Advertisement

Annals of Forest Science

, 75:95 | Cite as

Does the persistence of sweet chestnut depend on cultural inputs? Regeneration, recruitment, and mortality in Quercus- and Castanea-dominated forests

  • Fernando Silla
  • Álvaro Camisón
  • Andrea Solana
  • Héctor Hernández
  • Guillermo Ríos
  • Miguel Cabrera
  • Dámaris López
  • Albert Morera-Beita
Research Paper

Abstract

Key message

Quercus secondary forests show a gradual transition toward mixed forests, with sweet chestnut ( Castanea sativa ) becoming increasingly abundant in the western Spanish Central System. Additionally, in chestnut-dominated stands, it shows a certain resistance to competitive displacement by Quercus pyrenaica . Our results partially refute the traditional view that C. sativa is unable to recruit in the absence of cultural inputs.

Context

Sweet chestnut, Castanea sativa, is a component of European broadleaf forests and is one of the most managed trees. Due to a reduction in cultural inputs, chestnut-dominated stands tend to be invaded by other species, and it is unclear how chestnut is able to persist in natural mixed forests.

Aims

Our work aimed to identity the main factors that limit the establishment of C. sativa and to analyze the recruitment and mortality processes of C. sativa trees.

Methods

The age, growth ring patterns, regeneration density, and the spatial structure of trees and saplings in 11 plots in the Spanish Central System were analyzed.

Results

Chestnut seedling density increased with C. sativa basal area, but transition toward the sapling stage appeared limited owing to light availability. In Quercus pyrenaica secondary forests, sparse canopies did not constrain chestnut regeneration, and in old chestnut stands, C. sativa showed a certain resistance to competitive displacement. By contrast, mixed young coppices showed a high mortality, most likely due to competition with other vigorous resprouters.

Conclusion

Quercus secondary forests showed a gradual transition toward mixed forests with sweet chestnut becoming increasingly more abundant. In old stands, C. sativa is likely to persist under a gap-phase mode of regeneration. Our results partially refute the traditional view that C. sativa is unable to recruit in the absence of cultural inputs.

Keywords

Chestnut recruitment Quercus pyrenaica Secondary forest Tree mortality Forest succession 

Notes

Acknowledgements

We thank the staff forestry agency of the Regional Government of Castile & Leon, especially Luis Carlos Jovellar, Alfonso Sarmiento, Ricardo Alonso-Bartol and Pedro Gómez, for the information and support provided during this study. The samples were collected under the Regional Government permits LASM/egc (2012, 2016). We are grateful to two anonymous reviewers for their helpful comments. Mª Esther González and Emma Keck kindly corrected the English.

