 2018
  5. Cool J, Hernandez R (2011) Performance of three alternative surfacing processes on black spruce wood and their effects on water-based coating adhesion. Wood Fiber Sci 43:365–378Google Scholar
  6. Danzl R, Helmli F, Rubert P, Prantl M (2008) Optical roughness measurements on specially designed roughness standards, Proc. SPIE 7102, Optical Fabrication, Testing, and Metrology III, 71020M.
  7. De Moura LE, Hernandez RE (2006) Characteristics of sugar maple wood surfaces produced by helical planing. Wood Fiber Sci 38:166–178Google Scholar
  8. De Moura LF, Cool J, Hernández RE (2010) Anatomical evaluation of wood surfaces produced by oblique cutting and face milling. IAWA J 31:77–88. CrossRefGoogle Scholar
  9. Evans PD, Cullis I, Doh Wook Kim J, Leung LH, Hazneza S, Heady RD (2017) Microstructure and mechanism of grain raising in wood. Coatings 7:135. CrossRefGoogle Scholar
  10. Ghazil S (2010) Etude de la migration des fluides dans le bois. PhD Dissertation. Henri Poincaré University, Nancy-1. FranceGoogle Scholar
  11. Gurau L, Irle M (2017) Surface roughness evaluation methods for wood products: a review. Curr Forestry Rep 3:119–131. CrossRefGoogle Scholar
  12. Gurau L, Mansfield-Williams H, Irle M (2006) Filtering the roughness of a sanded wood surface. Holz Roh Werkst 64:363–371. CrossRefGoogle Scholar
  13. Hendarto B, Shayan E, Ozarska B (2004) Characterisation of surface finishing processes in wood furniture manufacturing. Accessed 12 March 2018
  14. Hernández R, Cool J (2008) Evaluation of three surfacing methods on paper birch wood in relation to water and solvent borne coating performance. Wood Fiber Sci 40:459–469Google Scholar
  15. INRS (2001) Design of capture devices on woodworking machines. INRS, ParisGoogle Scholar
  16. INSEE (2014) Estimation de la population française de la région Occitanie. http://wwwinseefr. Accessed 08 Jan 2016
  17. ISO 16610-21 (2011) Geometrical product specifications (GPS) - Filtration - Part 21: Linear profile filters: Gaussian filters. International Standards Organization. British Standards Institute, LondonGoogle Scholar
  18. ISO 16610-61 (2015) Geometrical product specification (GPS) - filtration - part 61: Linear areal filters - Gaussian filters. International Standards Organization. British Standards Institute, LondonGoogle Scholar
  19. ISO 25178-2 (2012) Geometrical product specifications (GPS) - Surface texture: Areal - Part 2: Terms, definitions and surface texture parameters. Https:// Accessed 10 July 2018
  20. ISO/DIS 11136 (2013) Sensory analysis—methodology—general guidance for conducting hedonic tests with consumers in a controlled areaGoogle Scholar
  21. Jacquiot C, Trénard Y, Dirol D (1973) Atlas d’anatomie des bois des angiospermes (essences feuillues), Tome1, CTB, Paris.
