Advertisement

Remote estimation of canopy leaf area index and chlorophyll content in Moso bamboo (Phyllostachys edulis (Carrière) J. Houz.) forest using MODIS reflectance data

  • Xiaojun Xu
  • Huaqiang Du
  • Guomo Zhou
  • Fangjie Mao
  • Xuejian Li
  • Dien Zhu
  • Yangguang Li
  • Lu Cui
Original Paper

Abstract

Key message

We estimated the leaf area index (LAI) and canopy chlorophyll content (CC) of Moso bamboo forest by using statistical models based on MODIS data and field measurements. Results showed that the statistical model driven by MODIS data has the potential to accurately estimate LAI and CC, while the structure of the calibration models varied between on- and off-years because of the different leaf change and bamboo shoot production characteristics between these types of years.

Context

LAI and CC (gram per square meter of ground area) are important parameters for determining carbon exchange between Moso bamboo forest (Phyllostachys edulis (Carrière) J. Houz.) and the atmosphere.

Aims

This study evaluated the ability of a statistical model driven by MODIS data to accurately estimate the LAI and CC in Moso bamboo forest, and differences in the LAI and CC between on-years (years with great shoot production) and off-years (years with less shoot production) were analyzed.

Methods

The LAI and CC measurements were collected in Anji County, Zhejiang Province, China. Indicators of LAI and CC were calculated from MODIS data. Then, a regression analysis was used to build relationships between the LAI and CC and various indicators on the basis of leaf change and bamboo shoot production characteristics of Moso bamboo forest.

Results

LAI and CC were accurately estimated by using the regression analysis driven by MODIS-derived indicators with a relative root mean squared error (RMSEr) of 9.04 and 13.1%, respectively. The structure of the calibration models varied between on- and off-years. Long-term time series analysis from 2000 to 2015 showed that LAI and CC differed largely between on- and off-years.

Conclusion

This study demonstrates that LAI and CC of Moso bamboo forest can be estimated accurately by using a statistical model driven by MODIS-derived indicators, but attention should be paid to differences in the calibration models between on- and off-years.

Keywords

Leaf area index Canopy chlorophyll content MODIS reflectance Vegetation index Moso bamboo 

Notes

Funding

This study was supported by the National Natural Science Foundation [31500520, 31370637, and 31670644] and Natural Science Foundation of Zhejiang Province [LQ15C160003].

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

13595_2018_721_MOESM1_ESM.doc (66 kb)
ESM 1 (DOC 66 kb)
13595_2018_721_MOESM2_ESM.doc (46 kb)
ESM 2 (DOC 46 kb)

