Advertisement

Annals of Forest Science

, 75:69 | Cite as

Geographic variation in growth, survival, and susceptibility to the processionary moth (Thaumetopoea pityocampa Dennis & Schiff.) of Pinus halepensis Mill. and P. brutia Ten.: results from common gardens in Morocco

Research Paper
Part of the following topical collections:
  1. Mediterranean Pines

Abstract

Key message

Adaptation of Pinus brutia and Pinus halepensis to harsh Moroccan environments varied considerably among populations, with variation following marked geographic clines.

Context

Mediterranean pines are drought tolerant species that play relevant ecological and economic roles in North Africa. Mediterranean pines harbor huge intraspecific variation in adaptive traits.

Aims

Exploring the relative performance of different seed sources and analyzing the genotype by environment (G × E) interaction becomes, thus, essential for maximizing the efficiency of any reforestation program.

Methods

We present the results of a comprehensive quantitative analysis of growth, survival, and resistance to the processionary moth of 57 populations of P. halepensis Mill. and P. brutia Ten. tested under severe drought conditions in two contrasting Moroccan test sites differing in water regime, soil, and physiographic conditions.

Results

The results indicated the existence of considerable variation between species and among populations within species in growth, survival, and susceptibility to the processionary moth (Thaumetopoea pityocampa Dennis & Schiff.), but low plasticity across sites, despite the apparently large environmental differences between them. On average, P. brutia performed better than P. halepensis. The G × E interaction was significant for all traits and ages, but an in-depth analysis revealed that the main source of the interaction was due to large differences in residual variances across sites, while the relative population ranks remained highly consistent across sites.

Conclusion

Growth and survival of Aleppo pine populations followed well-defined geographical clines, with populations from the Eastern range of the distribution, particularly those of Greece, showing outstanding performance. The two local Aleppo pine populations were, however, also among the best-growing and surviving populations. Superiority of Eastern Aleppo pine populations was not considered high enough to recommend their use in reforestation programs. Aiming to preserve local genetic resources, local seed sources are preferred for reforestation in the dry areas of Morocco. Planting middle to high elevation Turkish populations of the non-native P. brutia is also an alternative, especially in more mesic sites. The reduced G × E suggests that the above recommendations may be valid, even in the context of future climate change.

Keywords

Mediterranean pines Intraspecific genetic variation Population differentiation Phenotypic plasticity Genotype by environment interaction Drought Herbivory resistance Pest resistance Climate change 

Notes

Acknowledgments

The authors would like to thank SL. El Alami, A. Mrasli, T. Tahri, A. Lamnouar, A. Attaoui, M. Ghafour, M. Bouajaji, and M. Ghadfaoui for their contribution on this big step forward in halepensis-complex pine species genetic research in Morocco. Asier Larrinaga and Gloria Bustingorri are also acknowledged for their help preparing the maps and figures. Luis Sampedro, Jordi Voltas, Asier Larrinaga, and three anonymous referees contributed with valuable suggestions on earlier versions of the manuscript. We also thank David Brown for reviewing the language.

Funding

This research was founded by the National Forest Research Centre budget in Morocco. RZ received support from the Grant FUTURPIN AGL2015-68274-C03-02R founded by the Spanish Research National Plan MINECO/FEDER.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

13595_2018_746_MOESM1_ESM.docx (287 kb)
ESM 1 (DOCX 287 kb)

