Live fuel moisture content (LFMC) time series for multiple sites and species in the French Mediterranean area since 1996

  • N. Martin-StPaul
  • F. Pimont
  • J. L. Dupuy
  • E. Rigolot
  • J. Ruffault
  • H. Fargeon
  • E. Cabane
  • Y. Duché
  • R. Savazzi
  • M. Toutchkov
Data Paper

Keywords

Mediterranean Fire danger Drought Fire weather 

Notes

Acknowledgements

This work is a contribution to the Labex OT-Med (ANR-11-LABEX-0061) funded by the “Investissements d’Avenir”, a program of the French National Research Agency (ANR) through the A*Midex project (ANR-11-IDEX- 0001-02).

Compliance with ethical standards

Conflict of interest

Eric Rigolot has been an Associate Editor.

Supplementary material

13595_2018_729_MOESM1_ESM.docx (629 kb)
ESM 1 (DOCX 628 kb)
13595_2018_729_MOESM2_ESM.xlsx (29 kb)
ESM 2 (XLSX 29 kb)

References

  1. Alexander ME, Cruz MG (2013) Assessing the effect of foliar moisture content on the spread rate of crown fires. Int J Wildland Fire 22:415–427.  https://doi.org/10.1071/WF12008 CrossRefGoogle Scholar
  2. Chandler, C., Cheney, P., Thomas, P., Trabaud, L., & Williams, D. (1983). Fire in forestry. Volume 1. Forest fire behavior and effects. (John Wiley & Sons, Ed.). New YorkGoogle Scholar
  3. Dennison PE, Moritz MA (2009) Critical live fuel moisture in chaparral ecosystems: a threshold for fire activity and its relationship to antecedent precipitation. Int J Wildland Fire 18(8):1021–1027.  https://doi.org/10.1071/WF08055 CrossRefGoogle Scholar
  4. Duché Y, Savazzi R, Toutchkov M, Cabanne E (2017) Multisite and multispecies live fuel moisture content (LFMC) series in the French Mediterranean since 1996 [data set]. Zenodo.  https://doi.org/10.5281/zenodo.162978
  5. Fan L, Wigneron JP, Xiao Q, Al-Yaari A, Wen J, Martin-St Paul N, Dupuy JL, Pimont F, Al Bitar A, Fernandez-Moran R, Kerr YH (2018) Evaluation of microwave remote sensing for monitoring live fuel moisture content in the Mediterranean region. Remote Sens Environ 205:210–223.  https://doi.org/10.1016/j.rse.2017.11.020 CrossRefGoogle Scholar
  6. Fares S, Bajocco S, Salvati L, Camaretta N, Dupuy J-L, Xanthopoulos G, Guijarro M, Madrigal J, Hernando C, Corona P (2017) Characterizing potential wildland fire fuel in live vegetation in the Mediterranean region. Ann For Sci 74:1–14CrossRefGoogle Scholar
  7. Jolly WM, Hadlow AM, Huguet K (2014) De-coupling seasonal changes in water content and dry matter to predict live conifer foliar moisture content. Int J Wildland Fire 23(4):480–489.  https://doi.org/10.1071/WF13127 CrossRefGoogle Scholar
  8. Marino E, Dupuy JL, Pimont F, Guijarro M, Hernando C, Linn R (2012) Fuel bulk density and fuel moisture content effect on fire rate of spread: a comparison between FIRETEC model predictions and experimental results in shrub fuels. J Fire Sci 30(4):277–299CrossRefGoogle Scholar
  9. Martin-StPaul N, Delzon S, Cochard H (2017) Plant resistance to drought depends on timely stomatal closure. Ecol Lett 20:1–23.  https://doi.org/10.1111/ele.12851 CrossRefGoogle Scholar
  10. Mosteller F, Tukey J (1977) Data analysis and regression. Addison-Wesley, Upper Saddle River, NJGoogle Scholar
  11. Nolan RH, Boer MM, Resco de Dios V, Caccamo G, Bradstock RA (2016) Large-scale, dynamic transformations in fuel moisture drive wildfire activity across southeastern Australia. Geophys Res Lett 43(9):4229–4238.  https://doi.org/10.1002/2016GL068614 CrossRefGoogle Scholar
  12. Paula S, Arianoutsou M, Kazanis D, Tavşanoğlu Ç, Lloret F, Buhk C et al (2009) Fire-related traits for plant species of the Mediterranean Basin. Ecology 90(5):1420.  https://doi.org/10.1890/08-1309.1 CrossRefGoogle Scholar
  13. Pellizzaro G, Cesaraccio C, Duce P, Ventura A, Zara P (2007) Relationships between seasonal patterns of live fuel moisture and meteorological drought indices for Mediterranean shrubland species. Int J Wildland Fire 16(2):232–241.  https://doi.org/10.1071/WF06081 CrossRefGoogle Scholar