References

  1. Chen JM, Cihlar J (1996) Retrieving leaf area index of boreal conifer forests using Landsat TM images. Remote Sens Environ 55:153–162.  https://doi.org/10.1016/0034-4257(95)00195-6 CrossRefGoogle Scholar
  2. Chen XG, Zhang XQ, Zhang YP, Booth T, He XH (2009) Changes of carbon stocks in bamboo stands in China during 100 years. For Ecol Manag 258:1489–1496.  https://doi.org/10.1016/j.foreco.2009.06.051 CrossRefGoogle Scholar
  3. Cohen WB, Maiersperger TK, Turner DP, Ritts WD, Pflugmacher D, Kennedy RE, Kirschbaum A, Running SW, Costa M, Gower ST (2006) MODIS land cover and LAI collection 4 product quality across nine sites in the western hemisphere. IEEE Trans Geosci Rem Sens 44:1843–1857.  https://doi.org/10.1109/TGRS.2006.876026 CrossRefGoogle Scholar
  4. Colombo R, Bellingeri D, Fasolini D, Marino CM (2003) Retrieval of leaf area index in different vegetation types using high resolution satellite data. Remote Sens Environ 86:120–131.  https://doi.org/10.1016/S0034-4257(03)00094-4 CrossRefGoogle Scholar
  5. Coops NC, Stone C, Culvenor DS, Chisholm LA, Merton RN (2003) Chlorophyll content in eucalypt vegetation at the leaf and canopy scales as derived from high resolution spectral data. Tree Physiol 23:23–31CrossRefPubMedGoogle Scholar
  6. Datt B (1999) A new reflectance index for remote sensing of chlorophyll content in higher plants: tests using eucalyptus leaves. J Plant Physiol 154:30–36.  https://doi.org/10.1016/S0176-1617(99)80314-9 CrossRefGoogle Scholar
  7. De Kauwe MG, Disney MI, Quaife T, Lewis P, Williams M (2011) An assessment of the MODIS collection 5 leaf area index product for a region of mixed coniferous forest. Remote Sens Environ 115:767–780.  https://doi.org/10.1016/j.rse.2010.11.004 CrossRefGoogle Scholar
  8. Du H, Zhou G, Fan W, Ge H, Xu X, Shi Y, Fan W (2010) Spatial heterogeneity and carbon contribution of aboveground biomass of moso bamboo by using geostatistical theory. Plant Ecol 207:131–139.  https://doi.org/10.1007/s11258-009-9659-3 CrossRefGoogle Scholar
  9. Fang HL, Liang SL (2005) A hybrid inversion method for mapping leaf area index from MODIS data: experiments and application to broadleaf and needleleaf canopies. Remote Sens Environ 94:405–424.  https://doi.org/10.1016/j.rse.2004.11.001 CrossRefGoogle Scholar
  10. Fang HL, Li WJ, Myneni RB (2013) The impact of potential land cover misclassification on MODIS leaf area index (LAI) estimation: a statistical perspective. Remote Sens 5:830–844.  https://doi.org/10.3390/rs5020830 CrossRefGoogle Scholar
  11. Fang HL, Wei SS, Liang SL (2012) Validation of MODIS and CYCLOPES LAI products using global field measurement data. Remote Sens Environ 119:43–54.  https://doi.org/10.1016/j.rse.2011.12.006 CrossRefGoogle Scholar
  12. FAO (2010) Global forest resources assessment 2010: main report food and agriculture organization of the United Nations, Rome.  https://doi.org/10.1016/s0264-8377(03)00003-6
  13. Gitelson AA, Viña A, Ciganda V, Rundquist DC, Arkebauer TJ (2005) Remote estimation of canopy chlorophyll content in crops. Geophys Res Lett 32:L08403.  https://doi.org/10.1029/2005GL022688 CrossRefGoogle Scholar
  14. Gitelson AA, Viña A, Verma SB, Rundquist DC, Arkebauer TJ, Keydan G, Leavitt B, Ciganda V, Burba GG, Suyker AE (2006) Relationship between gross primary production and chlorophyll content in crops: implications for the synoptic monitoring of vegetation productivity. J Geophys Res 111:D08S11.  https://doi.org/10.1029/2005JD006017 CrossRefGoogle Scholar