References

  1. Aitken SN, Whitlock MC (2013) Assisted gene flow to facilitate local adaptation to climate change. Annu Rev Ecol Evol Syst 44:367–388CrossRefGoogle Scholar
  2. Alrababah MA, Al-Horani AS, Alhamad MN, Migdadi HM (2010) Genetic diversity of the easternmost fragmented Mediterranean Pinus halepensis Pill. populations. Plant Ecol 212:843–851.  https://doi.org/10.1007/s11258-010-9872-0 CrossRefGoogle Scholar
  3. Atzmon N, Moshe Y, Schiller G (2004) Ecophysiological response to severe drought in Pinus halepensis Mill. trees of two provenances. Plant Ecol 171:15–22CrossRefGoogle Scholar
  4. Bariteau M, Pommery J (1992) Variabilite geographique et adaptation aux contraintes du milieu mediterraneen des pins de la section halepensis: resultats (provisoires) d'un essai en plantations comparatives en France. Ann Sci For 49:261–276CrossRefGoogle Scholar
  5. Benito-Garzón M, Ha-Duong M, Frascaria-Lacoste N, Fernández-Manjarrés JF (2013) Extreme climate variability should be considered in forestry assisted migration. BioScience 63:317Google Scholar
  6. Bischoff A, Mueller-Schaerer H (2010) Testing population differentiation in plant species—how important are environmental maternal effects. Oikos 119:445–454.  https://doi.org/10.1111/j.1600-0706.2009.17835.x CrossRefGoogle Scholar
  7. Boulli A, Baaziz M, M’Hirit O (2001) Polymorphism of natural populations of Pinus halepensis Mill. in Morocco as revealed by morphological characters. Euphytica 119:309–316CrossRefGoogle Scholar
  8. Bucci G, Anzidei M, Madaghiele A, Vendramin GG (1998) Detection of haplotypic variation and natural hybridization in halepensis-complex pine species using chloroplast simple sequence repeat (SSR) markers. Mol Ecol 7:1633–1643. Mol Ecol 7:1633–1643Google Scholar
  9. Budde KB, Gonzalez-Martinez SC, Navascues M, Burgarella C, Mosca E, Lorenzo Z, Zabal-Aguirre M, Vendramin GG, Verdu M, Pausas JG, Heuertz M (2017) Increased fire frequency promotes stronger spatial genetic structure and natural selection at regional and local scales in Pinus halepensis Mill. Ann Bot 119:1061–1072.  https://doi.org/10.1093/aob/mcw286 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Calamassi R, Della Rocca G, Falusi M, Paoletti E, Strati S (2001) Resistance to water stress in seedlings of eight European provenances of Pinus halepensis Mill. Ann For Sci 58:663–672CrossRefGoogle Scholar
  11. Chambel MR, Climent J, Pichot C, Ducci F (2013) Mediterranean pines (Pinus halepensis Mill. and P. brutia Ten.). In: Pâques LE (ed) Forest tree breeding in Europe: current state-of-the-art and perspectives. Springer Science, Dordrecht pp 229–265. doi: https://doi.org/10.1007/978-94-007-6146-9_5
  12. Climent J, Prada MA, Calama R, Chambel MR, de Ron DS, Alia R (2008) To grow or to seed: ecotypic variation in reproductive allocation and cone production by young female Aleppo pine (Pinus halepensis, Pinaceae). Am J Bot 95:833–842.  https://doi.org/10.3732/ajb.2007354 CrossRefPubMedGoogle Scholar
  13. Climent J, Costa e Silva F, Chambel MR, Pardos M, Almeida MH (2009) Freezing injury in primary and secondary needles of Mediterranean pine species of contrasting ecological niches. Ann For Sci 66:407–407.  https://doi.org/10.1051/forest/2009016 CrossRefGoogle Scholar
  14. Dangasuk OG, Panetsos KP (2004) Altitudinal and longitudinal variations in Pinus brutia (Ten.) of Crete Island, Greece: some needle, cone and seed traits under natural habitats. New For 27:269–284,:269–284CrossRefGoogle Scholar
