Advertisement

Within- and between-tree variation of wood density components in Pinus nigra at six sites in Portugal

  • Alexandra Dias
  • Maria J. Gaspar
  • Ana Carvalho
  • Jani Pires
  • José Lima-Brito
  • Maria E. Silva
  • José L. Louzada
Research Paper

Abstract

Key message

In Europe, P. nigra wood presents a density pattern of longitudinal variation with an increase from east to west. However, no latitudinal tendencies were detected. Compared to other Portuguese resinous species, P. nigra revealed higher density, identical radial growth and intra-ring heterogeneity, which presents advantages for industry purposes. The environmental factors (Sites effect) manifest more strongly in the latewood components while the Trees/Sites effect is more strongly expressed in the earlywood components.

Context

Although P. nigra Arnold is one of the most important conifers in Europe, little is known about the wood’s characteristics in the southwest European region.

Aims

Our aims are to outline a first approach to study the growth and wood quality in P. nigra in Portugal comparing to other European natural stands and other resinous species.

Methods

Inter- and intra-wood density variation of P. nigra from six Portuguese sites was studied using microdensitometry. Analysis of variance (ANOVA) was performed in three subsets: 50 common rings, core (juvenile wood) and peripheral analysis (mature wood).

Results

The average ring density was 0.588 g cm−3, with maximum values in the north and low altitudes. Regarding growth traits, no latitudinal and altitudinal tendencies were detected. Compared to the main timber species in Portugal (P. pinaster Aiton), P. nigra showed similar radial growth, higher density but lower intra-ring density homogeneity. The Sites effect mainly influenced latewood density components, while the Trees/Sites effect primarily influenced earlywood components. The Rings effect was found to be relatively low, with a density decrease in the tree’s first years followed by an increase in the periphery. Growth traits showed a reduction from pith to bark.

Conclusion

Considering the quality (density) and growth features of the Black pine, this species could be useful for the reforestation of mountainous Southern Europe areas that are not favourable for other species.

Keywords

Black pine Wood variation Microdensitometry Juvenile wood Mature wood 

Notes

Funding

This work was funded by the Portuguese Foundation for Science and Technology (Fundação para a Ciência e a Tecnologia, FCT) under the project UID/AGR/04033/2013 and POCI-01-0145-FEDER-006958 and co-financed by the Social European Fund (FSE) under the POPH-QREN (grant number SFRH/BD/91781/2012 to A. D. and SFRH/BPD/68932/2010 to A. C.).

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflicts of interest.