  15. Gitelson AA, Wardlow BD, Keydan GP, Leavitt B (2007) An evaluation of MODIS 250-m data for green LAI estimation in crops. Geophys Res Lett 34:L20403.  https://doi.org/10.1029/2007GL031620 CrossRefGoogle Scholar
  16. Grattani L, Crescente MF, Varone L, Fabrini ED (2008) Growth pattern and photosynthetic activity of different bamboo species growing in the Botanical Garden of Rome. Flora 203:77–84.  https://doi.org/10.1016/j.flora.2007.11.002 CrossRefGoogle Scholar
  17. Gu CY (2013) Satellite-based retrieval of canopy parameters of Moso bamboo forest with PROSAIL radiative transfer model. Dissertation, Zhejiang A&F University [in Chinese]Google Scholar
  18. Gu YX, Bélair S, Mahfouf J-F, Deblonde G (2006) Optimal interpolation analysis of leaf area index using MODIS data. Remote Sens Environ 104:283–296.  https://doi.org/10.1016/j.rse.2006.04.021 CrossRefGoogle Scholar
  19. Guindin-Garcia N, Gitelson AA, Arkebauer TJ, Shanahan J, Weiss A (2012) An evaluation of MODIS 8- and 16-day composite products for monitoring maize green leaf area index. Agric For Meteorol 161:15–25.  https://doi.org/10.1016/j.agrformet.2012.03.012 CrossRefGoogle Scholar
  20. Heinsch FA, Zhao M, Running SW, Kimball JS, Nemani RR, Davis KJ, Bolstad PV, Cook BD, Desai AR, Ricciuto DM, Law BE, Oechel WC, Kwon H, Luo HY, Wofsy SC, Dunn AL, Munger JW, Baldocchi DD, Xu LK, Hollinger DY, Richardson AD, Stoy PC, Siqueira MBS, Monson RK, Burns SP, Flanagan LB (2006) Evaluation of remote sensing based terrestrial productivity from MODIS using regional tower eddy flux network observations. IEEE Trans Geosci Rem Sens 44:1908–1925.  https://doi.org/10.1109/TGRS.2005.853936 CrossRefGoogle Scholar
  21. Hilker T, Galvão LS, Aragão LEOC, Moura YMD, Amaral CHD, Lyapustin AI, Wu J, Albert LP, Ferreira MJ, Anderson LO, dos Santos VAHF, Prohaska N, Tribuzy E, Ceron JVB, Saleska SR, Wang Y, de Carvalho Goncalves JF, de Oliveira Junior RC, Rodrigues JVFC, Garcia MN (2017) Vegetation chlorophyll estimates in the amazon from multi-angle MODIS observations and canopy reflectance model. Int J Appl Earth Obs 58:278–287.  https://doi.org/10.1016/j.jag.2017.01.014 CrossRefGoogle Scholar
  22. Houborg R, Anderson M, Daughtry C (2009) Utility of an image-based canopy reflectance modeling tool for remote estimation of LAI and leaf chlorophyll content at the field scale. Remote Sens Environ 113:259–274.  https://doi.org/10.1016/j.rse.2008.09.014 CrossRefGoogle Scholar
  23. Houborg R, Soegaard H, Boegh E (2007) Combining vegetation index and model inversion methods for the extraction of key vegetation biophysical parameters using Terra and Aqua MODIS reflectance data. Remote Sens Environ 106:39–58.  https://doi.org/10.1016/j.rse.2006.07.016 CrossRefGoogle Scholar
  24. Hu YB (2011) Effects of fertilizations on leaf characteristics and photosynthesis character during the shoot period to deciduous period of Phyllostarchys pubescens. Dissertation, Zhejiang A&F University [in Chinese]Google Scholar
  25. Jacquemoud S, Bacour C, Poilvé H, Frangi J-P (2000) Comparison of four radiative transfer models to simulate plant canopies reflectance: direct and inverse mode. Remote Sens Environ 74:471–481.  https://doi.org/10.1016/S0034-4257(00)00139-5 CrossRefGoogle Scholar
  26. Jin XC, Jin AW, Song YD, Lou JF, Mei SM (2010) Canopy development and photosynthesis with fertilization during leaf expansion period of Phyllostarchys pubescens. J Zhejiang For Coll 27:57–62 [in Chinese]Google Scholar
  27. Kleinhenz V, Midmore D J (2001) Aspects of bamboo agronomy. Adv agron 74:99–153.  https://doi.org/10.1016/S0065-2113(01)74032-1