Funding

This study was funded by research Grants for Master’s projects administered by the Master’s program in Biology and Conservation of Biodiversity of the University of Salamanca, Spain.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Altman J, Fibich P, Dolezal J, Aakala T (2014) TRADER: a package for tree ring analysis of disturbance events in R. Dendrochonologia 32:107–112CrossRefGoogle Scholar
  2. Amorini E, Chatziphilippidis G, Cianci O, Di Castri F, Giudici F, Leonardi S, Manetti MC, Nocentiin S, Pividori M, Rapp M, Romane F, Sevrin E, Zingg A (2000) Sustainability of chestnut forest ecosystems: is it possible? Ecol Mediterr 26:3–14Google Scholar
  3. Cabanettes A, Pagès L (1992) Effet des techniques de coupe et des variations du milieu sur la croissance en hauteur des cépées dans un taillis de châtaignier (Castanea sativa). Can J For Res 22:1694–1700CrossRefGoogle Scholar
  4. Camisón A, Miguel R, Marcos JL, Revilla J, Tardáguila M, Hernández D, Lakicevic M, Jovellar L, Silla F (2015) Regeneration dynamics of Quercus pyrenaica Willd. in the central system (Spain). For Ecol Manag 343:42–52CrossRefGoogle Scholar
  5. Chazdon R (1988) Sunflecks and their importance to forest understory plants. Adv Ecol Res 18:1–63CrossRefGoogle Scholar
  6. Conedera M, Krebs P (2008) History, present situation and perspective of chestnut cultivation in Europe. Acta Hortic 784:23–27CrossRefGoogle Scholar
  7. Conedera M, Stanga P, Lischer C, Stöckli V (2000) Competition and dynamics in abandoned chestnut orchards in southern Switzerland. Ecol Mediterr 26:101–112Google Scholar
  8. Conedera M, Stanga P, Oester B, Bachmann P (2001) Different post-culture dynamics in abandoned chestnut orchards and coppices. For Snow Landsc Res 76:487–492Google Scholar
  9. Conedera M, Krebs P, Tinner W, Pradella M, Torriani D (2004) The cultivation of Castanea sativa (mill.) in Europe, from its origin to its diffusion on a continental scale. Veget Hist Archaeobot 13:161–169CrossRefGoogle Scholar
  10. Conedera M, Tinner W, Krebs P, de Rigo D, Caudullo G (2016) Castanea sativa in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz J, de Rigo D, Caudullo G, Houston Durrant T, Mauri A (eds) European Atlas of Forest Tree Species. Publ. Off. EU, Luxembourg, p e0125e0+Google Scholar
  11. Cutini A (2001) New management options in chestnut coppices: an evaluation on ecological bases. For Ecol Manag 141:165–174CrossRefGoogle Scholar
  12. De la Cruz M, Romao RL, Escudero A, Maestre FT (2008) Where do seedlings go? A spatio-temporal analysis of seedling mortality in a semi-arid gypsophyte. Ecography 31:1–11Google Scholar
  13. Diggle PJ (2003) Statistical analysis of spatial point patterns. Arnold, LondonGoogle Scholar
  14. Dirección General de Montes, Caza y Pesca Fluvial (1967) Proyecto de Ordenación definitiva del monte n° 80 del Catálogo de UP de esta provincia, denominado “Dehesa, Sierra Mayor, Honfrías, Coquilla, Mata Corcera y Majada Llana” sito en el término municipal de Linares de Riofrío (Salamanca). Ministerio de Agricultura, Distrito Forestal de SalamancaGoogle Scholar
  15. Duncan RP (1989) An evaluation of errors in tree age estimates based on increment cores in kahikatea (Dacrycarpus dacrydioides). NZ Nat Sci 16:31–37Google Scholar
  16. Fineschi S, Taurchini D, Villani F, Vendramin GG (2000) Chloroplast DNA polymorphism reveals little geographical structure in Castanea sativa mill. (Fagaceae) throughout southern European countries. Mol Ecol 9:1495–1503CrossRefGoogle Scholar
  17. Franklin JF, Mitchell R, Palik B (2007) Natural disturbance and stand development principles for ecological forestry. General Technical Report NRS-19, USDA Forest ServiceGoogle Scholar