References

  1. Amarasekara H, Denne MP (2002) Effect of crown size on wood characteristics of Corsican pine in relation to definitions of juvenile wood, crown formed wood and core wood. Forestry 75:51–61CrossRefGoogle Scholar
  2. Andreu L, GutiéRrez E, Macias M, Ribas M, Bosch O, Camarero JJ (2007) Climate increases regional tree-growth variability in Iberian pine forests. Glob Chang Biol 13:804–815Google Scholar
  3. Barbéro M, Loisel R, Quézel P, Richardson DM, Romane F (1998) Pines of Mediterranean basin. In: Richardson DM (ed) Ecology and biogeography of Pinus. Cambridge University Press, pp 153–170Google Scholar
  4. Boden DI (1982) The relationship between timber density of the three major pine species in the Natal midlands and various site and tree parameters. In: Wattle Research Institute (ed) Report 1981–1982. University of Natal, pp 160–126Google Scholar
  5. Bogino SM, Bravo F (2008) Growth response of Pinus pinaster Ait. to climatic variables in central Spanish forests. Ann Forest Sci 65:506–506CrossRefGoogle Scholar
  6. Campelo F, Nabais C, Freitas H, Gutiérrez E (2007) Climatic significance of tree-ring width and intra-annual density fluctuations in Pinus pinea from a dry Mediterranean area in Portugal. Ann For Sci 64:229–238CrossRefGoogle Scholar
  7. Cato S, McMillan L, Donaldson L, Richardson T, Echt C, Gardner R (2006) Wood formation from the base to the crown in Pinus radiata: gradients of Tracheid Wall thickness, wood density, radial growth rate and gene expression. Plant Mol Biol 60:565–581CrossRefGoogle Scholar
  8. Climent J, Costa e Silva F, Chambel MR, Pardos M, Almeida MH (2009) Freezing injury in primary and secondary needles of Mediterranean pine species of contrasting ecological niches. Ann Forest Sci 66:407–407CrossRefGoogle Scholar
  9. Cown DJ (1974) Physical properties of Corsican pine grown in New Zealand. N Z J For Sci 4:76–93Google Scholar
  10. Cown DJ (1980) Radiata pine: wood age and wood property concepts. N Z J For Sci 10:504–507Google Scholar
  11. Downes G, Evans R, Schimleck L, Fritts H (2000) The commercial cambium: understanding the origin of wood property variation. Exptl Biol Rev 123:325–336Google Scholar
  12. Elliott GK (1970) Wood density in conifers. Commonwealth Forest BureauGoogle Scholar
  13. Fernandes C, Gaspar MJ, Pires J, Silva ME, Carvalho A, Brito JL, Lousada JL (2017) Within and between-tree variation of wood density components in Pinus sylvestris at five sites in Portugal. Eur J Wood Prod 75:511–526CrossRefGoogle Scholar
  14. Fernandéz A, Génova M, Creus J, Gutiérrez E (1996) Dendroclimatological investigation covering the last 300 years in Central Spain. In Dean JS, Meko DM and Swetnam TW (eds) Tree rings, environment and humanity. Radiocarbon, pp 181–190Google Scholar
  15. Fernández-Golfín JI, Díez MR, Hermoso E, Gutiérrez A, Hermoso E, Conde M, Van den Eynde V (2001) Caracterización de la calidad y las propiedades de la madera de pino laricio (Pinus nigra Arn. salzmannii). Forest Syst 10:311–331Google Scholar
  16. Ferrand JC (1982) Réflexions sur la densité du bois. 2iéme partie: calcul de la densité et de son hétérogénéité. Holzforschung 36:153–157CrossRefGoogle Scholar
  17. Franceschini T, Bontemps J, Gelhaye P, Rittie D, Herve J, Gegout J, Leban J (2010) Decreasing trend and fluctuations in the mean ring density of Norway spruce through the twentieth century. Ann For Sci 67:816CrossRefGoogle Scholar
  18. Gapare WJ, Wu HX, Abarquez A (2006) Genetic control of the time of transition from juvenile to mature wood in Pinus radiata D. Don. Ann For Sci 63:871–878CrossRefGoogle Scholar
  19. Gaspar MJ, Louzada JL, Silva ME, Aguiar A, Almeida MH (2008) Age trends in genetic parameters of wood density components in 46 half-sibling families of Pinus pinaster. Can J For Res 38:1470–1477CrossRefGoogle Scholar
  20. Gaspar MJ, Lousada JL, Rodrigues JC, Aguiar A, Almeida MH (2009) Does selecting for improved growth affect wood quality of Pinus pinaster in Portugal? For Ecol Manag 258:115–121CrossRefGoogle Scholar