  28. Komatsu H, Onozawa Y, Kume T, Tsuruta K, Kumagai T, Shinohara Y, Otsuki K (2010) Stand-scale transpiration estimates in a Moso bamboo forest: II comparison with coniferous forests. For Ecol Manag 260:1295–1302.  https://doi.org/10.1016/j.foreco.2010.06.040 CrossRefGoogle Scholar
  29. Komatsu H, Onozawa Y, Kume T, Tsuruta K, Shinohara Y, Otsuki K (2012) Canopy conductance for a Moso bamboo (Phyllostachys pubescens) forest in western Japan. Agric For Meteorol 156:111–120.  https://doi.org/10.1016/j.agrformet.2012.01.004 CrossRefGoogle Scholar
  30. Leuning R, Cleugh HA, Zeglin SJ, Hughes D (2005) Carbon and water fluxes over a temperate Eucalyptus forest and tropical wet/dry savanna in Australia: measurements and comparison with MODIS remote sensing estimates. Agric For Meteorol 129:153–173.  https://doi.org/10.1016/j.agrformet.2004.12.004 CrossRefGoogle Scholar
  31. Li R, Werger MJA, During HJ, Zhong ZC (1998) Biennial variation in production of new shoots in groves of the giant bamboo Phyllostachys pubescens in Sichuan. China Plant Eco 135:103–112.  https://doi.org/10.1023/A:1009761428401 CrossRefGoogle Scholar
  32. Li XJ, Xiao ZQ, Wang JD, Qu Y, Jin HA (2014) Dual ensemble Kalman filter assimilation method for estimating time series LAI. J Remote Sens 18:27–44Google Scholar
  33. Maire GL, Marsden C, Verhoef W, Ponzoni FJ, Seen DL, Bégué A, Stape J-L, Nouvellon Y (2011) Leaf area index estimation with MODIS reflectance time series and model inversion during full rotations of eucalyptus, plantations. Remote Sens Environ 115:586–599.  https://doi.org/10.1016/j.rse.2010.10.004 CrossRefGoogle Scholar
  34. Mao F, Du H, Zhou G, Li X, Xu X, Li P, Sun S (2017) Coupled LAI assimilation and BEPS model for analyzing the spatiotemporal pattern and heterogeneity of carbon fluxes of the bamboo forest in Zhejiang Province, China. Agric For Meteorol 242:96–108.  https://doi.org/10.1016/j.agrformet.2017.03.022 CrossRefGoogle Scholar
  35. Meyers TP, Hollinger SE (2004) An assessment of storage terms in the surface energy balance of maize and soybean. Agric For Meteorol 125:105–115.  https://doi.org/10.1016/j.agrformet.2004.03.001 CrossRefGoogle Scholar
  36. Olivas PC, Oberbauer SF, Clark DB, Clark DA, Ryan MG, O’Brien JJ, Ordoñez H (2013) Comparison of direct and indirect methods for assessing leaf area index across a tropical rain forest landscape. Agric For Meteorol 177:110–116.  https://doi.org/10.1016/j.agrformet.2013.04.010 CrossRefGoogle Scholar
  37. Olsoy PJ, Mitchell JJ, Levia DF, Clark PE, Glenn NF (2016) Estimation of big sagebrush leaf area index with terrestrial laser scanning. Ecol Indic 61:815–821.  https://doi.org/10.1016/j.ecolind.2015.10.034 CrossRefGoogle Scholar
  38. Qi Y, Li F, Liu Z, Jin G (2014) Impact of understorey on overstorey leaf area index estimation from optical remote sensing in five forest types in northeastern China. Agric For Meteorol s198–199:72–80.  https://doi.org/10.1016/j.agrformet.2014.08.001 CrossRefGoogle Scholar
  39. Qiu FG (1984) The on-year and off-year of Phyllostarchys pubescens forests and their control. J Bamboo Res 3:62–69 [in Chinese] Google Scholar
  40. Running SW, Nemani RR, Peterson DL, Band LE, Potts DF, Pierce LL, Spanner MA (1989) Mapping regional forest evapotranspiration and photosynthesis by coupling satellite data with ecosystem simulation. Ecology 70:1090–1101.  https://doi.org/10.2307/1941378 CrossRefGoogle Scholar
  41. Sellers PJ (1997) Modeling the exchange of energy, water, and carbon between continents and atmosphere. Science 275:602–609CrossRefGoogle Scholar