  15. David-Schwartz R, Paudel I, Mizrachi M, Delzon S, Cochard H, Lukyanov V, Badel E, Capdeville G, Shklar G, Cohen S (2016) Indirect evidence for genetic differentiation in vulnerability to embolism in Pinus halepensis. Front Plant Sci 7:768.  https://doi.org/10.3389/fpls.2016.00768 CrossRefPubMedPubMedCentralGoogle Scholar
  16. De la Mata R, Zas R (2010) Transferring Atlantic maritime pine improved material to a region with marked Mediterranean influence in inland NW Spain: a likelihood-based approach on spatially adjusted field data. Eur J For Res 129:645–658CrossRefGoogle Scholar
  17. Destremau DX (1974) Précision sur les aires naturelles des principaux conifères marocains en vue de l’individualisation des provenances. Annales de la Recherche Forestière au Maroc 14:1–90Google Scholar
  18. Di Matteo G, Voltas J (2016) Multienvironment evaluation of Pinus pinaster provenances: evidence of genetic trade-offs between adaptation to optimal conditions and resistance to the maritime pine bast scale (Matsucoccus feytaudi). For Sci 62:553–563Google Scholar
  19. Fady B (2012) Biogeography of neutral genes and recent evolutionary history of pines in the Mediterranean Basin. Ann For Sci 69:421–428.  https://doi.org/10.1007/s13595-012-0219-y CrossRefGoogle Scholar
  20. Fisheri J, Neumann RW, Mexav JG (1986) Performance of Pinus halepensis/brutia group pines in Southern New Mexico. For Ecol Manag 16:403–410CrossRefGoogle Scholar
  21. Fry JD (2004) Estimation of genetic variances and covariances by restricted maximum likelihood using PROC MIXED. In: Saxton AM (ed) Genetic analysis of complex traits using SAS. SAS Institute, Cary, NC, pp 11–34Google Scholar
  22. Gomez A, Alía R, Bueno MA (2000) Genetic diversity of Pinus halepensis Mill populations detected by RAPD loci. Ann For Sci 58:869–875CrossRefGoogle Scholar
  23. Gómez A, Vendramin GG, González-Martínez SC, Alía R (2005) Genetic diversity and differentiation of two Mediterranean pines Pinus halepensis Mill. and Pinus pinaster Ait. along a latitudinal cline using chloroplast microsatellite markers. Divers Distrib 11:257–263CrossRefGoogle Scholar
  24. Grivet D, Sebastiani F, Gonzalez-Martinez SC, Vendramin GG (2009) Patterns of polymorphism resulting from long-range colonization in the Mediterranean conifer Aleppo pine. New Phytol 184:1016–1028.  https://doi.org/10.1111/j.1469-8137.2009.03015.x CrossRefPubMedGoogle Scholar
  25. Grivet D, Sebastiani F, Alia R, Bataillon T, Torre S, Zabal-Aguirre M, Vendramin GG, Gonzalez-Martinez SC (2011) Molecular footprints of local adaptation in two Mediterranean conifers. Mol Biol Evol 28:101–116.  https://doi.org/10.1093/molbev/msq190 CrossRefPubMedGoogle Scholar
  26. Grivet D, Climent J, Zabal-Aguirre M, Neale DB, Vendramin GG, Gonzalez-Martinez SC (2013) Adaptive evolution of Mediterranean pines. Mol Phylogenet Evol 68:555–566.  https://doi.org/10.1016/j.ympev.2013.03.032 CrossRefPubMedGoogle Scholar
  27. Isik F, Keskin S, McKeand SE (2000) Provenance variation and provenance-site interaction in Pinus brutia: consequences for defining breeding zones. Silvae Genetica 49:213–215Google Scholar
  28. Jacquet J-S, Orazio C, Jactel H (2012) Defoliation by processionary moth significantly reduces tree growth: a quantitative review. Ann For Sci 69:857–866.  https://doi.org/10.1007/s13595-012-0209-0 CrossRefGoogle Scholar
  29. Jaramillo-Correa J-P, Sebastiani F, Heuertz M, Plomion C, Alía R, Rodríguez-Quilón I, Grivet D, Lepoittevin C, Garnier-Géré PH, Vendramin GG, González-Martínez SC (2014) Molecular proxies for climate maladaptation in a long-lived tree (Pinus pinaster Aiton, Pinaceae). Genetics 199:793–807.  https://doi.org/10.1534/genetics.114.173252/-/DC1 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kaundun SS, Fady B, Lebreton P (1997) Genetic differences between Pinus halepensis, Pinus brutia and Pinus eldarica based on needle flavonoids. Biochem Syst Ecol 25:553–562CrossRefGoogle Scholar