  21. Génova M (2000) Anillos de crecimiento y años característicos en el Sistema Central (España) durante los últimos cuatrocientos años. Bol R Soc Esp Hist Nat Sec Geol 96:33–42Google Scholar
  22. Génova M, Fernandéz Á (1998) Tree rings and climate of Pinus nigra subsp. salzmannii in Central Spain. Dendrochronologia 16-17:75–85Google Scholar
  23. Gryc V, Vavrcík K, Horn K (2011) Density of juvenile and mature wood of selected coniferous species. J For Sci 57:123–130CrossRefGoogle Scholar
  24. Guler C, Copur Y, Akgul M, Buyuksari U (2007) Some chemical, physical and mechanical properties of juvenile wood from black pine (Pinus nigra Arnold) plantations. J Appl Sci 7:755–758CrossRefGoogle Scholar
  25. Guller B, Isik K, Cetinay S (2012) Variations in the radial growth and wood density components in relation to cambial age in 30-year-old Pinus brutia ten. at two test sites. Trees 26:975–986CrossRefGoogle Scholar
  26. Gündüz G, Korkut S, Korkut DS (2008) The effects of heat treatment on physical and technological properties and surface roughness of Camiyanı black pine (Pinus nigra Arn. Subsp. pallasiana var. pallasiana) wood. Bioresour Technol 99:2275–2280CrossRefGoogle Scholar
  27. Haygreen J, Bowyer J (1982) Forest products and wood science – an introduction. The Iowa State University Press, AmesGoogle Scholar
  28. Hylen G (1999) Age trends in genetic parameters of wood density in young Norway spruce. Can J For Res 29:135–143CrossRefGoogle Scholar
  29. ICNF (2013) IFN6 Inventário Florestal Nacional – Áreas de uso de solo e das espécies florestais de Portugal continental. Resultados preliminares. Instituto da Conservação da Natureza e das Florestas, Lisboa 34ppGoogle Scholar
  30. Kilpeläinen A, Peltola H, Ryyppo A, Sauvala K, Laitinen K, Kellomaki S (2003) Wood properties of scots pines (Pinus sylvestris) grown at elevated temperature and carbon dioxide concentration. Tree Physiol 23:889–897CrossRefGoogle Scholar
  31. Knapic S, Louzada JL, Leal S, Pereira H (2007) Radial variation of wood density components and ring width in cork oak trees. Ann For Sci 64:211–218CrossRefGoogle Scholar
  32. Koga S, Zhang SY (2004) Inter-tree and intra-tree variations in ring width and wood density components in balsam fir (Abies balsamea). Wood Sci Technol 38:149–162CrossRefGoogle Scholar
  33. Koprowski M, Duncker P (2012) Tree ring width and wood density as the indicators of climatic factors and insect outbreaks affecting spruce growth. Ecol Indic 23:332–337CrossRefGoogle Scholar
  34. Köse N, Akkemik Ü, Dalfes HN, Özeren MS, Tolunay D (2012) Tree-ring growth of Pinus nigra Arn. Subsp. pallasiana under different climate conditions throughout western Anatolia. Dendrochronologia 30:295–301CrossRefGoogle Scholar
  35. Leal S, Eamus D, Grabner M, Wimmer R, Cherubini P (2008) Tree rings of Pinus nigra from the Vienna basin region (Austria) show evidence of change in climatic sensitivity in the late 20th century. Can J For Res 38:744–759CrossRefGoogle Scholar
  36. Lebourgeois F (2000) Climatic signals in earlywood, latewood and total ring width of Corsican pine from western France. Ann For Sci 57:155–164CrossRefGoogle Scholar
  37. Li X, Wu HX, Southerton SG (2011) Transcriptome profiling of wood maturation in Pinus radiata identifies differentially expressed genes with implications in juvenile and mature wood variation. Gene 487:62–71CrossRefGoogle Scholar
  38. Little EL, Critchfield WB (1969) Subdivisions of the Genus Pinus (pines). Washington, U.S. Department of Agriculture, Forest ServiceGoogle Scholar
  39. Louro V (1982) O pinheiro larício (Pinus nigra Arnold) em Portugal. Direcção Geral do Ordenamento e Gestão FlorestalGoogle Scholar
  40. Louzada JL (1991) Variação nas componentes da densidade na madeira de Pinus pinaster Ait. [Variation of the wood density components of Pinus pinaster Ait.] Technical-Scientific series, Applied Sciences, no 12, UTAD, Vila Real, PortugalGoogle Scholar