  14. Rossa CG, Veloso R, Fernandes PM (2016) A laboratory-based quantification of the effect of live fuel moisture content on fire spread rate. Int J Wildland Fire 25:569–573CrossRefGoogle Scholar
  15. Ruffault J, Martin-StPaul NK, Rambal S, Mouillot F (2013) Differential regional responses in drought length, intensity and timing to recent climate changes in a Mediterranean forested ecosystem. Clim Chang 117(1–2):103–117.  https://doi.org/10.1007/s10584-012-0559-5 CrossRefGoogle Scholar
  16. Ruffault J, Mouillot F (2017) Contribution of human and biophysical factors to the spatial distribution of forest fire ignitions and large wildfires in a French Mediterranean region. Int J Wildland Fire 26(6):498–508.  https://doi.org/10.1071/WF16181 CrossRefGoogle Scholar
  17. Ruffault, J., Curt, T., Martin-StPaul, N. K., Moron, V., & Trigo, R. M. (2018). Extreme wildfire events are linked to global-change-type droughts in the northern Mediterranean. Natural Hazards and Earth System Sciences, 18(3), 847–856.  https://doi.org/10.5194/nhess-18-847-2018
  18. Scott, JH.; Burgan, RE. 2005. Standard fire behavior fuel models: a comprehensive set for use with Rothermel’s surface fire spread model. Gen. Tech. Rep. RMRS-GTR-153. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. p. 72Google Scholar
  19. Sullivan AL (2009) Wildland surface fire spread modelling, 1990–2007. 1: physical and quasi-physical models. Int J Wildland Fire 18(4):349–368.  https://doi.org/10.1071/WF06144 CrossRefGoogle Scholar
  20. Thompson R (1985) A note on restricted maximum likelihood estimation with an alternative outlier model. J R Stat Soc Ser B Methodol 47(1):53–55Google Scholar
  21. Turner, N. C. (1981). Techniques and experimental approaches for the measurement of plant water status. In Plant and Soil (Vol. 58, pp. 339–366). ICARDA and Martinus Nijhoff/Dr. W. Junk Publishers. doi: https://doi.org/10.1007/BF02180062
  22. Vidal J-P, Martin E, Franchistéguy L, Baillon M, Soubeyroux J-M (2010) A 50-year high-resolution atmospheric reanalysis over France with the Safran system. Int J Climatol 30(11):1627–1644.  https://doi.org/10.1002/joc.2003 CrossRefGoogle Scholar
  23. Viegas DX, Piñol J, Viegas MT, Ogaya R (2001) Estimating live fine fuels moisture content using meteorologically-based indices. Int J Wildland Fire 10(2):223–240.  https://doi.org/10.1071/WF01022 CrossRefGoogle Scholar
  24. Viegas DX, Bovio G, Ferreira A, Nosenzo A, Sol B (1999) Comparative study of various methods of fire danger evaluation in southern Europe. Int J Wildland Fire 9(4):235.  https://doi.org/10.1071/WF00015 CrossRefGoogle Scholar
  25. Vilagrosa A, Hernández EI, Luis VC, Cochard H, Pausas JG (2014) Physiological differences explain the co-existence of different regeneration strategies in Mediterranean ecosystems. New Phytol 201(4):1277–1288.  https://doi.org/10.1111/nph.12584 CrossRefPubMedGoogle Scholar
  26. Yebra M, Dennison PE, Chuvieco E, Riaño D, Zylstra P, Hunt ER et al (2013) A global review of remote sensing of live fuel moisture content for fire danger assessment: moving towards operational products. Remote Sens Environ 136:455–468.  https://doi.org/10.1016/jrse201305.029 CrossRefGoogle Scholar
  27. Zylstra P, Bradstock RA, Bedward M, Penman TD, Doherty MD, Weber RO, Gill AM, Cary GJ (2016) Biophysical mechanistic modelling quantifies the effects of plant traits on fire severity: species, not surface fuel loads, determine flame dimensions in eucalypt forests. PLoS One 11(8):1–24.  https://doi.org/10.1371/journal.pone.0160715 CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  1. 1.URFMINRAAvignonFrance
  2. 2.DPFM, Délégation à la Protection de la Forêt MéditerranéenneMarseilleFrance
  3. 3.Mission Zonale DFCI, ONFAix en ProvenceFrance

Personalised recommendations