  31. Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7:1225–1241.  https://doi.org/10.1111/j.1461-0248.2004.00684.x CrossRefGoogle Scholar
  32. Klein T, Di Matteo G, Rotenberg E, Cohen S, Yakir D (2013) Differential ecophysiological response of a major Mediterranean pine species across a climatic gradient. Tree Physiol 33:26–36.  https://doi.org/10.1093/treephys/tps116 CrossRefPubMedGoogle Scholar
  33. Kurt Y, Bilgen BB, Kaya N, Isik K (2011a) Genetic comparison of Pinus brutia Ten. populations from different elevations by RAPD markers. Not Bot Horti Agrobo 39:299–304CrossRefGoogle Scholar
  34. Kurt Y, González-Martínez SC, Alía R, Isik K (2011b) Genetic differentiation in Pinus brutia Ten. using molecular markers and quantitative traits: the role of altitude. Ann For Sci 69:345–351.  https://doi.org/10.1007/s13595-011-0169-9 CrossRefGoogle Scholar
  35. Leimu R, Fischer M (2008) A meta-analysis of local adaptation in plants. PLoS One 3:e4010CrossRefPubMedPubMedCentralGoogle Scholar
  36. Lenormand T, Roze D, Rousset F (2009) Stochasticity in evolution. Trends Ecol Evol 24:157–165CrossRefPubMedGoogle Scholar
  37. Littell RC, Milliken GA, Stroup WW, Wolfinger RD, Schabenberger O (2006) SAS system for mixed models, Second edn. SAS Institute, CaryGoogle Scholar
  38. Morgante M, Felice N, Vendramin GG (1998) Analysis of hypervariable chloroplast microsatellites in Pinus halepensis reveals a dramatic genetic bottleneck. In: Karp A, Isaac PG, Ingram DS (eds) Molecular tools for screening biodiversity. Springer, Dordrecht, pp 407–412CrossRefGoogle Scholar
  39. Parlmberg C (1975) Geographic variation and early growth in south-eastern semi-arid Australia of Pinus halepensis and the Pinus brutia species complex. Silvae Genetica 24:150–160Google Scholar
  40. Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644CrossRefGoogle Scholar
  41. Petit RJ, Hampe A, Cheddadi R (2005) Climate changes and tree phylogeography in the Mediterranean. Taxon 54:877–885CrossRefGoogle Scholar
  42. Phillips GC, Gladfelter HJ (1991) Eldarica pine, Afghan pine (Pinus eldarica Medw.). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry. Vol 16, Trees III. Springer-Verlag, Heidelberg, pp 269–287Google Scholar
  43. Richardson DM, Rundel PW, Jackson ST, Teskey RO, Aronson J, Bytnerowicz A, Wingfield MJ, Proches S (2007) Human impacts in pine forest: past, present and future. Annu Rev Ecol Evol Syst 38:275–297CrossRefGoogle Scholar
  44. Robinet C, Baier P, Pennerstorfer J, Schopf A, Roques A (2007) Modelling the effects of climate change on the potential feeding activity of Thaumetopoea pityocampa (Den. & Schiff.) (Lep., Notodontidae) in France. Glob Ecol Biogeogr 16:460–471.  https://doi.org/10.1111/j.1466-8238.2006.00302.x CrossRefGoogle Scholar
  45. Salim K, Naydenov KD, Benyounes H, Tremblay F, Latifa el H, Wahid N, Valeria O (2010) Genetic signals of ancient decline in Aleppo pine populations at the species' southwestern margins in the Mediterranean Basin. Hereditas 147:165–175.  https://doi.org/10.1111/j.1601-5223.2010.02176.x CrossRefPubMedGoogle Scholar
  46. Santos del Blanco L, Bonser SP, Valladares F, Chambel MR, Climent J (2013) Plasticity in reproduction and growth among 52 range-wide populations of a Mediterranean conifer: adaptive responses to environmental stress. J Evol Biol 26:1912–1924.  https://doi.org/10.1111/jeb.12187 CrossRefPubMedGoogle Scholar