  18. Gallardo JF (2001) Distribution of chestnut (Castanea sativa Mill.) forests in Spain: possible ecological criteria for quality and management (focusing on timber coppices). For Snow Landsc Res 76:477–481Google Scholar
  19. García P, Monte E (2005) Fitopatología del Castaño. El Chancro y la Tinta en la Provincia de Salamanca. AGRO Interreg IIIB. Espacio Atlántico. DPS - OAEDR – FEDERGoogle Scholar
  20. Gilland KE, Keiffer CH, McCarthy BC (2012) Seed production of mature forest-grown American chestnut (Castanea dentata (Marsh.) Borkh). J Torrey Bot Soc 139:283–289CrossRefGoogle Scholar
  21. Giudici F, Zingg A (2005) Sprouting ability and mortality of chestnut (Castanea sativa mill.) after coppicing. A case study. Ann For Sci 62:513–523CrossRefGoogle Scholar
  22. Gómez JM, García D, Zamora R (2003) Impact of vertebrate acorn- and seedling-predators on a Mediterranean Quercus pyrenaica forest. For Ecol Manag 180:125–134CrossRefGoogle Scholar
  23. Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull 43:69–78Google Scholar
  24. Holyoak D (1968) A comparative study of the food of some British corvidae. Bird Study 15:147–153CrossRefGoogle Scholar
  25. Jiménez MPS, Fernández PMD, Albertos SM, Sánchez LG (1998) Regiones de procedencia de Quercus pyrenaica Willd. Quercus faginea Lam, Quercus canariensis Willd. OAPN, MadridGoogle Scholar
  26. Juhásová G, Bernadovicová S (2001) Cryphonectria parasitica (Murr.) Barr and Phytophthora spp. in chestnut (Castanea sativa mill.) in Slovakia. For Snow Landsc Res 76:373–377Google Scholar
  27. Krebs CJ (1999) Ecological methodology, second ed. Addison-Wesley Educational Publishers, IncGoogle Scholar
  28. Krebs P, Conedera M, Pradella M, Torriani D, Felber M, Tinner W (2004) Quaternary refugia of the sweet chestnut (Castanea sativa mill.): an extended palynological approach. Veget Hist Archaeobot 13:145–160CrossRefGoogle Scholar
  29. Loosmore NB, Ford ED (2006) Statistical inference using the G or K point pattern spatial statistics. Ecology 87:1925–1931CrossRefGoogle Scholar
  30. Milgroom MG, Cortesi P (2004) Biological control of chestnut blight with hypovirulence: a critical analysis. Annu Rev Phytopathol 42:311–338CrossRefGoogle Scholar
  31. Morales-Molino C, Vescovi E, Krebs P, Carlevaro E, Kaltenrieder P, Conedera M, Tinner W, Colombaroli D (2015) The role of human-induced fire and sweet chestnut (Castanea sativa mill.) cultivation on the long-term landscape dynamics of the southern Swiss Alps. Holocene 25:482–494CrossRefGoogle Scholar
  32. Mujic I, Alibabic V, Zǐvkovic J, Jahic S, Jokic S, Prgomet Z, Tuzlak Z (2010) Morphological characteristics of chestnut Castanea sativa from the area of Una- Sana canton. J Cent Eur Agric 11:185–190Google Scholar
  33. Nowacki GJ, Abrams MD (1997) Radial-growth averaging criteria for reconstructing disturbance histories from presettlement-origin oaks. Ecol Monogr 67:225–249Google Scholar
  34. Oliver CD, Larson BC (1996) Forest stand dynamics, updated ed. McGraw Hill, New YorkGoogle Scholar
  35. Pividori M, Armando F, Conedera M (2005) Post cultural dynamics in a mixed chestnut coppice at its ecological border. Acta Hort: Proc III Intl Chestnut Congress 693:219–224CrossRefGoogle Scholar
  36. Pridnya M, Cherpakov V, Paillet F (1996) Ecology and pathology of European chestnut (Castanea sativa) in the deciduous forests of the Caucasus mountains in southern Russia. Bull Torrey Bot Club 123:213–222CrossRefGoogle Scholar
  37. R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Accessed date: 25 July 2018
  38. Robin C, Morel O, Vettraino AM, Perlerou C, Diamandis S, Vannini A (2006) Genetic variation in susceptibility to Phytophthora cambivora in European chestnut (Castanea sativa). For Ecol Manag 226:199–207CrossRefGoogle Scholar
  39. Rodríguez-Calcerrada J, Pardos JA, Gil L, Aranda I (2007) Acclimation to light in seedlings of Quercus petraea (Mattuschka) Liebl. and Quercus pyrenaica Willd. planted along a forest-edge gradient. Trees 21:45–54CrossRefGoogle Scholar