  41. Louzada JL (2000) Variação fenotípica e genética em características estruturais na madeira de Pinus pinaster Ait. O comprimento das fibras e a densidade até aos 80 anos de idade das árvores. Parâmetros genéticos na evolução juvenil - adulto das componentes da densidade da madeira. [Phenotypic and genetic variation in structural features in Pinus pinaster Ait wood. The fiber length and density to 80 years of a tree’s age. Genetic parameters in juvenile-mature evolution of wood density components.] Didactic, Applied Science Series, No 143, UTAD, Vila Real, PortugalGoogle Scholar
  42. Louzada JL (2003) Genetic correlations between wood density components in Pinus pinaster Ait. Ann For Sci 60:285–294CrossRefGoogle Scholar
  43. Louzada JL, Fonseca F (2002) The heritability of wood density components in Pinus pinaster Ait. And the implications for tree breeding. Ann For Sci 59:867–873CrossRefGoogle Scholar
  44. Martín-Benito D, Cherubini P, del Río M, Cañellas I (2008) Growth response to climate and drought in Pinus nigra Arn. trees of different crown classes. Trees 22:363–373CrossRefGoogle Scholar
  45. Martín-Benito D, Del Río M, Cañellas I (2010a) Black pine (Pinus nigra Arn.) growth divergence along a latitudinal gradient in western Mediterranean mountains. Ann For Sci 67:401CrossRefGoogle Scholar
  46. Martín-Benito D, Del Río M, Heinrich I, Helle G, Cañellas I (2010b) Response of climate-growth relationships and water use efficiency to thinning in a Pinus nigra afforestation. For Ecol Manag 259:967–975CrossRefGoogle Scholar
  47. Martín-Benito D, Beeckman H, Cañellas I (2012) Influence of drought on tree rings and tracheid features of Pinus nigra and Pinus sylvestris in a Mesic Mediterranean forest. Eur J For Res 132:33–45CrossRefGoogle Scholar
  48. Mothe F, Sciama D, Leban JM, Nepveu G (1998) Localisation de la transition bois initial-bois final dans un cerne de chêne par analyse microdensitométrique. Ann For Sci 55:437–449CrossRefGoogle Scholar
  49. Mutz R, Guilley E, Sauter UH, Nepveu G (2004) Modelling juvenile-mature wood transition in scots pine (Pinus sylvestris L.) using nonlinear mixed-effects models. Ann For Sci 61:831–841CrossRefGoogle Scholar
  50. Oliva AG, Merino VB, Seco JI, García MC, Prieto EH (2006) Effect of growth conditions on wood density of Spanish Pinus nigra. Wood Sci Technol 40:190–204CrossRefGoogle Scholar
  51. Palmer DJ, Kimberley MO, Cown DJ, McKinley RB (2013) Assessing prediction accuracy in a regression kriging surface of Pinus radiata outerwood density across New Zealand. For Ecol Manag 308:9–16CrossRefGoogle Scholar
  52. Pazdrowski W (2004) The proportion and some selected physical and mechanical properties of juvenile, maturing and adult wood of black pine and scots pine. E J P A U 7Google Scholar
  53. Pearson RG, Ross BE (1984) Growth rate and bending properties of selected loblolly pines. Wood Fiber Sci 16:37–47Google Scholar
  54. Peltola H, Gort J, Pulkkinen P, Gerendiain AZ, Karppinen J, Ikonen VP (2009) Differences in growth and wood density traits in scots pine (Pinus sylvestris L.) genetic entries grown at different spacing and sites. Silva Fenn 43:339–354CrossRefGoogle Scholar
  55. Piutti E, Cescatti A (1997) A quantitative analysis of the interactions between climatic response and intraspecific competition in European beech. Can J For Res 27:277–284CrossRefGoogle Scholar
  56. Polge H (1966) Établissement des courbes de variation de la densité du bois par exploration densitométrique de radiographies d’échantillons prélevés à la tarière sur des arbres vivants: applications dans les domaines Technologique et Physiologique. Ann For Sci 23:1–206CrossRefGoogle Scholar
  57. Pritzkow C, Heinrich I, Grudd H, Helle G (2014) Relationship between wood anatomy, tree-ring widths and wood density of Pinus sylvestris L. and climate at high latitudes in northern Sweden. Dendrochronologia 32:295–302CrossRefGoogle Scholar