  47. Savolainen O, Pyhäjärvi T, Knürr T (2007) Gene flow and local adaptation in trees. Annu Rev Ecol Evol Syst 38:595–619.  https://doi.org/10.1146/annurev.ecolsys.38.091206.095646 CrossRefGoogle Scholar
  48. Sbay H, Zas R (2018) Geographic variation in growth, survival and susceptibility to the processionary moth (Thaumetopoea pityocampa) of Pinus halepensis and P. brutia. Results from common gardens in Morocco. DIGITAL.CSIC. [dataset]. http://hdl.handle.net/10261/163608;  https://doi.org/10.20350/digitalCSIC/8535
  49. Schiller G (2000) Eco-physiology of Pinus halepensis Mill. and Pinus brutia Ten. In: Ne’eman G, Trabaud L (eds) Ecology, biogeography and management of Mediterranean pine forest ecosystems (Pinus halepensis and Pinus brutia). Backhuys Publishers-Wil, Amsterdam, pp 51–65Google Scholar
  50. Schiller G, Atzmon N (2009) Performance of Aleppo pine (Pinus halepensis) provenances grown at the edge of the Negev desert: a review. J Arid Environ 73:1051–1057.  https://doi.org/10.1016/j.jaridenv.2009.06.003 CrossRefGoogle Scholar
  51. Soto A, Robledo-Arnuncio JJ, Gonzalez-Martinez SC, Smouse PE, Alia R (2010) Climatic niche and neutral genetic diversity of the six Iberian pine species: a retrospective and prospective view. Mol Ecol 19:1396–1409.  https://doi.org/10.1111/j.1365-294X.2010.04571.x CrossRefPubMedGoogle Scholar
  52. St Clair JB, Howe GT (2007) Genetic maladaptation of coastal Douglas-fir seedlings to future climates. Glob Chang Biol 13:1441–1454CrossRefGoogle Scholar
  53. Taïbi K, del Campo AD, Mulet JM, Flors J, Aguado A (2014) Testing Aleppo pine seed sources response to climate change by using trial sites reflecting future conditions. New For 45:603–624.  https://doi.org/10.1007/s11056-014-9423-y CrossRefGoogle Scholar
  54. Taïbi K, del Campo AD, Aguado A, Mulet JM (2015) The effect of genotype by environment interaction, phenotypic plasticity and adaptation on Pinus halepensis reforestation establishment under expected climate drifts. Ecol Eng 84:218–228.  https://doi.org/10.1016/j.ecoleng.2015.09.005 CrossRefGoogle Scholar
  55. Tapias R, Climent J, Pardos JA, Gil L (2004) Life history of Mediterranean pines. Plant Ecol 171:53–68CrossRefGoogle Scholar
  56. Voltas J, Chambel MR, Prada MA, Ferrio JP (2008) Climate-related variability in carbon and oxygen stable isotopes among populations of Aleppo pine grown in common-garden tests. Trees 22:759–769.  https://doi.org/10.1007/s00468-008-0236-5 CrossRefGoogle Scholar
  57. Voltas J, Lucabaugh D, Chambel MR, Ferrio JP (2015) Intraspecific variation in the use of water sources by the circum-Mediterranean conifer Pinus halepensis. New Phytol 208:1031–1041.  https://doi.org/10.1111/nph.13569 CrossRefPubMedGoogle Scholar
  58. Wahid N, Jouidre H, Lamhamedi MS, El Abidine AZ, Boulli A (2010) Évaluation de la structure et de la variabilité génétiques des populations naturelles du pin d'Alep (Pinus halepensis Mill.) au Maroc à l'aide de marqueurs isoenzymatiques. Acta Botanica Gallica 157:419–431.  https://doi.org/10.1080/12538078.2010.10516219 CrossRefGoogle Scholar
  59. Weinstein A (1989) Provenance evaluation of Pinus halepensis, P. brutia and P. eldarica in Israel. For Ecol Manag 26:215–225CrossRefGoogle Scholar
  60. Yang R-C (2002) Likelihood-based analysis of genotype–environment interactions. Crop Sci 42:1434–1440CrossRefGoogle Scholar
  61. Zas R (2006) Iterative kriging for removing spatial autocorrelation in analysis of forest genetic trials. Tree Genet Genomics 2:177–185CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Forest Research Centre (CRF)RabatMorocco
  2. 2.Misión Biológica de GaliciaConsejo Superior de Investigaciones Científicas (MBG-CSIC)PontevedraSpain

Personalised recommendations