  22. Khazaeian A (2006) Caracterisation 3D de l’état de surface du bois : stratégie de mesure - influence des paramètres liés à l’essence et à l’usinage. PhD Dissertation. Ecole Nationale du Génie Rural, des Eaux et des Forêts, Toulouse III. FranceGoogle Scholar
  23. Koehler A (1932) Some observations on raised grain. Department of agriculture forest service. Forest products laboratory, USAGoogle Scholar
  24. Lambillon J-M et al. (2013) Manuel de l'ingénierie bois. Chapitre I : Anatomie et identification des bois. Association des ingénieurs de l'école supérieure du bois. Editions Eyrolles. Paris, FranceGoogle Scholar
  25. Landry V, Blanchet P, Cormier LM (2013) Water-based and solvent-based stains : impact on the grain raising in yellow birch. BioResources 8:1997CrossRefGoogle Scholar
  26. Leclercq A (1993) Evolution de la structure anatomique du bois de hêtre en fonction du milieu forestier et du traitement sylvicole. Acta Bot Gallica 140:381. CrossRefGoogle Scholar
  27. Manuel A, Leonhart R, Broman O, Becker G (2015) Consumers’ perceptions and preference profiles for wood surfaces tested with pairwise comparison in Germany. Ann Forest Sci 72:741–751CrossRefGoogle Scholar
  28. Marra GG, Syracuse NY (1932) An analysis of the factors responsible for raised grain on the wood of oak (Quercus Ssp) following sanding and staining. College of Forestry at Syracuse University, New York StateGoogle Scholar
  29. NF EN ISO 2808 (2007) Peintures et vernis - Détermination de l'épaisseur du feuilGoogle Scholar
  30. Piratelli-Filho A, Sternadt GH, Arencibia RV (2012) Removing deep valleys in roughness measurement of soft and natural materials with mathematical filtering. Ciência & Engenharia 21:29–34. CrossRefGoogle Scholar
  31. Rajemison AH (2013) Proposition d’essences de substitution aux bois précieux en épuisement par la connaissance des propriétés du matériau bois: Cas du Palissandre de Madagascar - Application en ameublement. PhD Dissertation, Paul Sabatier University, Toulouse III, France and University of Antananarivo, MadagascarGoogle Scholar
  32. Ramanakoto MF (2017) Optimisation et qualification des surfaces usinées – Application au matériau bois. PhD Dissertation, Paul Sabatier University, Toulouse III, FranceGoogle Scholar
  33. Ramanakoto MF, Andrianantenaina AN, Ramananantoandro T, Eyma F (2017) Visual and visuo-tactile preferences of Malagasy consumers for machined wood surfaces for furniture: acceptability thresholds for surface parameters. Eur J Wood Wood Prod 75:825–837. CrossRefGoogle Scholar
  34. Ramanakoto MF, Ramananantoandro T, Eyma F, Castanié B (2018) Data about the visuo-tactile preferences of finished surface quality by French Consumers as regards raised grain on woods. V1. Zenodo. [Dataset].
  35. Ramananantoandro T, Ramanakoto MF, Rajemison AH, Eyma F (2013) Relationship between density and aesthetic attributes of wood and preference of Malagasy consumers. Ann For Sci 70:649–658CrossRefGoogle Scholar
  36. Ramananantoandro T, Eyma F, Belloncle C, Rincé S, Irle M (2017) Effects of machining parameters on raised grain occurring after the application of water-based finishes. Eur J Wood Wood Prod 76:1323–1333. CrossRefGoogle Scholar
  37. Roux M-L, Delorme T (2012) Les finitions aqueuses pour les TPE et PME de l’ameublement et de l’agencement : des solutions pratiques. FCBA, FranceGoogle Scholar
  38. Singh AP, Dawson BSW, Hands KD, Ward JV, Greaves M, Turner JCP, Rickard CL (2010) The anatomy of raised grain on Pinus radiata weatherboards. IAWA J 31:67–76CrossRefGoogle Scholar
  39. Stewart HA (1980) Some surfacing defects and problems related to wood moisture content. Wood Fiber Sci 12:175–182Google Scholar
  40. Sulaiman O, Hashim R, Subari K, Liang CK (2009) Effect of sanding on surface roughness of rubberwood. J Mater Process Tech 209:3949–3955CrossRefGoogle Scholar
  41. Taylor JM, Carrano AL, Lemaster RL (1999) Quantification of process parameters in a wood sanding operation. Forest Prod J 49:41–46Google Scholar
  42. Thibaut B, Denaud L, Collet R, Marchal R, Beauchêne J, Mothe F, Méausoone P-J, Martin P, Larricq P, Eyma F (2016) Wood machining with a focus on French research in the last 50 years. Ann For Sci 73:163–184. CrossRefGoogle Scholar
  43. Zule J, Moze A (2003) GC analysis of extractive compounds in beech wood. J Sep Sci 26:1292–1294CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut Universitaire de Technologie, Département GMP, Laboratoire Institut Clément AderUniversité Toulouse III Paul SabatierTarbesFrance
  2. 2.Ecole Supérieure des Sciences Agronomiques, Département des Eaux et ForêtsUniversité d’AntananarivoAntananarivoMadagascar
  3. 3.Institut National des Sciences Appliquées, Département Génie MécaniqueLaboratoire Institut Clément AderToulouseFrance

Personalised recommendations