  58. Rossi S, Cairo E, Krause C, Deslauriers A (2015) Growth and basic wood properties of black spruce along an alti-latitudinal gradient in Quebec, Canada. Ann For Sci 72:77–87CrossRefGoogle Scholar
  59. Rozenberg P, Franc A, Cahalan C (2001) Incorporating wood density in breeding programs for softwoods in Europe: a strategy and associated methods. Silvae Genet 50:1–6Google Scholar
  60. Rubiales JM, García-Amorena I, Hernández L, Génova M, Martínez F, Manzaneque FG, Morla C (2010) Late quaternary dynamics of pinewoods in the Iberian Mountains. Rev Palaeobot Palyno 162:476–491CrossRefGoogle Scholar
  61. Rubio-Moraga A, Candel-Perez D, Lucas-Borja ME, Tiscar PA, Viñegla B, Linares JC, Gómez-Gómez L, Ahrazem O (2012) Genetic diversity of Pinus nigra Arn. Populations in southern Spain and northern Morocco revealed by inter-simple sequence repeat profiles. Int J Mol Sci 13:5645–5658CrossRefGoogle Scholar
  62. Steffenrem A (2008) Genetic variation in structural wood quality traits in Norway spruce and implications for tree breeding. Dissertation, Norwegian University of Life SciencesGoogle Scholar
  63. Tavares F, Louzada JL, Pereira H (2014) Variation in wood density and ring width in Acacia melanoxylon at four sites in Portugal. Eur J For Res 133:31–39CrossRefGoogle Scholar
  64. Toïgo M, Vallet P, Tuilleras V, Lebourgeois F, Rozenberg P, Perret S, Courbaud B, Perot T (2015) Species mixture increases the effect of drought on tree ring density, but not on ring width, in Quercus petraea–Pinus sylvestris stands. For Ecol Manag 345:73–82CrossRefGoogle Scholar
  65. Tsoumis G, Panagiotidis N (1980) Effect of growth conditions on wood quality characteristics of black pine (Pinus nigra Arn.). Wood Sci Technol 14:301–310CrossRefGoogle Scholar
  66. Uner B, Oyar O, Var AA, Altnta OL (2009) Effect of thinning on density of Pinus nigra tree using X-ray computed tomography. J Environ Biol 30:359–362PubMedGoogle Scholar
  67. Van der Maaten-Theunissen M, Boden S, Van der Maaten E (2013) Wood density variations of Norway spruce (Picea abies (L.) karst.) under contrasting climate conditions in southwestern Germany. Ann For Sci 56:91–103Google Scholar
  68. Wils TH, Robertson I, Eshetu Z, Sass-Klaassen UG, Koprowski M (2009) Periodicity of growth rings in Juniperus procera from Ethiopia inferred from crossdating and radiocarbon dating. Dendrochronologia 27:45–58CrossRefGoogle Scholar
  69. Wu HX, Eldridge KG, Matheson AC, Powell MB, McRae TA, Butcher TB, Johnson IG (2007) Achievements in forest tree improvement in Australia and New Zealand 8. Successful introduction and breeding of radiata pine in Australia. Aust For 70:215–225CrossRefGoogle Scholar
  70. Xu P, Donaldson L, Walker J, Evans R, Downes G (2004) Effects of density and microfibril orientation on the vertical variation of low-stiffness wood in radiata pine butt logs. Holzforschung 58:673–677CrossRefGoogle Scholar
  71. Zobel BJ, Jett JB (1995) Genetics of wood production. Springer, BerlinCrossRefGoogle Scholar
  72. Zobel BJ, Sprague JR (1998) Juvenile wood in Forest trees. Springer, BerlinCrossRefGoogle Scholar
  73. Zobel BJ, Talbert J (1984) Applied Forest tree improvement. John Wiley & SonsGoogle Scholar
  74. Zobel BJ, Van Buijtenen JP (1989) Wood variation and wood properties. Springer, BerlinCrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB)University of Tras-os-Montes and Alto DouroVila RealPortugal
  2. 2.BioISI–Biosystems and Integrative Sciences InstituteFaculty of Sciences University of LisboaLisbonPortugal
  3. 3.Department of Genetics and Biotechnology (DGB)University of Tras-os-Montes and Alto DouroVila RealPortugal
  4. 4.Centre of Forestry Studies (CEF), Instituto Superior de AgronomiaUniversidade Técnica de LisboaLisbonPortugal
  5. 5.Department of Forestry Sciences and Landscape (CIFAP)University of Tras-os-Montes and Alto DouroVila RealPortugal

Personalised recommendations