  40. Salomón R, Valbuena-Carabaña M, Gil L, González-Doncel I (2013) Clonal structure influences stem growth in Quercus pyrenaica Willd. coppices: bigger is less vigorous. For Ecol Manag 296:108–118CrossRefGoogle Scholar
  41. San Roman Sanz A, Fernandez C, Mouillot F, Ferrat L, Istria D, Pasqualini V (2013) Long-term forest dynamics and land-use abandonment in the Mediterranean mountains, Corsica, France. Ecol Soc 18:38CrossRefGoogle Scholar
  42. Scarascia-Mugnozza G, Oswald H, Piussi P, Radoglou K (2000) Forest of the Mediterranean region: gaps in knowledge and research needs. For Ecol Manag 132:97–109CrossRefGoogle Scholar
  43. Seijo F, Millington J, Gray R, Sanz V, Lozano J, García-Serrano F, Sangüesa-Barreda G, Camarero JJ (2015) Forgetting fire: traditional fire knowledge in two chestnut forest ecosystems of the Iberian Peninsula and its implications for European fire management policy. Land Use Policy 47:130–144CrossRefGoogle Scholar
  44. Sevilla F (2008) Una teoría ecológica para los bosques ibéricos. Junta de Castilla y León. In: LeónGoogle Scholar
  45. Silla (2018) Dynamics and Regeneration of Chestnut forests [Dataset]. Version 31 Aug 2018. Open Science Framework.  https://doi.org/10.17605/OSF.IO/JRCFD. Accessed date: 25 July 2018
  46. Stojecová R, Kupka I (2009) Growth of wild cherry (Prunus avium L.) in a mixture with other species in a demonstration forest. J For Sci 55:264–269CrossRefGoogle Scholar
  47. Stokes MA, Smiley TL (1968) An introduction to tree-ring dating. The University of Chicago Press, ChicagoGoogle Scholar
  48. Urbisz A, Urbisz A (2007) European chestnut (Castanea sativa Mill.)—a tree naturalized on the Baltic Sea coast? Pol J Ecol 55:175–179Google Scholar
  49. Vander Wall SB (2001) The evolutionary ecology of nut dispersal. Bot Rev 67:74–118CrossRefGoogle Scholar
  50. Vannini A, Vettraino AM (2001) Ink disease in chestnuts: impact on the European chestnut. For Snow Landsc Res 76:345–350Google Scholar
  51. Veblen TT (1992) Regeneration dynamics. In: Glenn-Lewin DC, Peet RK, Veblen TT (eds) Plant succession: theory and prediction. Chapman and Hall, London, pp 152–187Google Scholar
  52. Waldboth M, Oberhuber W (2009) Synergistic effect of drought and chestnut blight (Cryphonectria parasitica) on growth decline of European chestnut (Castanea sativa). For Path 39:43–55CrossRefGoogle Scholar
  53. Way DA, Pearcy RW (2012) Sunflecks in trees and forests: from photosynthetic physiology to global change biology. Tree Physiol 32:1066–1081CrossRefGoogle Scholar
  54. Wiegand T, Moloney KA (2014) Handbook of spatial point-pattern analysis in ecology. CRC Press, Boca RatonGoogle Scholar
  55. Zamora P, Martin AB, Rigling D, Diez JJ (2012) Diversity of Cryphonectria parasitica in western Spain and identification of hypovirus-infected isolates. For Pathol 42:412–419CrossRefGoogle Scholar
  56. Zlatanov T, Schleppi P, Velichkov I, Hinkov G, Georgieva M, Eggertsson O, Zlatanova M, Vacik H (2013) Structural diversity of abandoned chestnut (Castanea sativa Mill.) dominated forests: implications for forest management. For Ecol Manag 291:326–335CrossRefGoogle Scholar
  57. Zlatanov T, Velichkov I, Georgieva M, Hinkov G, Zlatanova M, Gogusev G, Eastaugh CS (2015) Does management improve the state of chestnut (Castanea sativa L) on Belasitsa Mountain, southwest Bulgaria? iForest 8:860–865CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Area of Ecology, Faculty of BiologyUniversity of SalamancaSalamancaSpain
  2. 2.Area of AgroforestryUniversity of Extremadura (University Center of Plasencia)BadajozSpain
  3. 3.Laboratory of Applied Tropical EcologyNational University of Costa RicaHerediaCosta Rica

Personalised recommendations