  42. Song X, Peng C, Zhou G, Gu H, Li Q, Zhang C (2016) Dynamic allocation and transfer of non-structural carbohydrates, a possible mechanism for the explosive growth of Moso bamboo (Phyllostachys heterocycla). Sci Rep 6:25908.  https://doi.org/10.1038/srep25908 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Wang Q, Tenhunen J, Dinh NQ, Reichstein M, Otieno D, Granier A, Pilegarrd K (2005) Evaluation of seasonal variation of MODIS derived leaf area index at two European deciduous broadleaf forest sites. Remote Sens Environ 96:475–484.  https://doi.org/10.1016/j.rse.2005.04.003 CrossRefGoogle Scholar
  44. Wu C, Zheng N, Quan T, Huang W (2008) Estimating chlorophyll content from hyperspectral vegetation indices: modeling and validation. Agric For Meteorol 148:1230–1241.  https://doi.org/10.1016/j.agrformet.2008.03.005 CrossRefGoogle Scholar
  45. Wu C, Zheng N, Quan T, Huang W, Rivard B, Feng J (2009) Remote estimation of gross primary production in wheat using chlorophyll-related vegetation indices. Agric For Meteorol 149:1015–1021.  https://doi.org/10.1016/j.agrformet.2008.12.007 CrossRefGoogle Scholar
  46. Xu X, Du H, Zhou G, Li P (2016) Method for improvement of MODIS leaf area index products based on pixel-to-pixel correlations. Eur J Remote Sens 49:57–72.  https://doi.org/10.5721/EuJRS20164904 CrossRefGoogle Scholar
  47. Xu X, Zhou G, Liu S, Du H, Mo L, Shi Y, Jiang H, Zhou Y, Liu E (2013) Implications of ice storm damages on the water and carbon cycle of bamboo forests in southeastern China. Agric For Meteorol 177:35–45.  https://doi.org/10.1016/j.agrformet.2013.04.005 CrossRefGoogle Scholar
  48. Yen TM (2015) Comparing aboveground structure and aboveground carbon storage of an age series of Moso bamboo forests subjected to different management strategies. J For Res 20:1–8.  https://doi.org/10.1007/s10310-014-0455-0 CrossRefGoogle Scholar
  49. Yen TM (2016) Culm height development, biomass accumulation and carbon storage in an initial growth stage for a fast-growing Moso bamboo (Phyllostachy pubescens). Bot Stud 57:1–9.  https://doi.org/10.1186/s40529-016-0126-x CrossRefGoogle Scholar
  50. Yen TM, Lee JS (2011) Comparing aboveground carbon sequestration between Moso bamboo (Phyllostachys heterocycla) and China fir (Cunninghamia lanceolata) forests based on the allometric model. Forest Ecol Manag 261:995–1002.  https://doi.org/10.1016/j.foreco.2010.12.015 CrossRefGoogle Scholar
  51. Zhang Y, Chen JM, Miller JR, Noland TL (2008) Leaf chlorophyll content retrieval from airborne hyperspectral remote sensing imagery. Remote Sens Environ 112:3234–3247.  https://doi.org/10.1016/j.rse.2008.04.005 CrossRefGoogle Scholar
  52. Zhang Y, Qu Y, Wang J, Liang S, Liu Y (2012) Estimating leaf area index from modis and surface meteorological data using a dynamic Bayesian network. Remote Sens Environ 127:30–43.  https://doi.org/10.1016/j.rse.2012.08.015 CrossRefGoogle Scholar
  53. Zhou B, Li Z, Wang X, Cao Y, An Y, Deng Z, Letu G, Wang G, Gu L (2011) Impact of the 2008 ice storm on Moso bamboo plantations in Southeast China. J Geophys Res 116:G00H06.  https://doi.org/10.1029/2009JG001234 Google Scholar

Copyright information

© INRA and Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Subtropical SilvicultureZhejiang A & F UniversityLin’anChina
  2. 2.Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang ProvinceZhejiang A & F UniversityLin’anChina
  3. 3.School of Environmental and Resources ScienceZhejiang A & F UniversityLin’anChina

Personalised recommendations